
New Modular Multiplication Algorithms
for Fast Modular Exponentiation

Seong-Min Hong, Sang-Yeop Oh, Hyunsoo Yoon

Department of Computer Science and Center for A1 R.esearch
Korea Advanced Institute of Science and Technology(KA1ST)

Taejeon, 305-701, KOREA
E-mail: {smhong,hyoon}@camars.kaist.ac.kr

Abstract. A modular exponentiation is one of the most important oper-
ations in public-key cryptography. However, it takcs much time because
the modular exponentiation deals with very large operands as 512-bit
integers. The modular exponentiation is composed of repetition of mod-
ular multiplications. Therefore, we can rcducc the execution time of it
by reducing thc execution time of each modular multiplication. In this
paper, we propose two fast modular multiplication algorithms. One is for
modular multiplications between different integers, and the other is for
modular squarings. These proposed algorithms require single-precision
multiplications fewer than those of Montgomery modular multiplication
algorithms by 1/2 and 1/3 times, respectively. Implementing on PC, pro-
posed algorithms reducc execution times by 50% and 30% compared with
Montgomery algorithms, respectively.

1 Introduction

Since Diffio and Hellman had proposed public-key cryptography in 1976, many
public-key cryptosystems have been developed[8, 91. Many of them require mod-
ular exponentiations[lO, 8, 111. Therefore, a modular exponcntiation becomes
one of the most important operations. However, it takes much time because
the modular exponentiation deals with very large operands as 512-bit inte-
gers. Therefore, many researchers have studied for the speedup of the modular
exponentiation[l, 14, 18, 6, 71.

A modular exponentiation is composed of repetition of modular multiplica-
tions. Therefore, there are two possible methods to reduce the execution time of
the modular exponentiation. One is to reduce the number of modular multipli-
cations, and the other is to reduce the execution time of each modular multipli-
cat ion.

Again, the latter is classified into two classes. One is the approach of con-
sidering a modular reduction apar t from a multiple-precision multiplication[2,
17, 12, 131. The other is the approach of considering together them as one
operation[l6, 15, 181. Algorithms which will he proposed in this paper a re in-
cluded in the latter class.

I t is the small-window method that can find the shortest addition-chain
among systematically analyzable algorithms. Modular multiplications can be
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 166-177, 1996.
0 Springer-Verlag Berlin Heidelberg 1996

167

classified into two species when we execute a modular exponentiation with the
small-window method. Ones are modular miiltiplications of two different in-
tegers, and the others are modular squarings. In this paper, we propose two
algorithms. One is for fast modular multiplications of two different integers. It is
the algorithm expanded from the I<awamura's[lS]. The other is for fast modular
squarings. It executes a modular squaring fast by altering the sequence of calcu-
lation. The former shows good performance for modular multiplications of two
different integers, but it can not be applicable to modular squarings. Therefore,
we can execute a modular exponentiation fast with both the former and the
latter.

This paper is organized as follows. In Section 2, we explain briefly the process
of modular exponentiation using the small-window method. In Section 3, we
explain the basic method for modular multiplications and propose two modular
multiplication algorithms. In Section 4, we analyze performances of proposed
algorithms and compare them to that of Montgomery algorithm. In Section
5, performances of proposed algorithms implemented on a PC are presented,
followed by discussions. Finally, we conclude in Section 6.

2 The Procedure of A Modular Exponentiation

The modular exponentiation used in public-key cryptosystems like RSA is de-
fined as follows.

Definition 1. C = M E mod N

In the above definition, M means a message, and E means a public-key. It is
desirable to obtain a sequence of modular multiplications for the fast execution
of the modular exponentiation in advance, because E is known previously. An
addition-chain is used to represent the sequence, which is defined as follows.

Definition2. An addition-chain of length 1 for an integer n, is a sequence of
integers ao, a1 , . . . , a/ satisfying

(bk-' 5 E < N < bk,O 5 M < N) .

1. ao = 1, a[= 7L.
2. a, = a j + ak, where 0 5 j 5 Ic < i 5 I .

We can enumerate the sequence of modular multiplications for a modular expo-
nentiation according to Definition 1 and Definition 2.

Co = Mu" mod N = M ,
C1 = M a ' modN,
C, = M a 2 mod N ,

168

Each step of Equation (1) is connected with previous steps by the following
relation.

(2)
C, = (C, x C,) mod N ,

i i i h ~ r ~ 0 5 j 5 k < 7 5 I .

