Skip to main content

Radical ions: Where organic chemistry meets materials sciences

  • Conference paper
  • First Online:
Electron Transfer I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 169))

Abstract

Radical ions generated by electron transfer reactions are known as important intermediates in organic chemistry. On the other hand, their formation, recombination and transport in organic materials is responsible for a series of attractive physical properties. Radical ion formation is often accompanied by structural changes being well understood in small organic molecules, which also constitute repeating units of intensively studied macromolecules. Therefore, an approach is described herein to compare and combine the structural and energetic description of monomeric and oligomeric radical ions with that of partially oxidized or reduced polymeric materials.

Many optical and electrical properties of high-molecular-weight conjugated polymers closely correspond to those of oligomers containing only a few repeating units. These oligomers can be synthesized as monodisperse species, facilitating the spectroscopic description and enabling systematic studies of physical properties as a function of chain length (Sect. 2).

The mode of charge and spin distribution on conjugated chains is a central question for conducting polymers which are electrical insulators and semiconductors in the neutral, pristine state (Sect. 3). Both, intra- and interchain charge transport have to be considered in describing the overall conductivity. Electroactive polymers are applied as change storage materials, e.g. in rechargeable batteries, where the detailed charging mechanisms and minimization of Coulomic repulsion in highly charged states are crucial (Sect. 4). Electron transfer can also induce chemical reactions under formation or cleavage of σ-bonds (Sect. 5). While this is an unwanted side effect in the doping of conjugated polymers electrooxidation of suitable π-systems is a common method of producing electroactive and conducting polymers. Conductivity does not necessarily require polymeric materials, but is also obtained in radical ion salts and charge transfer complexes which are crystalline one dimensional conductors (Sect. 6). Their electrical conductivity can adequately be described as an electron hopping process between neighboring molecular layers. While the mobility of charge is important in processes like electrical conductivity or photo- and electroluminescence, localized radical states with as many unpaired electrons as possible are needed in magnetic materials (Sect. 7). Finally, the control of electron transfer processes in radical ion states can be used in molecular electronics (Sect. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  2. Brédas JL, Silbey R (eds) (1991) Conjugated polymers. Kluwer, Dordrecht

    Google Scholar 

  3. Naarmann H (1990) In: Brédas JL, Chance RR (eds) Conjugated polymeric materials: Opportunities in electronics, optoelectronics, and molecular electronics. Kluwer, Dordrecht, p 11

    Google Scholar 

  4. Law KY (1993) Chem Rev 93: 449

    Google Scholar 

  5. Bohnen A, Räder HJ, Müllen K (1992) Synth Met 47: 37

    Google Scholar 

  6. Colaneri NF, Bradley DDC, Friend RH, Burn PL, Holmes AB, Spangler CW (1990) Phys Rev B42: 11670

    Google Scholar 

  7. Burroughes JH, Bradley DDC, Brown AR, Marks N, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 347: 539

    Google Scholar 

  8. Müllen K (1984) Chem Rev 84: 603

    Google Scholar 

  9. Müllen K (1987) Angew Chem 99: 192; Int Ed Engl 26: 204

    Google Scholar 

  10. Roth HD (1992) Topics Curr Chem 163: 131

    Google Scholar 

  11. Boche G (1988) Topics Curr Chem 146: 1

    Google Scholar 

  12. Fox MA, Cannon M (eds) (1988) Photoinduced electron transfer. Elsevier, Amsterdam

    Google Scholar 

  13. Metzger RM, Panetta CA (1989) J Mol Electronics 5: 1

    Google Scholar 

  14. Heilbronner E, Bock H (1978) (eds) Das HMO Modell und seine Anwendungen. Verlag Chemie Weinheim

    Google Scholar 

  15. Heinze J (1984) Angew Chem 96: 823, Int Ed Eng 23: 831

    Google Scholar 

  16. Gerson F (1967) Hochauflösende ESR Spektroskopie. Verlag-Chemie Weinheim

    Google Scholar 

  17. Kurreck H, Kirste B, Lubitz W (1988) ENDOR spectroscopy of radicals in solution. In: Marchand AP (ed) Methods in stereochemical analysis, vol 15. VCH, Weinheim

