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Abstract. A modular exponentiation is one of the most important oper- 
ations in public-key cryptography. However, it takcs much time because 
the modular exponentiation deals with very large operands as 512-bit 
integers. The modular exponentiation is composed of repetition of mod- 
ular multiplications. Therefore, we can rcducc the  execution time of it 
by reducing thc execution time of each modular multiplication. In this 
paper, we propose two fast modular multiplication algorithms. One is for 
modular multiplications between different integers, and the other is for 
modular squarings. These proposed algorithms require single-precision 
multiplications fewer than those of Montgomery modular multiplication 
algorithms by 1/2 and 1/3 times, respectively. Implementing on PC, pro- 
posed algorithms reducc execution times by 50% and 30% compared with 
Montgomery algorithms, respectively. 

1 Introduction 

Since Diffio and Hellman had proposed public-key cryptography in 1976, many 
public-key cryptosystems have been developed[8, 91. Many of them require mod- 
ular exponentiations[lO, 8, 111. Therefore, a modular exponcntiation becomes 
one of the  most important operations. However, it takes much time because 
the  modular exponentiation deals with very large operands as 512-bit inte- 
gers. Therefore, many researchers have studied for the speedup of the  modular 
exponentiation[l, 14, 18, 6, 71. 

A modular exponentiation is composed of repetition of modular multiplica- 
tions. Therefore, there are two possible methods to reduce the  execution time of 
the modular exponentiation. One is to reduce the number of modular multipli- 
cations, and the other is to reduce the  execution time of each modular multipli- 
cat ion. 

Again, the  latter is classified into two classes. One is the approach of con- 
sidering a modular reduction apar t  from a multiple-precision multiplication[2, 
17, 12, 131. The  other is the  approach of considering together them as one 
operation[l6, 15, 181. Algorithms which will he proposed in this paper a re  in- 
cluded in the latter class. 

I t  is the  small-window method that can find the shortest addition-chain 
among systematically analyzable algorithms. Modular multiplications can be 
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 166-177, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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classified into two species when we execute a modular exponentiation with the 
small-window method. Ones are modular miiltiplications of two different in- 
tegers, and the others are modular squarings. In this paper, we propose two 
algorithms. One is for fast modular multiplications of two different integers. It is 
the algorithm expanded from the I<awamura's[lS]. The other is for fast modular 
squarings. It executes a modular squaring fast by altering the sequence of calcu- 
lation. The former shows good performance for modular multiplications of two 
different integers, but it can not be applicable to modular squarings. Therefore, 
we can execute a modular exponentiation fast with both the former and the 
latter. 

This paper is organized as follows. In Section 2, we explain briefly the process 
of modular exponentiation using the small-window method. In Section 3, we 
explain the basic method for modular multiplications and propose two modular 
multiplication algorithms. In Section 4, we analyze performances of proposed 
algorithms and compare them to that of Montgomery algorithm. In Section 
5, performances of proposed algorithms implemented on a PC are presented, 
followed by discussions. Finally, we conclude in Section 6. 

2 The Procedure of A Modular Exponentiation 

The modular exponentiation used in public-key cryptosystems like RSA is de- 
fined as follows. 

Definition 1. C = M E  mod N 

In  the above definition, M means a message, and E means a public-key. It is 
desirable to obtain a sequence of modular multiplications for the fast execution 
of the modular exponentiation in advance, because E is known previously. An 
addition-chain is used to represent the sequence, which is defined as follows. 

Definition2. An addition-chain of length 1 for an integer n, is a sequence of 
integers ao, a1 , . . . , a/ satisfying 

( bk-' 5 E < N < bk,O 5 M < N ) .  

1. ao = 1, a[ = 7L. 
2. a, = a j  + ak, where 0 5 j 5 Ic < i 5 I .  

We can enumerate the sequence of modular multiplications for a modular expo- 
nentiation according to Definition 1 and Definition 2. 

Co = Mu" mod N = M ,  
C1 = M a '  modN,  
C, = M a 2  mod N ,  
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Each step of Equation (1) is connected with previous steps by the following 
relation. 