As we can see in Equations (1) am1 (21, the shorter the addition-chain is the
shorter the execution time of the niodular exponentiation is. Many researchers
have proposed addition-chain algorithIns[l, 2, 3, 4, 5, 6, 71. Among these al-
gorithms, the Bos-Coster's heuristic algorithm[l] shows the hest performance.
However, the gap between the small-window niethod[2] and the Bos-Cost>er's
algorithm is very small and the latter is more complex. Modular multiplication
algorithms which will be proposed later in this paper are applicable t o both algo-
rithms. Therefore, we suppose that the small-window method is used to execute
a modular exponentiation for the sake of convenient explanation.

A modular exponentiation is executed by the repetition of following two kinds
of operations according t o the above supposition, where w means the wiridow
sBe in the small-window method.

3 Algorithms

In this section, we explain the basic method for modular multiplications and
propose two modular multiplication algoritlirns. We call Equation (3) a window
modular multiplication and Equation (4) a modular squaring.

3.1 Basic Method

The basic method for a modular multiplication is as follows. A multiple-precision
multiplication and a modular reduction are separate tasks. The former is exe-
cuted first and the latter is executed secondly. The result of the multiplication is
the input of the modular reduction. Equation (3) and Equation (4) are calculated
by Equation (5) and Equation (6), respectively.

C, = G,+1 x 144, mod N
= (C,+l x (nila mod N)) mod N
= (C,-I x T (a]) mod N ,

where ~ [a] = M" mod N , O 5 (Y < 2'''-'

C, = C,"-l mod N
= (I?,"_, j mod N .

169

3.2 Proposed Algorithms

In this section, we propose two modular multiplication algorithms. One is for
the window modular rniiltiplication and the other is for the niodular squaring.
We express a multiple-precision integer CLV1 as follows:

k - I

,I=,

Note that we write Ct-l as C for the sake of sirnplirity

(7)

in this section.

Window Modular Multiplication, A feature of the small-window method is
that one of two operands in the window modular multiplication is restricted in
narrow limits. As we suppose that the small-window method is used to decide the
sequence of modular multiplications, Equation (3) can be expanded to Equation
(8) .

Ci = C x M" mod N
- - (C"' c W) x M e mod N
- a:; .I

- - (C,=, c3 x T[cy][j]) mod N ,
(8) - cJ x (bj x M u mod N)) mod N

1

where T[a][j] = bJ x M a mod N acrid 0 5 a < 2uJ-1.
011 executing a modular exponentiation with the small-window method, M"
and N can be considered constant numbers. Therefore, bJ x M a mod N can be
calculated in advance. The table T in Equation (8) can bc calculated hy thc
following equation.

T[a][O] = M" mod N ,
T [a] [j] = (T [a] [j - 11 x b) mod AT, (9)

where 0 5 cy < 2'"'-' and 0 < j 5 k - 1.

Modular Squaring. I t is required t o execute more modular squarings than
window modular multiplications in order t o execute a modular exponentiation.
However, t,hc algorithm explained in the previous section can not be applicablc
to modular squarings, because C,-l in Equation (6) is not known in advaIice.
Therefore, we need a fast modular squaring algorithm.

In this section, we propose a fast modular squaring algorithm. It uses the
fact that modular reductions can be executed fast for small operands. Equation
(4) can be expanded as follows.

170

Looking a t the first and the last term among all of right terms in the above
equation, C2 mod N and (C(’))2 mod N are included, respectively. They have
the same form as each other. Therefore, we can compute Equation (10) recur-
sively. In addition t o it, C(’) in Equation (10) is the value which is shifted to
the right by one digit from C. If we repeat the recursive function call 5 times,
the final value is as follows:

Because C (5) is a $-digit integer, the result of squaring is a k-digit integer
a t most, and (C(4))’ mod N can be calculated by only one subtraction or no
operation except for a squaring. Therefore, we can consider Equation (11) basis
of recursive calls and get the result of a modular squaring by repeating the
following equation times.

(c (J - ’))~ mod N
= (((CcJ))’ mod N)b2 + 2c”C(J))b + cg) mod N , (12)

where 1 5 J 5 and do) = C.

The only term to be reduced by modulus N is ((C (J)) 2 inod N)b2 w h e ~ i we calcu-
late Equation (12). Because (C(j))’ mod N is the value calculated in the previous
step, ((dj))’ mod N) b 2 mod N can be calculated by shifting (C(j))’ mod N to
the left by two digits and by executing a simple modular reduction to the re-
sult of shifting. This procedure can be processed using only subtractions, and is
appeared in the following equation.