    Google Scholar 

  18. Enkelmann V, Göckelmann K, Wieners G, Monkenbusch M (1985) Mol Cryst Liq Cryst 120: 195

    Google Scholar 

  19. Kröhnke C, Enkelmann V, Wegner G (1980) Angew Chem 92: 941 Int Ed Engl 19: 912

    Google Scholar 

  20. Huber W, May A, Müllen K (1981) Chem Ber 114: 1318

    Google Scholar 

  21. Huber W, Müllen K (1986) Acc Chem Res 19: 300

    Article  Google Scholar 

  22. Gorman CB, Grubbs RH (1991) In: Brédas JL, Silbey R (eds) Conjugated polymers. Kluwer Dordrecht, p 1

    Google Scholar 

  23. Hörhold HH (1972) Z Chem 12:41

    Google Scholar 

  24. Meyer H (1992) Angew Chem 104: 1425; Int Ed Engl

    Google Scholar 

  25. Mazzugato U, Momiccioli F (1991) Chem Rev 91: 1679

    Article  Google Scholar 

  26. Orlandi G, Zerbetto F, Zgierski MZ (1991) Chem Rev 91: 867

    Article  Google Scholar 

  27. Bock H, Ruppert K, Fenske D (1989) Angew Chem 102: 548 Int Ed Engl 29: 525

    Google Scholar 

  28. Baumgarten M, Weitzel HP, Schulz A, Garay R, Müllen K (to be published)

    Google Scholar 

  29. Schenk R, Huber W, Schade P, Müllen K (1988) Chem Ber 121: 2201

    Google Scholar 

  30. Müllen K, Heinz W, Klärner FG, Roth WR, Kindermann, Adamczak O, Wette M, Lex J (1990) Chem Ber 123: 2349

    Google Scholar 

  31. Anet AL, Bourn AJR, Lin YS (1964) J Am Chem Soc 86: 3576

    Article  Google Scholar 

  32. Lhost O, Brèdas JL (1992) J Chem Phys 96: 5279

    Article  Google Scholar 

  33. Zerbi G, Gussoni M, Castiglioni C (1991) In: Brédas JL, Silbey R (eds) Conjugated Polymers. Kluwer, p 435

    Google Scholar 

  34. Chien JCW (ed) (1984) Polyacetylene: Chemistry, Physics and Material Science. Academic, San Diego

    Google Scholar 

  35. Ito T, Shirakawa H, Ikeda S (1974) J Polym Sci Polym Chem Ed 12: 11

    Article  Google Scholar 

  36. Gibson HW, Kaplan S, Mosher RA Prest WM, Weagley RJ (1986) J Am Chem Soc 108: 6843

    Article  Google Scholar 

  37. Pekker S, Janossy A (1986) In: Skotheim TA (ed) Handbook of Conducting Polymers. Marcel Dekker, New York, p 45

    Google Scholar 

  38. Müllen K (1986) Pure & Appl Chem 58: 177

    Google Scholar 

  39. Glasbeck M, van Voorst JDW, Hoijtink GJ (1966) J Chem Phys 45: 1852

    Article  Google Scholar 

  40. Krusic PJ, Wasserman E (1991) J Am Chem Soc 113: 2322

    Article  Google Scholar 

  41. Staley SW, Henry TJ (1969) J Am Chem Soc 91: 1239

    Article  Google Scholar 

  42. Schröder G (ed) (1965) Cyclooctatetraen. Verlag Chemie, Weinheim.

    Google Scholar 

  43. Katz TJ, Garratt PJ (1964) J Am Chem Soc 86: 5194

    Article  Google Scholar 

  44. Müllen K (1974) Helv Chim Acta 57: 2399

    Article  Google Scholar 

  45. Oth JFM (1971) Pure & Appl Chem 25: 573

    Google Scholar 

  46. Oth JFM, Anthoine G, Gilles JM (1968) Tetrahedron Lett 6265

    Google Scholar 

  47. Müllen K, Meul T, Vogel E, Kürschner U, Schmickler H, Wennerström O (1985) Tetrahedron Lett. 26: 3091

    Article  Google Scholar 

  48. Gust D, Senkler GH, Mislow K (1972) J Chem Soc Chem Commun 1345

    Google Scholar 

  49. Huber W (1985) Tetrahedron Lett 181

    Google Scholar 

  50. Baumgarten M, Müller U, Bohnen A, Müllen K (1992) Angew Chem 104: 482, Int Ed Engl 31: 448

    Google Scholar 

  51. Baumgarten M, Müller U (1993) Synth Met 57: 4751

    Google Scholar 

  52. Rabinovitz M (1988) Top Curr Chem 146: 99

    Google Scholar 

  53. Minsky A, Meyer AY, Rabinovitz M (1983) Angew Chem Int Ed Engl 22: 45

    Article  Google Scholar 

  54. Minsky A, Rabinovitz M (1984) J Am Chem Soc 106: 6755

    Article  Google Scholar 

  55. Gregorius H, Baumgarten M, Reuter R Tyutyulkov N, Müllen K (1992) Angew Chem 104: 1621 Int Ed Engl 31: 1653

    Google Scholar 

  56. Brédas JL, Heeger AJ (1990) Macromolecules 23: 1150

    Article  Google Scholar 

  57. Baumgarten M, Huber W, Müllen K (1993) Adv Phys Org Chem 28: 1

    Google Scholar 

  58. Heinze J (1990) Topics Curr Chem 152: 1

    Google Scholar 

  59. Diaz AF, Bargon J (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 81

    Google Scholar 

  60. Treloar LRG (1958) Physics and chemistry of rubbeer elasticity. Clarendon, Oxford

    Google Scholar 

  61. Ward IM (1983) Mechanical properties of polymers. Wiley, Chichester

    Google Scholar 

  62. Hörhold HH, Helbig M (1987) Makromol Chem Macromol Symp 12: 229

    Google Scholar 

  63. Koßmehl G (1986) In: Skotheim TA Handbook of conducting polymers. M. Dekker, NY, p 351

    Google Scholar 

  64. Heeger AJ, Smith P (1991) In: Brédas JL, Silbey R (eds) Conjugated polymers. Kluwer, Dordrecht, p 141

    Google Scholar 

  65. Müllen K (1993) Pure & Appl Chem 65: 89

    Google Scholar 

  66. Bohnen A, Heitz W, Mülleen K, Räder HJ, Schenk R (1991) Makromol Chem 192: 1679

    Article  Google Scholar 

  67. Rehahn M, Schlüter AD, Wegner G (1990) Makromol Chem 191: 1991

    Article  Google Scholar 

  68. Shi S, Wudl F (1990) Macromolecules 23: 2119

    Article  Google Scholar 

  69. Wegner G (1986) Makromol Chem Makromol Symp 1: 151

    Google Scholar 

  70. Schäfer-Siebert D, Budrowski C, Kuzmany H, Roth S (1987) In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers. Solid State Sciences 76: 38

    Google Scholar 

  71. Kürti J, Kuzmany H (1987) In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers, Solid State Sciences 76: 43

    Google Scholar 

  72. Bradley DDC, Friend RH, Feast WJ (1987) Synth Met 17: 645

    Article  Google Scholar 

  73. Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem 100: 117, Int Ed Engl 27: 113

    Google Scholar 

  74. Ito T, Shirakawa H, Ikeda S (1974) J Polym Sci Polym Chem Ed 12: 11

    Article  Google Scholar 

  75. Naarmann H, Theophilou N (1987) Synth Met 22: 1

    Article  Google Scholar 

  76. Feast WJ (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 1

    Google Scholar 

  77. Edwards JH, Fest EJ (1980) Polym Comm 21: 595

    Google Scholar 

  78. Gagnon DR, Capistran JD, Korasz FE, Lenz RW (1984) Polym Bull 12: 93

    Article  Google Scholar 

  79. Wessling RA, Zimmermann RG (1968) US Patent 3: 401, 152

    Google Scholar 

  80. Wessling RA (1986) J Polym Sci Polym Symp 72: 55

    Google Scholar 

  81. Fahnenstich U, Koch KH, Müllen K (1989) Makromol Chem 10: 563

    Google Scholar 

  82. Müller U, Baumgarten M, Müllen K (1994) submitted

    Google Scholar 

  83. Weitzel HP, Müllen K (1990) Makromol Chem 191: 2837

    Article  Google Scholar 

  84. Garay R, Baier U, Bubeck C, Müllen K (1993) Adv Mat 5: 568

    Article  Google Scholar 

  85. Deronzier A, Moutet JC (1989) Acc Chem Res 22: 249

    Article  Google Scholar 

  86. Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, McDiarmid YW (1977) Phys Rev Lett 39: 1098