(2) 
C, = (C, x C,) mod N ,  

i i i h ~ r ~  0 5 j 5 k < 7 5 I .  

As we can see in Equations (1) am1 (21, the shorter the addition-chain is the 
shorter the execution time of the niodular exponentiation is. Many researchers 
have proposed addition-chain algorithIns[l, 2, 3, 4, 5, 6, 71. Among these al- 
gorithms, the Bos-Coster's heuristic algorithm[l] shows the hest performance. 
However, the gap between the small-window niethod[2] and the Bos-Cost>er's 
algorithm is very small and the latter is more complex. Modular multiplication 
algorithms which will be proposed later in this paper are applicable t o  both algo- 
rithms. Therefore, we suppose that  the small-window method is used to  execute 
a modular exponentiation for the sake of convenient explanation. 

A modular exponentiation is executed by the repetition of following two kinds 
of operations according t o  the above supposition, where w means the wiridow 
sBe in the small-window method. 

3 Algorithms 

In this section, we explain the basic method for modular multiplications and 
propose two modular multiplication algoritlirns. We call Equation (3) a window 
modular multiplication and Equation (4) a modular squaring. 

3.1 Basic Method 

The basic method for a modular multiplication is as follows. A multiple-precision 
multiplication and a modular reduction are separate tasks. The former is exe- 
cuted first and the latter is executed secondly. The result of the multiplication is 
the input of the modular reduction. Equation ( 3 )  and Equation (4) are calculated 
by Equation ( 5 )  and Equation (6), respectively. 

C, = G,+1 x 144, mod N 
= (C,+l x (nila mod N ) )  mod N 
= (C,-I x T ( a ] )  mod N ,  

where ~ [ a ]  = M" mod N , O  5 ( Y  < 2'''-' 

C, = C,"-l mod N 
= (I?,"_, j mod N .  
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3.2 Proposed Algorithms 

In this section, we propose two modular multiplication algorithms. One is for 
the window modular rniiltiplication and the other is for the niodular squaring. 
We express a multiple-precision integer CLV1 as follows: 

k - I  

,I=, 

Note that  we write Ct-l as C for the sake of sirnplirity 

( 7 )  

in this section. 

Window Modular Multiplication, A feature of the small-window method is 
that  one of two operands in the window modular multiplication is restricted in 
narrow limits. As we suppose that  the small-window method is used to  decide the 
sequence of modular multiplications, Equation ( 3 )  can be expanded to  Equation 
( 8 ) .  

Ci = C x M" mod N 
- - (C"' c W )  x M e  mod N 
- a:; .I 

- - (C,=, c3 x T[cy][ j ] )  mod N ,  
( 8 )  - cJ x (bj x M u  mod N ) )  mod N 

1 

where T[a][ j ]  = bJ x M a  mod N acrid 0 5 a < 2uJ-1. 
011 executing a modular exponentiation with the small-window method, M" 
and N can be considered constant numbers. Therefore, bJ x M a  mod N can be 
calculated in advance. The table T in Equation (8) can bc calculated hy thc 
following equation. 

T[a][O] = M" mod N ,  
T [ a ] [ j ]  = ( T [ a ] [ j  - 11 x b )  mod AT, (9) 

where 0 5 cy < 2'"'-' and 0 < j 5 k - 1. 

Modular Squaring. I t  is required t o  execute more modular squarings than 
window modular multiplications in order t o  execute a modular exponentiation. 
However, t,hc algorithm explained in the previous section can not be applicablc 
to modular squarings, because C,-l in Equation (6) is not known in advaIice. 
Therefore, we need a fast modular squaring algorithm. 