(((C (j)) 2 mod N) b 2) mod N
= (((((C (J)) 2 modN)logs -T[7no])logs -T[m,l])...)logs -T[rnt-l], (13)

,where T[m,] = m, x N , 0 5 m, < s, 0 5 z < t , t = z.
In the above equation, t rnust be as small as possible because it means the
number of shifts and subtractions. However, b is determined by the system on
which the algorithm is implemented, and s is limited by the memory capacity.
The reasonable value of b and s are 216 and 2* on current 32-bit computer
systems, respectively. Note that m, can be determined easily using backward
pointer array, which can be made during the table construction.

4 Time Complexity

In this section, we compute time complexities of algorithms proposed in this
paper and compare them with those of existing algorithms. The metric of the
time complexity is the number of single-precision Iniiltiplications required for
the execution of the corresponding algorithm.

171

4.1 Basic Method

The number of single-precision multiplications required to multiply two large
integers which is represented like Equation (7) is k 2 . All of existing modular
reduction algorithms require k(k + c) single-precision multiplications, where c is
the constant according to the algorithm used. Therefore, the number of single-
precision multiplications required to exwiitr a modular multiplication by the
lmic method is as follows:

2k2 + ck

The value of c is ‘1’ if the used algorithm is the Montgomery’s which is the best
modular reduction algorithm[l2, 18, 141.

4.2 Proposed Algorithms

Window Modular Multiplication. It is not required to execute any explicit
modular reduction to calculate Equation (3) using Equation (8). Only a few
additional operations are required to reduce an intermediate result into a k-digit
integer.

First, k single-precision multiplications are required to multiply each digit
and the residue equivalent to it. The residue is T[a][j] in Equation (8). Because
an integer has k digits, the number of single-precision multiplications required
is k2 totally. The intcrmediate result is larger than N . However, we can get
the final result with no single-precision multiplication using the table explained
in Section 3.2, because the difference is very small. Therefore, the number of
single-precision multiplications required to calculate Equation (8) is as follows:

k 2 . (14)

Next, we consider single-precision multiplications required to construct the
table explained in Section 3.2. Seeing Equation (O), there is no additional oper-
ation required to calculate T[a] [O]s, because they are values that are calculated
in the previous step. Each of the next operations needs one shift to the left and
one modular rcduction. The integer to be reduced by modulus N has k + 1 digits
at most. Therefore, the modular reduction can be executed by k single-precision
multiplications. The number of single-precision multiplications required to con-
struct the table is as follows:

x k (k - 1). (15) 2w-I

In the above equation, w means the window size. If we use the table explained
in Section 3.2 , all table entries can be calculated with no single-precision multi-
plication.

172

M o d u l a r Squaring. We count the number of single-precision multiplications
required to execute a modular squaring by the proposed algorithm. First, 9
single-precision multiplications are required t o calculate Equation (1 1). Set:-
ond, we count the number of single-precision multiplications required to execute
Equation (12). The first term in the right side of the equation needs no single-
precision multiplication, as we can see in Equation (13). The second terrn requires
3k2 - 2 k k-1 . (= C,= 3) single-precision multiplications during all recursive function
calls. The third term requires k / 2 single-precision multiplications because it
requires one for each recursive call. Therefore, the number of single-precision
multiplications required to execute Equation (4) by the proposed algorithni is
as follows:

k 2 + k:
2

__

The table T in Equation (13) can be cmistriirtcd without any single-precision
multiplication.

4.3 C o m p a r i s o n

We have computed time complexities of proposed algorithms and the basic
method so far. However, there are many existing algorithms for modular multi-
plications other than the basic met,hod[l5, 13, 18, 7, 161. Some are algorithms
using pre-computation table and others are algorithms which regard a multiple-
precision multiplication and a modular reduction as one operation. We briefly
examine them.

An efficient algorithIri was proposed when a modular exponentiation was
executed using the binary method[2] as an addition-chain algorithm in [7] and
[15]. However, it is not good for a modular exponentiation because the binary
method is very inefficient. Findlay et. al. proposed an algorithm using partial
modular reductions based 011 sums of residues in [13]. However, the niimber of
single-precision niultiplications required for partial modular reductions is k"
Furthermore, a fcw additional operations are required because it is not the final
result. Therefore] the number of single-precision multiplications required for this
algorithm is much the same as that of the basic method. Morita et. al. proposed
a new modular Iniiltiplication algorithm in [16]. However, it reduces only the
required available memory for the computation but not the number of single-
precision multiplications.