    Article  Google Scholar 

  87. Park YW, Heeger AJ, Druy MA, McDiarmid YW (1980) J Chem Phys 73: 946

    Article  Google Scholar 

  88. Maaxfield M, Mu SI, MacDiarmid AG (1985) J Electrochem Soc 132: 838

    Google Scholar 

  89. Bittihn R, Ely G, Woffler F, Münstedt H, Naarmann H, Naegele D (1987) Makromol Chem Macromol Symp 8: 51

    Google Scholar 

  90. Baughman RH (1991) Makromol Chem Macromol Symp 51: 193

    Google Scholar 

  91. Lee BI (1992) Polymer Engineering and Science 32: 36

    Article  Google Scholar 

  92. Tyutyulkov N, Karabunarliev S, Müllen K, Baumgarten M (1993) Synth Met 53: 205

    Article  Google Scholar 

  93. Tanaka K, Koike T, Ueda K, Ohzeki K, Yamabe T (1985) Synth Met 11: 61

    Article  Google Scholar 

  94. Lee YS, Kertesz M, Elsenbaumer RL (1990) Chem Mater 2: 526

    Article  Google Scholar 

  95. Baumgarten M, Karabunarliev S, Koch KH, Müllen K, Tyutyulkov N (1992) Synth Met 47: 21

    Article  Google Scholar 

  96. Scherf U, Müllen K (1992) Synthesis 1/2: 23

    Article  Google Scholar 

  97. Scherf U, Müllen K (1992) Polym Commun 33: 2443

    Google Scholar 

  98. Hong SY, Kertesz M, Lee YS, Kim OK (1992) Macromolecules 25: 5424

    Article  Google Scholar 

  99. Rughooputh SDDV, Hotta S, Heeger AJ, Wudl F (1987) J Polym Sci Polym Phys 25: 1071

    Article  Google Scholar 

  100. Schimmel T, Gläser S, Schwoerer M, Naarmann H (1991) In: Brédas JL, Silbey R (eds) Conjugated polymers. Kluwer Academic Publishers, Netherlands, p 49

    Google Scholar 

  101. Rost A (1978) “Messung dielektrischer Stoffeigenschaften”, Akademie-Verlag, Berlin

    Google Scholar 

  102. Montgomery HC (1971) J Appl Phys 42: 2971

    Article  Google Scholar 

  103. Wegner G (1981) Angew Chem 93: 352 Int Ed Engl 20:361

    Google Scholar 

  104. Alcazar L (1980) “The physics and chemistry of low dimensional solids”, Reidel, Dordrecht

    Google Scholar 

  105. Menke K, Roth S (1986) ChIUZ 20: 1, 33

    Google Scholar 

  106. Chance RR, Boudreaux DS, Brédas JL, Silbey R (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 825

    Google Scholar 

  107. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Rev Mod Phys 60: 781

    Article  Google Scholar 

  108. Bernier P (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 1099

    Google Scholar 

  109. Thomann H, Dalton LR (1986) Skotheim TA (ed) Handbook of conducting polymers, Marcel Dekker, New York, p 1157

    Google Scholar 

  110. Mehring M, Grupp A, Hofer P, Kass H (1989) Synth Met 28: D399

    Google Scholar 

  111. Nechtschein M, Devreux F, Genoud F, Gugliani M, Holcer K (1983) Phys Rev B 27: 61

    Google Scholar 

  112. Brédas JL, Street GB (1985) Acc Chem Res 18: 309

    Article  Google Scholar 

  113. Brédas JL (1986) In: Skotheim TA (ed) Handbook of conducting polymers, Marcel Dekker, New York, p 859

    Google Scholar 

  114. Vogel P, Campbell DK (1990) Phys Rev B 41: 12797

    Google Scholar 

  115. Ofer D, Crooks RM, Wrighton MS (1990) J Am Chem Soc 112: 7869

    Article  Google Scholar 

  116. Schenk R, Gregorius H, Meerholz K, Heinze J, Müllen K (1991) J Am Chem Soc 113: 2634

    Article  Google Scholar 

  117. Schenk R, Ehrenfreund M, Huber W, Müllen K (1990) J Chem Soc Chem Commun 23: 1673

    Article  Google Scholar 

  118. Schenk R, Gregorius H, Müllen K (1991) Adv Mat 3: 492

    Article  Google Scholar 

  119. Heinze J, Mortensen J, Müllen K, Schenk R (1987) Chem Commun 701

    Google Scholar 

  120. Meerholz K, Schenk R, Müllen K, Heinze J (1994) to be published

    Google Scholar 

  121. Tian B, Zerbi G, Schenk R, Müllen K (1991) J Chem Phys 95: 3191

    Article  Google Scholar 

  122. Tian B, Zerbi G, Müllen K (1991) J Chem Phys 95: 3198

    Article  Google Scholar 

  123. Woo HS, Lhost O, Graham SC, Bradley DDC, Friend RH, Quattrocchi C, Brédas JL, Schenk R, Müllen K (1993) Synth Met 59: 13–28