In this section, we propose a fast modular squaring algorithm. It uses the 
fact that  modular reductions can be executed fast for small operands. Equation 
(4) can be expanded as follows. 
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Looking a t  the first and the last term among all of right terms in the above 
equation, C2 mod N and (C(’))2 mod N are included, respectively. They have 
the same form as each other. Therefore, we can compute Equation (10) recur- 
sively. In addition t o  it,  C(’) in Equation (10) is the value which is shifted to  
the right by one digit from C. If we repeat the recursive function call 5 times, 
the final value is as follows: 

Because C ( 5 )  is a $-digit integer, the result of squaring is a k-digit integer 
a t  most, and (C(4))’ mod N can be calculated by only one subtraction or no 
operation except for a squaring. Therefore, we can consider Equation (11) basis 
of recursive calls and get the result of a modular squaring by repeating the 
following equation times. 

( c (J - ’ ) )~  mod N 
= (((CcJ))’ mod N)b2 + 2c”C(J))b + cg) mod N ,  (12) 

where 1 5 J 5 and do)  = C. 

The only term to be reduced by modulus N is ( ( C ( J ) ) 2  inod N)b2 w h e ~ i  we calcu- 
late Equation (12). Because (C(j))’ mod N is the value calculated in the previous 
step, ((dj))’ mod N ) b 2  mod N can be calculated by shifting (C(j))’ mod N to 
the left by two digits and by executing a simple modular reduction to the re- 
sult of shifting. This procedure can be processed using only subtractions, and is 
appeared in the following equation. 

( ( ( C ( j ) ) 2  mod N ) b 2 )  mod N 
= ( ( ( ( ( C ( J ) ) 2  modN)logs  -T[7no])logs -T[m,l])...)logs -T[rnt-l], (13) 

,where T[m,] = m, x N ,  0 5 m, < s, 0 5 z < t ,  t = z. 
In the above equation, t rnust be as small as possible because it means the 
number of shifts and subtractions. However, b is determined by the system on 
which the algorithm is implemented, and s is limited by the memory capacity. 
The reasonable value of b and s are 216 and 2* on current 32-bit computer 
systems, respectively. Note that m, can be determined easily using backward 
pointer array, which can be made during the table construction. 

4 Time Complexity 

In this section, we compute time complexities of algorithms proposed in this 
paper and compare them with those of existing algorithms. The metric of the 
time complexity is the number of single-precision Iniiltiplications required for 
the execution of the corresponding algorithm. 
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4.1 Basic Method 

The number of single-precision multiplications required to multiply two large 
integers which is represented like Equation (7) is k 2 .  All of existing modular 
reduction algorithms require k(k + c) single-precision multiplications, where c is 
the constant according to  the algorithm used. Therefore, the number of single- 
precision multiplications required to exwiitr a modular multiplication by the 
lmic method is as follows: 

2k2 + ck 

The value of c is ‘1’ if the used algorithm is the Montgomery’s which is the best 
modular reduction algorithm[l2, 18, 141. 

4.2 Proposed Algorithms 

Window Modular Multiplication. It is not required to execute any explicit 
modular reduction to calculate Equation ( 3 )  using Equation (8). Only a few 
additional operations are required to  reduce an intermediate result into a k-digit 
integer. 

First, k single-precision multiplications are required to multiply each digit 
and the residue equivalent to it. The residue is T[a][ j ]  in Equation (8). Because 
an integer has k digits, the number of single-precision multiplications required 
is k2 totally. The intcrmediate result is larger than N .  However, we can get 
the final result with no single-precision multiplication using the table explained 
in Section 3.2, because the difference is very small. Therefore, the number of 
single-precision multiplications required to calculate Equation (8) is as follows: 

k 2 .  (14) 