As we look at in the above paragraph, existing algorithms using a pre-
computation table or combining a multiple-precision Inultiplication and a modu-
lar reduction into a single operation are not much different from the basic method
in regard to the number of single-precision rnultiplications. The best modular
reduction a,lgorithrri known to 11s is the Montgomery algorithm[l4]. Therefore,
we compare our algorithms with the basic: method which uses the Montgomery
reduction algorithm.

Time complexities of proposed algorithms and those of Montgomery algo-
rithms are compared in Table 1 and Figure 1. The time required for table com
struction in proposed algorithms and the time required for I)re-/post-calculation

173

I Algorithm NOSPM
!Window Modular Montgomery 2k2 + k

Multiplication Proposed k Z
~- Ordinary Multiplication k2

Modular Montgomery $ (k 2 + k)
Sauaring Pronosed A(k;' + I,-\

in Montgomery algorithms arc excluded, because marly modular multiplications
are rpquired to execute a modular exponentiation. The number of single-precision
multiplications required t o execute an ordinary multiple-precision multiplication
is recorded together, for reference. The ordinary multiple-precision miiltiplica-
tion means one which needs not modular reduction. s in Table 1 is the same as
that in Equation (13).

Memory Requirement
2"-l

k x 2-l
2'1'-1

0
k x s u ~ = . ~ ,~ , .., .. .

Ordiriarv Sauarintr I f (k2 + k\ l Il

(a) Window Modular Mul t ip l ica t ion (b) M o d u l a r Syuar ing

Fig. 1. The t ime complexity of each olgorithm

As we can see in Table 1 and Figure 1, numbers of single-precision multi-
plications required for proposed algorithms are the same as those required for
ordinary multiple-precision multiplications. That is, explicit modular multiplica-
tions are not required for proposed algorithms. The proposed window modular
multiplication algorithm removes taliern by pre-calciilations and the proposed
modular squaring algorithm removes them by pre-calculations and subtractions.

174

Algorithm

Window Montgomery
Modular Multiplication Proposed

Modular Montgomery
Squaring Proposed

5 Implementation and Discussion

Time of Execution(msec.)
‘256-bit 51’2-bit 768-bit 1024-bit
0.137 0.544 1.16 2.07
0.0604 0.220 0.489 0.868
0.121 0.445 0.917 1.65
0.0851 0.297 0.698 1.22

We implemented proposed algorithms and the Montgomery algorithm. The sys-
tem on which we implemented is a PC with Pentiurn-90 microprocessor. We
implemented them in C language, and compiled with Watcom C(version 10.0)
compiler. A digit is 16-bit(b = 216). Results are appeared in Table 2.

(a) Window Modular Multiplication (b)Modular Squaring

Fig. 2. The executzon tame of each algorithm

According to Table 1, proposed algorithms are faster than Montgomery al-
gorithms by two and three times, respectively. As we can see in Table 2 and
Figure 2(a), the real execution time agrees with Table 1 and Figure 1(a) in the
case of window modular multiplications. However, it is not in the case of rnod-
ular squarings. The reason is that we count only the number of single-precision
multiplications in Table 1. While it is a fact that a rnultiplication takes much
time than an addition in general purpose processors, as the proposed modiilar
squaring algorithm uses many additions we must consider the number of single-
precision additions, also. Time complexities are appeared in consideration of the
number of single-precision additions in Table 3. T is the constant required to

175

I U 7

! I .

3 2 0 .

i 4 1 3 .
2
il

l o -

LII .

a o

represent the time complexity as the number of single-precision multiplications.
It is defined as follows and determined by the system on which t,he corresponding
algorithm is implemented.

0 5 .

u u

the time required for a single-precision addition
the time required for a single-precision multiplication Definition3. 7' =

Table 3. The t ime complexity in consideration of single-prwision additions. NOSPlLf
means the number of single-precision multiplications.

Suuarine

Figure 3 is the graph to reprcscnt changes of expected performance ratios of
proposed algorithms to Montgomery algorithms according to T when the value
of k is 32. The expected performance ratio is defined as follows.

Definition 4. The expected performance ratio of the proposed algorithm to
Montgomery algorithm

- NOSPM required to execute Montgomery algorithm
NOSPM required to execute the proposed algorithm

-

NOSPM has the same meaning as that used in Table 3.