    Google Scholar 

  124. Brendel P, Grupp A, Mehring M, Schenk R, Müllen K, Huber W (1991) Synth Met 45: 49

    Google Scholar 

  125. Plato M, Biehl R, Möbius K, Dinse KP (1976) Z Naturforsch A 31: 169

    Google Scholar 

  126. Huber W, May A, Müllen K (1981) Chem Ber 114: 1318

    Google Scholar 

  127. Rabinovitz M, Willner L, Minsky A (1983) Acc Chem Res 16: 298

    Google Scholar 

  128. Chang R, Markgraf JH (1972) Chem Phys Lett 13: 575

    Google Scholar 

  129. Schenk R, Hucker J, Hopf H, Räder HJ, Müllen K (1989) Angew Chem 101: 942–944; Int Ed Engl 28: 904

    Google Scholar 

  130. Thulin B, Wennerström O (1976) Acta Scand B B30: 369

    Google Scholar 

  131. Huber W, Müllen K, Wennerström O (1980) Angew Chem 92: 636; Int Ed Engl 19: 624

    Google Scholar 

  132. Müllen K, Unterberg H, Huber W, Wennerström O, Norinder U, Tanner D (1984) J Am Chem Soc 106: 7514

    Google Scholar 

  133. Schenk R, Huber W, Schade P, Müllen K (1988) Chem Ber 121: 2201

    Google Scholar 

  134. Schenk (1991) PhD thesis Mainz

    Google Scholar 

  135. Spangler CW, Hall TJ, Sypochak LS, Liu PK (1989) Polymer 30: 1166

    Google Scholar 

  136. Hogen-Esch TE (1977) Adv Phys Org Chem 15:153

    Google Scholar 

  137. Koch KH, Fahnenstich U, Baumgarten M, Müllen K (1991) Synth Met 41: 1619

    Google Scholar 

  138. Koch KH, Müllen K (1992) Chem Ber 124: 2091

    Google Scholar 

  139. Baumagarten M, Anton U, Gherghel L, Müllen K (1993) Synth Met 57: 4801

    Google Scholar 

  140. Baumgarten M, Koch KH, Müllen K (1993) J Am Chem Soc (submitted)

    Google Scholar 

  141. Viruela-Martin R, Viruela-Martin PM, Orti E (1992) J Chem Phys 97: 8470

    Google Scholar 

  142. Bakhshi AK, Ladik J (1989) Synth Met 30: 115

    Google Scholar 

  143. Böhm A, Mauermann H, Gherghel L, Baumgarten M, Müllen K (1993) to be published

    Google Scholar 

  144. Böhm A, Adam M, Mauermann H, Stein S, Müllen K (1992) Tetrahedron Lett 33: 2795

    Google Scholar 

  145. Böhm A (1991) PhD thesis

    Google Scholar 

  146. Karabunarliev S, Baumgarten M, Gregorius H, Müllen K, Tyuytulkov N (1994) to be published

    Google Scholar 

  147. Heitz W, Ullrich R (1966) Makromol Chem 98: 29

    Google Scholar 

  148. Gregorius H, Heitz H, Müllen K (1993) Adv Mat 5: 279

    Google Scholar 

  149. Dawe EA, Land EJ (1975) J Chem Soc Faraday Trans I 72: 2162

    Google Scholar 

  150. Lafferty J, Roach A, Sinclair RS, Truscott TG, Land EJ (1977) J Chem Soc Faraday Trans I 73: 416

    Google Scholar 

  151. Knoll K, Schrock RR (1989) J Am Chem Soc 111: 7989

    Google Scholar 

  152. Bally T, Roth K, Tang W, Schrock RR, Knoll K, Park LY (1992) J Am Chem Soc 114: 2440

    Google Scholar 

  153. Kiehl A, Eberhard A, Adam M, Enkelmann V, Müllen K (1992) Angew Chem 104: 1623 Int Ed Engl

    Google Scholar 

  154. Kiehl A (1993) PhD thesis Mainz

    Google Scholar 

  155. Kiehl A, Eberhard A, Müllen K, Gherghel L, Baumgarten M (1993) (to be published)

    Google Scholar 

  156. Tolbert LM, Ogle ME (1990) J Am Chem Soc 112: 9512

    Google Scholar 

  157. Deussen M, Bässler H (1992) Chem Phys 164: 247

    Google Scholar 

  158. Bässler H, Deussen M, Heun S, Lemmer U, Mahrt RF (1993) Z Phys Chem N F (in press)

    Google Scholar 

  159. Kohler BE, Spangler CW, Westerrfield C (1988) J Chem Phys 89: 3422

    Google Scholar 

  160. Frank J, Grimme W, Lex J (1978) Angew Chem 90:1002; Int Ed Engl 17: 943

    Google Scholar 

  161. Huber W, Müllen K, Busch R, Grimme W, Heinze J (1982) Angew Chem 94: 294; Int Ed Engl 21: 301

    Google Scholar 

  162. Heinze J, Dietrich M, Hinkelmann K, Meerholz K, Rashwan (1989) Dechema Monogr 112: 61; Chem Abstr 110: 221 359r

    Google Scholar 

  163. Heinz W, Langensee P, Müllen K (1986) J Chem Soc Chem Commun 947

    Google Scholar 

  164. Heinze J (private communication)

    Google Scholar 

  165. Huber W (1985) Tetrahedron Lett 181

    Google Scholar 

  166. It should be noted in the characterization of radical anions by absorption spectroscopy that even traces of water give rise to rapid protonations of the charged species originally obtained. This quenching process is particularly critical for the sparingly soluble higher oligomers. The dihydro products thus formed still possess shorter phenylenevinylene electrophores, which undergo further reduction and thus give rise to false signal assignment.

    Google Scholar 

  167. Fichou D, Xu B, Horrowitz G, Garnier F (1991) Synth Met 41: 463

    Google Scholar 

  168. Horrowitz G, Peng X-Z, Fichou D, Garnier F (1991) J Molec Electr 7: 85

    Google Scholar 

  169. Havinga EE, Rotte I, Meijer EW, Hoeve WT, Wynberg H (1991) Synth Met 41: 473

    Google Scholar 

  170. Yassar A, Delabouglise D, Hmyene M, Nessak B, Horrowitz G, Garnier F (1992) Adv Mater 4: 490

    Google Scholar 

  171. Bäuerle P, Adv Mater (1992), 4, 102

    Google Scholar 

  172. Bäuerle P, Segelbacher U, Gaudl GU, Huttenlocher D, Mehring M (1993) Angew Chem, 105: 125.

    Google Scholar 

  173. Segelbacher U, Sariftci NS, Grupp A, Bäuerle P, Mehring M (1993) Synth Met 55–57: 4728

    Google Scholar 

  174. Ehrendorfer C, Neugebauer H, Neckel A, Bäuerle P (1993) Synth Met 55–57: 493

    Google Scholar 

  175. Bäuerle P, Götz G, Segelbacher U, Huttenlocher D, Mehring M (1993) Synth Met 55–57: 4768

    Google Scholar 

  176. Bäuerle P, Gaudl KU (1991) Synth Met 43: 3037

    Google Scholar 

  177. Martina A, Enkelmann V, Schlüter AD, Wegner G (1992) Synth Met 51: 299

    Google Scholar 

  178. Zotti G, Martina S, Wegner G, Schlüter AD (1992) Adv Mater 4: 798

    Google Scholar 

  179. Martina S, Enkelmann V, Wegner G, Schlüter AD, Zotti G, Zerbi G (1993) Synth Met (in press)

    Google Scholar 

  180. Wegner G (1984) In: Van der berg EJ (ed) Contemporary topics in polymer science. Plenum, New York p 281

    Google Scholar 

  181. Soos ZG, Hayden GW (1991) In: Skotheim TA (ed) Electroresponsive molecular and polymeric systems. Marcel Dekker, New York, p 197