Next, we consider single-precision multiplications required to construct the 
table explained in Section 3.2. Seeing Equation (O), there is no additional oper- 
ation required to calculate T[a]  [O]s, because they are values that are calculated 
in the previous step. Each of the next operations needs one shift to the left and 
one modular rcduction. The integer to be reduced by modulus N has k + 1 digits 
at  most. Therefore, the modular reduction can be executed by k single-precision 
multiplications. The number of single-precision multiplications required to con- 
struct the table is as follows: 

x k ( k  - 1). (15) 2w-I  

In the above equation, w means the window size. If we use the table explained 
in Section 3.2 ,  all table entries can be calculated with no single-precision multi- 
plication. 
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M o d u l a r  Squaring. We count the number of single-precision multiplications 
required to  execute a modular squaring by the proposed algorithm. First, 9 
single-precision multiplications are required t o  calculate Equation (1 1). Set:- 
ond, we count the number of single-precision multiplications required to  execute 
Equation (12). The first term in the right side of the equation needs no single- 
precision multiplication, as we can see in Equation (13). The second terrn requires 
3k2  - 2 k  k-1  . (= C,= 3) single-precision multiplications during all recursive function 
calls. The third term requires k / 2  single-precision multiplications because it 
requires one for each recursive call. Therefore, the number of single-precision 
multiplications required to execute Equation (4) by the proposed algorithni is 
as follows: 

k 2  + k: 
2 

__ 

The table T in Equation (13) can be cmistriirtcd without any single-precision 
multiplication. 

4.3 C o m p a r i s o n  

We have computed time complexities of proposed algorithms and the basic 
method so far. However, there are many existing algorithms for modular multi- 
plications other than the basic met,hod[l5, 13, 18, 7, 161. Some are algorithms 
using pre-computation table and others are algorithms which regard a multiple- 
precision multiplication and a modular reduction as one operation. We briefly 
examine them. 

An efficient algorithIri was proposed when a modular exponentiation was  
executed using the binary method[2] as an addition-chain algorithm in [7] and 
[15]. However, it is not good for a modular exponentiation because the binary 
method is very inefficient. Findlay et. al. proposed an algorithm using partial 
modular reductions based 011 sums of residues in [13]. However, the niimber of 
single-precision niultiplications required for partial modular reductions is k" 
Furthermore, a fcw additional operations are required because it is not the final 
result. Therefore] the number of single-precision multiplications required for this 
algorithm is much the same as that of the basic method. Morita et. al. proposed 
a new modular Iniiltiplication algorithm in [16]. However, it reduces only the 
required available memory for the computation but not the number of single- 
precision multiplications. 

As we look at  in the above paragraph, existing algorithms using a pre- 
computation table or combining a multiple-precision Inultiplication and a modu- 
lar reduction into a single operation are not much different from the basic method 
in regard to  the number of single-precision rnultiplications. The best modular 
reduction a,lgorithrri known to 11s is the Montgomery algorithm[l4]. Therefore, 
we compare our algorithms with the basic: method which uses the Montgomery 
reduction algorithm. 

Time complexities of proposed algorithms and those of Montgomery algo- 
rithms are compared in Table 1 and Figure 1. The time required for table com 
struction in proposed algorithms and the time required for I)re-/post-calculation 
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I Algorithm NOSPM 
!Window Modular Montgomery 2k2  + k 

Multiplication Proposed k Z  
~- Ordinary Multiplication k2 

Modular Montgomery $ ( k 2  + k )  
Sauaring Pronosed A(k;'  + I,-\ 

in Montgomery algorithms arc excluded, because marly modular multiplications 
are rpquired to execute a modular exponentiation. The number of single-precision 
multiplications required t o  execute an ordinary multiple-precision multiplication 
is recorded together, for reference. The ordinary multiple-precision miiltiplica- 
tion means one which needs not modular reduction. s in Table 1 is the same as  
that in Equation (13). 

Memory Requirement 
2"-l 

k x 2-l 
2'1'-1 

0 
k x s u ~ = . ~ . . .  . ,~ , .., .. . 