Fig. 3. Change of the expected performance ratio according to r

176

As we can see in Figure 3(a), the performance ratio of the proposcd window
modular multiplication algorithm to the Montgomery algorithm is little changed
although the T is largely changed. This means tha t the proposed window mod-
ular multiplication algorithm is faster than the Montgomery algorithm by two
times in almost systems. However, the performance ratio in Figure 3(b) is largely
changed according to T . Tha t is, the performance of the proposed modular squar-
ing algorithm is largely dependent on the system on which the algorithm is im-
plemented. For example, as the value of T is about 0.37 in the case of Pentiiirri
PC, the proposed modular squaring algorithm is faster than the Montgomery
algorithm by 30% on it.

6 Conclusion

We proposed two algorithms to executc modular multiplications fast. One is the
window rriodular multiplication algorithm and it uses the feature of t he addition-
chain found with the small-window method. The other is the modular squaring
algorithm and it uses the fact tha t a modular reduction can be executed easily
for an integer which is not rriiich larger than a modulus. Proposcd algorithms
require single-precision multiplications 1/2 arid 1/3 times of tha t required for
Montgomery algorithms, respectively. Implementing on PC, proposed algorithms
reduce execution timcs by 50% and 30% cornpared wit,h Montgomery algorithms,
respectively.

References

1. J.Bos, M.Chter: Addition chain heuristics. Crypto’8‘3, 400 407 (1989)
2. D.E.Knuth: The art of computer programming Vo1.2. Addison-WesleyJnc. (1981)
3. M.J.Coster: Some algorithms on addition chains and their complexity. CWI Report)

4. Y.Yacobi: Exponentiating faster with addition chains. Eurocrypt’SO, 222-229

5 . P.Uowney, BLeong, R.Sethi: Computing sequences with addition chains. S I A M J.
Comput., vol.10, N 0 . 3 , August, 638-646 (1981)

6. J.Jedwab, C.J.Mitcht.11: Minimum weight modified signed-digit reprcscntations and
fast exponentiation. Electronics Letters, v01.25, 1171-1172 (1989)

7. A.Selby, C.Mitchei1: Algorithms for software iniplerrientations of RSA. IEE Pro-
ceedings(E), ~01.136, N0 .3 , May”, 166 170 (1989)

8. W.Diffie, M.E.Hellman: New directions in cryptography. IEEE Trans. Computers,
vol.IT-22, N0 .6 , June, 644-654 (1976)

9. W.Diffie: The first ten years of public-key cryptography. Proceeding of the IEE14:,
vo1.76, N0.5 , May, 560-576 (1988)

10. R.L.Rivest, A.Shamir, L.Adleman: A method for obtaining digital signatures and
public key cryptosystems. CACM, vo1.21, 120-126 (1978)

11. ‘r.EIGma1: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, vol.1T-31, N0.4 , 469-472
(1985)

CS-R9024 (1990)

(1991)

177

12. P.I,.Montgomery: Modular multiplication without trial division. Mathematics of
Computation, vu1.44, 519-521 (1985)

13. P.Findlay, B.Johnson: Modular exponentiation using recursive sums of residues.
Crypto’S9, 371-386 (1990)

14. A.Bossclaers, R.Govaerts, J.Vandewalle: Comparisoll or three modular reduction
functions. Crypto’YY, 175-186 (1994)

15. S.Kawamura, K.Takabayashi, A.Shirnbo: A fast modular exponentiation algorithm.
IEICE Transactions., vo1.E-74, N0.8, August, 2136-2142 (1991)

16. H.Morita, C.Yang: A modular-multiplication algorithm using lookahead determi-
nation. IEICE Trans. Fundamentals, vol.E76-A, NO.1, January, 70-77 (1993)

17. P.Barrett: Implementing the Rivest Shamir and Adlerrian public key encryption
algorithm on a standard digital signal processor. Crypto’86, 311-323 (1987)

18. S.R.Dusse, B.S.Kaliski: A cryptographic library for the motorola DSP56000. Eu-
rocrypt’90, 230 244 (1991)

	New Modular Multiplication Algorithmsfor Fast Modular Exponentiation
	1 Introduction
	2 The Procedure of A Modular Exponentiation
	3 Algorithms
	3.1 Basic Method
	3.2 Proposed Algorithms

	4 Time Complexity
	4.1 Basic Method
	4.2 Proposed Algorithms
	4.3 Comparison

	5 Implementation and Discussion
	6 Conclusion
	References