    Google Scholar 

  182. Roth S (1986) In: Pollak M, Shklovskii BI (eds) Hopping transport in solids. Elsevier, Amsterdam p 378

    Google Scholar 

  183. Meerholz K, Heinze J (1993) Synth Met 55–57: 5040

    Google Scholar 

  184. Kuzmany H, Mehring M, Roth S (eds) (1989) Electronic properties of conjugated polymers III, part 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  185. Sheng P (1980) Phys Rev Lett 45: 60

    Google Scholar 

  186. Karl N (1974) Adv Sol State Phys 14: 261

    Google Scholar 

  187. Garnier F (1993) Lecture hold at the Kern-Symposium, Mainz

    Google Scholar 

  188. Becker B, Bohnen A, Ehrenfreund M, Wohlfarth W, Sakata Y, Huber W, Müllen K (1991) J Am Chem Soc 113: 1121

    Google Scholar 

  189. Böttger H, Bryksin VV (1985) (eds) Hopping conduction in solids. VCH, Weinheim

    Google Scholar 

  190. Fritsche H, Pollak M (1990) (eds) Hopping and related phenomena. World Scientific Publishers, Singapore

    Google Scholar 

  191. Pollak M, Shklovskii BI (1991) (eds) Hopping transport in solids Elsevier. Amsterdam

    Google Scholar 

  192. Mott NF, Davis EA (eds) (1979) Electronic processes in non-crystalline materials. Clarendon, Oxford

    Google Scholar 

  193. Gorham-Bergeron E, Emin D (1977) Phys Rev B 15: 3667

    Google Scholar 

  194. Schimmel TH, Denninger G, Riess W, Voit J, Schwoerer M, Schoeppe W, Naarmann H (1989) Synth Met 28: D11

    Google Scholar 

  195. Halim J, Enkelmann V, Fischer H, Wegner G, Albouy PA (1991) Macromol Chem, Rap Commun 12: 301

    Google Scholar 

  196. Kaiser AB (1991) Synth Met 41: 183

    Google Scholar 

  197. Tritthart W, Leising G (1993) Synth Met 55–57: 4878

    Google Scholar 

  198. Enkelmann V, Halim J, Fischer H, Wegner G, Albouy PA (1992) Synth Met 51: 1

    Google Scholar 

  199. Baughman RH, Brédas JL, Chance RR, Elsenbaumer RL, Schacklette LW (1982) Chem Rev 82: 209.

    Google Scholar 

  200. Roth S, Menke K (1983) Kunststoffe 73: 520.

    Google Scholar 

  201. Nowak RJ, Schultz FA, Umana M, Lam R, Murray RW (1980) Anal Chem 52: 315.

    Google Scholar 

  202. Murray RW, Bard AJ (eds) (1984) Electroanalytical chemistry. Marcel Dekker, New York, 13: 191.

    Google Scholar 

  203. Shacklette LW, Chance RR, Ivory DM, Miller GG, Baughman RH (1979) Synth Met 1: 307.

    Google Scholar 

  204. Diaz AF, Kanazawa KK, Gardini GP (1979) J Chem Soc Commun 635.

    Google Scholar 

  205. Tourillon G, Garnier F (1982) J Electroanal Chem 135: 173

    Google Scholar 

  206. Diaz AF, Logan JA (1980) J Electroanal Chem 111: 111

    Google Scholar 

  207. Heinze J, Mortensen J, Störzbach (1987) In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers. Springer, Berlin Heidelberg New York p 385

    Google Scholar 

  208. Bartz T, Klapper M, Müllen K, Schulz RC (1993) Polym Int 31: 153

    Google Scholar 

  209. Bender D, Przybylski M, Müllen K (1989) Makromol Chem 190: 2071

    Google Scholar 

  210. Smith TW, Kuder JE, Wychick (1976) J Polym Sci 14: 2433

    Google Scholar 

  211. Flanagan JB, Margel S, Bard AJ, Anson FC (1978) J Am Chem Soc 100: 4248

    Google Scholar 

  212. Saji T, Pasch NF, Webber SE, Bard AJ (1978) J Phys Chem 82: 1101

    Google Scholar 

  213. Hörhold HH, Opfermann J, Atrat P, Tauer KD, Drefahl G (1976) Polycondensation Processes. 5th Int Symp Polycondensation, Varna, Publication of the Bulgarian academy of Science, Bulgaria, Sofia p 171

    Google Scholar 

  214. Alexander J, Ehrenfreund M, Fiedler J, Huber W, Räder HJ, Müllen K (1989) Angew Chem 101: 1530; Int Ed Engl 28: 1531