Ordiriarv Sauarintr I f (k2  + k\ l  Il 

(a) Window Modular Mul t ip l ica t ion  (b) M o d u l a r  Syuar ing  

Fig. 1. The t ime complexity of each olgorithm 

As we can see in Table 1 and Figure 1, numbers of single-precision multi- 
plications required for proposed algorithms are the same as those required for 
ordinary multiple-precision multiplications. That is, explicit modular multiplica- 
tions are not required for proposed algorithms. The proposed window modular 
multiplication algorithm removes taliern by pre-calciilations and the proposed 
modular squaring algorithm removes them by pre-calculations and subtractions. 
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Algorithm 

Window Montgomery 
Modular Multiplication Proposed 

Modular Montgomery 
Squaring Proposed 

5 Implementation and Discussion 

Time of Execution(msec.) 
‘256-bit 51’2-bit 768-bit 1024-bit 
0.137 0.544 1.16 2.07 
0.0604 0.220 0.489 0.868 
0.121 0.445 0.917 1.65 
0.0851 0.297 0.698 1.22 

We implemented proposed algorithms and the Montgomery algorithm. The sys- 
tem on which we implemented is a PC with Pentiurn-90 microprocessor. We 
implemented them in C language, and compiled with Watcom C(version 10.0) 
compiler. A digit is 16-bit(b = 216). Results are appeared in Table 2. 

(a) Window Modular Multiplication (b)Modular Squaring 

Fig. 2. The executzon tame of each algorithm 

According to Table 1, proposed algorithms are faster than Montgomery al- 
gorithms by two and three times, respectively. As we can see in Table 2 and 
Figure 2(a), the real execution time agrees with Table 1 and Figure 1(a) in the 
case of window modular multiplications. However, it is not in the case of rnod- 
ular squarings. The reason is that we count only the number of single-precision 
multiplications in Table 1. While it is a fact that a rnultiplication takes much 
time than an addition in general purpose processors, as the proposed modiilar 
squaring algorithm uses many additions we must consider the number of single- 
precision additions, also. Time complexities are appeared in consideration of the 
number of single-precision additions in Table 3. T is the constant required to  
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I U 7  

! I .  

3 2 0 .  

i 4 1 3 .  
2 
il 

l o -  

LII .  

a o  

represent the time complexity as the number of single-precision multiplications. 
It is defined as follows and determined by the system on which t,he corresponding 
algorithm is implemented. 

0 5 .  

u u  

the time required for a single-precision addition 
the time required for a single-precision multiplication Definition3. 7' = 

Table 3. The t ime  complexity in consideration of single-prwision additions. NOSPlLf 
means the number of single-precision multiplications. 

Suuarine 

Figure 3 is the graph to reprcscnt changes of expected performance ratios of 
proposed algorithms to Montgomery algorithms according to T when the value 
of k is 32. The expected performance ratio is defined as follows. 

Definition 4. The expected performance ratio of the proposed algorithm to 
Montgomery algorithm 

- NOSPM required to execute Montgomery algorithm 
NOSPM required to execute the proposed algorithm 

- 

NOSPM has the same meaning as that used in Table 3. 

Fig. 3. Change of the expected performance ratio according to  r 
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As we can see in Figure 3(a), the performance ratio of the  proposcd window 
modular multiplication algorithm to the Montgomery algorithm is little changed 
although the  T is largely changed. This means tha t  the proposed window mod- 
ular multiplication algorithm is faster than the Montgomery algorithm by two 
times in almost systems. However, the performance ratio in Figure 3(b) is largely 
changed according to T .  Tha t  is, the performance of the  proposed modular squar- 
ing algorithm is largely dependent on the system on which the  algorithm is im- 
plemented. For example, as the value of T is about 0.37 in the case of Pentiiirri 
PC, the proposed modular squaring algorithm is faster than  the  Montgomery 
algorithm by 30% on it.  

6 Conclusion 

We proposed two algorithms to executc modular multiplications fast. One is the  
window rriodular multiplication algorithm and it uses the  feature of t he  addition- 
chain found with the small-window method. The  other is the  modular squaring 
algorithm and  it uses the fact tha t  a modular reduction can be executed easily 
for an  integer which is not rriiich larger than  a modulus. Proposcd algorithms 
require single-precision multiplications 1/2 arid 1/3 times of tha t  required for 
Montgomery algorithms, respectively. Implementing on PC,  proposed algorithms 
reduce execution timcs by 50% and 30% cornpared wit,h Montgomery algorithms, 
respectively. 
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