    Google Scholar 

  215. Kovacic P, Kyriakis A (1963) J Am Chem Soc 85: 454

    Google Scholar 

  216. Ohlemacher A, Schenk R, Weitzel HP, Tyutyulkov N, Tasseva M, Müllen K (1992) Makromol 193: 81

    Google Scholar 

  217. Huber W, Irmen W, Lex J, Müllen K (1982) Tetrahedron Lett 23: 3889

    Google Scholar 

  218. Mortensen J, Heinze J, Herbst H, Müllen K (1992) J Electroanal Chem 324: 201

    Google Scholar 

  219. Hörhold HH, Helbig M, Raabe D, Opfermann J, Scherf U, Stockmann R, Weiß D (1987) Z Chem 27: 126

    Google Scholar 

  220. Genies EM, Pernaut JM (1985) J Electroanal Chem 191: 111

    Google Scholar 

  221. Meerholz K, Heinze J (1990) Angew Chem 102: 695 Int Ed Engl 29: 692

    Google Scholar 

  222. Genies EM, Pernault JM (1984) Synth Met 10: 117

    Google Scholar 

  223. Zhou QX, Kolaskie CJ, Miller LL (1987) J Electroanal Chem 223: 283

    Google Scholar 

  224. Daum P, Murray RW (1981) J Phys Chem 85: 389

    Google Scholar 

  225. Heinze J, Störzbach M, Mortensen J (1987) Ber Bunsenges Phys Chem 91: 960

    Google Scholar 

  226. Diaz AF, Crowley J, Bargon J, Gardini GP, Torrance JB (1981) J Electroanal Chem 121: 355

    Google Scholar 

  227. Nigrey PJ, MacDiarmid AG, Heeger AJ (1982) Mol Cryst Liq Cryst 83: 309

    Google Scholar 

  228. Tourillon G, Garnier F (1984) J Electroanal Chem 161: 55

    Google Scholar 

  229. Heinze J, Dietrich M, Mortensen J (1987) Makromol Chem Macromol Symp 8: 73

    Google Scholar 

  230. Feldberg SW (1984) J Am Chem Soc 106: 4671

    Google Scholar 

  231. Bohnen A, Koch KH, Lüttke W, Müllen K (1990) Angew Chem 102: 548; Int Ed Eng 29: 525

    Google Scholar 

  232. Bohnen A (1992) PhD thesis, Mainz, FRG

    Google Scholar 

  233. Schulz A, Koch KH, Müllen K, Heinze J (1994) to be published

    Google Scholar 

  234. Heinze J, Dietrich M (1989) Mater Sci For 42: 63

    Google Scholar 

  235. Heinze J, Bilger R, Meerholz K (1988) Ber Bunsenges Phys Chem 92: 1266

    Google Scholar 

  236. Hutton Rs, Kalaji M, Peter LM (1989) J Electroanal Chem 270: 429

    Google Scholar 

  237. Gamba A, Rusconi E, Simonetta (1970) Tetrahedron 26: 871

    Google Scholar 

  238. Wilson KE, Pincock PE (1977) Can J Chem 55: 889

    Google Scholar 

  239. Dietrich M, Heinze J (1990) J Am Chem Soc 112: 5142

    Google Scholar 

  240. Subaric-Leitis a, Monte C, Roggan A, Rettig W, Zimmermann P, Heinze J (1990) J Chem Phys 93: 4543

    Article  Google Scholar 

  241. Mataga N, Yao H, Okada T, Rettig W (1989) J Phys Chem 93: 3383

    Article  Google Scholar 

  242. Dietrich M, Mortensen J, Heinze J (1985) Angew Chem 97: 502 Int Ed Engl 24: 508

    Google Scholar 

  243. Müllen K, Baumgarten M, Karabunarliev S, Tyutyulkov N (1991) Synth Met 40: 127

    Google Scholar 

  244. Baumgarten M, Anton U, Gherghel L, Müllen K (1993) Synth Met 55–57: 4801

    Google Scholar 

  245. Weitzel HP, Bohnen A, Müllen K (1990) Makromol Chem 191: 2815

    Google Scholar 

  246. Heunt S, Mahrt RF, Greiner A, Lemmer U, Bässler H, Halliday DA, Bradley DDC, Burn PL, Holmes AB (1993) J Phys Condens Matter 5: 247

    Google Scholar 

  247. Anton U, Bohnen A, Koch KH, Naarmann H, Räder HJ, Müllen K (1992) Adv Mater 4: 91

    Google Scholar 

  248. Oth JFM, Gilles JM, Woo EP, Sondheimer F (1972) J Chem Soc Perkin II

    Google Scholar 

  249. Müllen K, Huber W, Nakagawa M, Iyoda M (1982) J Am Chem Soc 104: 5403

    Google Scholar 

  250. Becker BC, Huber W, Schnieders C, Müllen K (1983) Chem Ber 116: 1573

    Google Scholar 

  251. Müllen K, Huber W, Meul T, Nakagawa M, Iyoda M (1983) Tetrahedron 39: 1575

    Google Scholar 

  252. Becker BC, Huber W, Müllen K (1980) J Am Chem Soc 102: 7803

    Google Scholar 

  253. Müllen K, Oth JFM, Engels HW, Vogel E (1979) Angew Chem 91: 251; Int Ed Engl 18: 229

    Google Scholar 

  254. Auchter-Krummel P, Müllen K (1991) Angew Chem 103: 996, Int Ed Engl 30: 1003

    Google Scholar 

  255. Fry AJ, Hutchins CS (1975) J Am Chem Soc 97: 591

    Google Scholar 

  256. Allendoerfer RD, Rieger (1965) J Am Chem Soc 87: 2336

    Google Scholar 

  257. Staley SW, Dustman CK, Facchine KL, Linkowsky GE (1985) J Am Chem Soc 107: 4003

    Google Scholar 

  258. Tourillon G, Garnier F (1983) J Phys Chem 87: 2289

    Google Scholar 

  259. Salmon M, Diaz AF, Logan AJ, Krounbi M, Bargon J (1982) Mol Cryst Liq Cryst 83: 1297

    Google Scholar 

  260. Hotta S, Hosaka T, Shimotsuma W (1983) Synth Met 6: 69

    Google Scholar 

  261. Chung TC, Kaufman JH, Heeger AJ, Wudl F (1984) Phys Rev 30B: 702

    Google Scholar 

  262. Shaklette LW, Elsenbaumer RL, Baughman RH (1983) J Phys Coll 44C3: 559

    Google Scholar 

  263. Dietrich M, Mortensen J, Heinze J (1986) J Chem Soc Chem Commun: 1131

    Google Scholar 

  264. Bittihn R (1985) In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conducting polymers I. Springer, Berlin Heidelberg New York, p 206

    Google Scholar 

  265. Shacklette LW, Maxfield M, Gould S, Wolf JF, Jow TR, Baughman RH (1987) Synth Met 18: 611

    Google Scholar 

  266. Anton U, Müllen K (1993) Makromol Chem 14, 223–229 (1993)

    Google Scholar 

  267. Beck F (1974) Elektroorganische Chemie. VCH Weinheim

    Google Scholar 

  268. Baizer MM, Lund H (1983) Organic electrochemistry. Marcel Dekker, New York.

    Google Scholar 

  269. Breitenbach M, Heckner KH (1973) J Electroanal Chem 43: 267.

    Google Scholar 

  270. Kobayashi T, Yaneyama H, Tamura H (1984) J Electroanal Chem 161: 419

    Google Scholar 

  271. Huang WS, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans I, 82: 2385

    Google Scholar 

  272. Chiang JC, Mac Diarmid AG (1986) Synth Met 13: 193

    Google Scholar 

  273. Boudreaux DS, Chance RR, Wolf JF, Shacklette LW, Brédas JL, Thémans B, André JM, Silbey R (1986) J Chem Phys 85: 4584

    Google Scholar 

  274. Genies EM, Lapkowski M (1987) J Electroanal Chem 220: 67

    Google Scholar 

  275. Genies EM, Lapkowski M (1987) Synth Met 21: 117

    Google Scholar 

  276. Kovacic P, Koch FW (1965) J Org Chem 30: 3177

    Google Scholar 

  277. Kovacic P, (1981) J Polym Sci Polym Lett 19: 359

    Google Scholar 

  278. Heinze J (1981) Angew Chem 93: 183; Int Ed Engl 20: 202

    Google Scholar 

  279. Giese B (1985) Nachr Chem Tech Lab 33: 298

    Google Scholar 

  280. Giese B (1989) In: Regitz M, Giese B (eds) C-Radikale. Houben-Weyl Methoden der organischen Chemie Band E19a/Teil 1, p 1

    Google Scholar 

  281. Dodd JW (1971) J Chem Soc (B) Phys Org 2427

    Google Scholar 

  282. Kira A, Imamura M (1979) J Phys Chem 83: 2267

    Google Scholar 

  283. Huber W, Unterberg H, Müllen K (1983) Angew Chem 96: 800; Int Ed Engl 22: 242

    Google Scholar 

  284. Heinze J, Serafimov O, Zimmermann HW (1974) Ber Bunsenges 78: 652

    Google Scholar 

  285. Roth HD (1987) Acc Chem Res 20: 343

    Google Scholar 

  286. Parker VD (1983) Adv Phys Org Chem 19: 131

    Google Scholar 

  287. Torrance JB (1979) Acc Chem Res 12: 79

    Google Scholar 

  288. Freeman GR, Patai S, Zabicky J (1970) The Chemistry of Functional Groups: The chemistry of the carbonyl group, Wiley, London, vol 2, p 343

    Google Scholar 

  289. Metzger JO (1989) In: Regitz M, Giese B (eds) C-Radikale. Houben-Weyl Methoden der organischen chemie Band E19a/Teil 1, p 109 a 192

    Google Scholar 

  290. Oda M, to be published

    Google Scholar 

  291. Hirabayashi T, Naoi K, Osaka T (1987) J Electrochem Soc 134: 758

    Google Scholar 

  292. Edlund U, Eliasson B (1982) J Chem Soc Chem Commun 950

    Google Scholar 

  293. Baizer MM (1964) J Electrochem Soc 111: 215

    Google Scholar 

  294. Beck F (1965) Chem-Ing Techn 37: 607

    Google Scholar 

  295. Szwarc M (1956) Nature 178: 1168

    Google Scholar 

  296. Schäfer H (1970) Chem Ing Tech 42, 164

    Google Scholar 

  297. Ziegler K (1936) Angew Chem 49: 499

    Google Scholar 

  298. Morton M (1983) Anionic polymerization: principles and practice. Academic, New York, p 103

    Google Scholar 

  299. Morton M, Fetters LJ (1975) Rubber Chem Technol 48: 359

    Google Scholar 

  300. Uranek CA (1971) J Polym Sci Polym Chem Ed 9: 2273

    Google Scholar 

  301. Schue F, Worsfold DJ, Bywater S (1970) Macromolecules 3: 509

    Google Scholar 

  302. Vracken A, Smid J, Szwarc M (1962) J Chem Soc Farad Trans 55: 2036

    Google Scholar 

  303. McCormick HW (1957) Pol Sci 25: 488

    Google Scholar 

  304. Bargon J, Mohammed S, Waltmann RJ (1983) IBM J Res Develop 27: 330

    Google Scholar 

  305. Daub J (1987) Chimia 41: 52

    Google Scholar 

  306. Street GB (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 265

    Google Scholar 

  307. Genies EM, Bidan G, Diza AF (1983) J Electroanal Chem 149: 101

    Google Scholar 

  308. Inoue T, Yamase T (1983) Bull Chem Soc Jpn 56: 985

    Google Scholar 

  309. Kossmehl G, Chatzitheodorou G (1982) Makromol Chem Rapid Commun 2: 551

    Google Scholar 

  310. Diaz AF, Castillo JI, Logan JA, Lee WY (1982) J Electroanal Chem 129: 115

    Google Scholar 

  311. Waltman RJ, Diaz AF, Bargon J (1984) J Phys Chem 88: 4343

    Google Scholar 

  312. Waltman RJ, Bargon J (1984) Can J Chem 64: 76

    Google Scholar 

  313. Street GB, Lindsy SE, Nazzal AlWynne KJ (1985) Mol Cryst Liq Cryst 118: 137

    Google Scholar 

  314. Aalstad B, Ronlan A, Parker VD (1981) Acta Chem Scand B35: 649

    Google Scholar 

  315. Shirota Y, Noma N, Shimizu Y, Kanega H, Jeon IR, Nawa K, Kakuta T, Yasui H, Namba K (1991) Synth Met 41–43: 3031

    Article  Google Scholar 

  316. Koch W, Heitz W (1983) Makromol Chem 184: 779

    Article  Google Scholar 

  317. Bunnett JF (1978) Acc Chem Res 11, 413

    Article  Google Scholar 

  318. Bellville DJ, Wirth DD, Bauld NL (1981) J Am Chem Soc 103: 718

    Article  Google Scholar 

  319. Harirchian B, Bauld NL (1987) Tetrahedron Lett 927

    Google Scholar 

  320. Mlcoch J, Steckhahn E (1987) Tetrahedron Lett 1081

    Google Scholar 

  321. Müllen K, Huber W (1978) Helv Chim Achta 61: 1310

    Article  Google Scholar 

  322. Böhm A, Müllen K (1992) Tetrahedron Lett 33: 611

    Article  Google Scholar 

  323. Böhm A, Meerholz K, Heinze J, Müllen K (1992) J Am Chem Soc 114: 688

    Article  Google Scholar 

  324. Laarhoven WH, Duppen THJHM (1972) J Chem Soc Perkin Trans 1: 2074

    Article  Google Scholar 

  325. ophetVield PHG, Laarhoven WH (1977) J Chem Soc Perkin Trans 2: 268

    Google Scholar 

  326. Laarhoven WH, Cuppe TJHM, Niverd RJF (1970) Tetrahedron 26: 1069

    Article  Google Scholar 

  327. Bartz T, Böhm A, Klapper M, Müllen K, Weitzel HP (1992) Makromol Chem 54–55: 495

    Google Scholar 

  328. Böhm A, Fiesser G, Mauermann H, Stein S, Müllen K (1994) in preparation

    Google Scholar 

  329. Schlüter AD (1991) Adv Mater 3: 282

    Article  Google Scholar 

  330. Wegener S, Müllen K (1993) Macromolecules 26: 3037

    Article  Google Scholar 

  331. Anton U, Müllen K (1993) Macromolecules 26: 1248

    Article  Google Scholar 

  332. Hörhold HH (1993) Proc. Macromol. 70/71: “34th IUPAC Sympos on Macromolecules, 13–18th July 1992, Prague”

    Google Scholar 

  333. Enkelmann V (1988) In: Ebert B (ed) Polynuclear aromatic compounds. Chap 11, Adv Chem Ser 217: 177

    Google Scholar 

  334. Chiang TC, Reddoch AH, Williams J (1971) J Chem Phys 54: 2051

    Article  Google Scholar 

  335. Jost W, Adam M, Enkelmann V, Müllen K (1992) Angew Chem 104: 883

    Google Scholar 

  336. Keller HJ, Nöthe D, Pritzkow H, Wehe D, Werner M, Koch P, Schweitzer D (1981) Mol Cryst Liq Cryst 62: 181

    Google Scholar 

  337. Endres H, Keller HJ, Müller B, Schweitzer D (1985) Acta Cryst C41: 607

    Google Scholar 

  338. Eichele H, Schwoerer M, Kröhnke C, Wegner G (1981) Chem Phys Lett 77: 311

    Article  Google Scholar 

  339. Sigg J, Prisner T, Dinse KP, Brunner H, Schweitzer D, Hausser KH (1983) Phys Rev B 27: 5366

    Google Scholar 

  340. Denninger G, Stöcklein W, Dormann E, Schwoerer M (1984) Chem Phys Lett 107: 222

    Article  Google Scholar 

  341. Maresch GG, Mehring M, vonSchütz JU, Werner HU, Gökelmann K, Enkelmann V, Müllen K, Klabunde KU (1989) J Chem Phys 91: 4543

    Article  Google Scholar 

  342. Alexander J, Ehrenfreund M, Fiedler J, Huber W, Räder HJ, Müllen K (1989) Angew Chem 101: 1530; Int Ed Engl 28: 1531

    Google Scholar 

  343. Irmen W, Huber W, Lex J, Müllen K (1984) Angew Chem 96: 800; Int Ed Engl 23: 818

    Google Scholar 

  344. Bock H, Herrmann HF, Fenske D, Goesmann H (1988) Angew Chem 100: 1125; Int Ed Engl 27: 1067

    Google Scholar 

  345. Jost W, Adam M, Enkelmann V, Müllen K (1992) Angew Chem 104: 883

    Google Scholar 

  346. Zinke A, Linner F, Wolfbauer O (1925) Ber Dtsch Chem Ges 58: 323

    Google Scholar 

  347. Akamatu H, Inokuchi H, Matsunaga Y (1954) Nature 173: 168

    Google Scholar 

  348. Coffen DL, Garret PE (1969) Tetrahedron Lett 2043

    Google Scholar 

  349. Ferraris J, Cowan DO, Bloch AN (1974) J Chem Soc Chem Commun 937

    Google Scholar 

  350. Garito AF, Heeger AJ (1974) Acc Chem Res 7: 232

    Google Scholar 

  351. Almen G, Bauer T, Hünig S, Kupcik V, Langohr U, Metzenheim T, Meyer K, Rieder H, vonSchütz JU, Tillmanns E, Wolf HC (1991) Angew Chem 103: 608; Int Ed Engl 30: 561

    Google Scholar 

  352. Torrance JB, Tomkiewicz Y (1976) Bull Am Phys Soc 21: 313

    Google Scholar 

  353. Torrance JB, Silverman BD (1977) Phys Rev B 15: 788

    Google Scholar 

  354. Wudl F (1982) Pure & Appl Chem 54: 1051

    Google Scholar 

  355. Epstein AJ, Lipari NO, Sandman DJ, Nielson (1976) Phys Rev B 13: 1569

    Google Scholar 

  356. Hubbard J (1978) Phys Rev B 17: 494

    Google Scholar 

  357. Comés R (1977) In: Keller HJ (ed) Chemistry and physics of one dimensional metals. NATO Adv Study Institutes Series, B-Physics, Plenum, NY, 25: 315

    Google Scholar 

  358. Pauling L (1960) The nature of chemical bond. Ithaca, NY, p 511

    Google Scholar 

  359. Klots CE, Compton RN, Raaen VF (1974) J Chem Phys 60: 1177

    Google Scholar 

  360. Sandman DJ (1979) Mol Cryst Liq Cryst 50: 235

    Google Scholar 

  361. Metzger RM (1975) J Chem Phys 63: 5090

    Google Scholar 

  362. Kistenmacher TJ, Phillips TE, Cowan DO (1974) Acta Cryst B30: 763

    Google Scholar 

  363. Phillips TE, Kistenmacher TJ, Bloch AN, Ferraris JP, Cowan DO (1977) Acta cryst B33: 422

    Google Scholar 

  364. Aumüller A, Hünig S (1984) Angew chem 96:437; Int Ed Engl 23: 447

    Google Scholar 

  365. Hünig S, Aumüller A, Erk P, Meixner H, von Schütz JU, Gross HJ, Langohr U, Werner HP, Wolf HC, Burschka C, Klebe G, Peters K, von Schnering HG (1988) Synth Met 27: B181

    Google Scholar 

  366. Enkelmann V (1991) Angew Chem 103: 1142

    Google Scholar 

  367. Aumüller A, Erk P, Klebe G, Hünig S, vonSchütz JU, Werner HP (1986) Angew Chem 98: 759; Int Ed Engl 25: 740

    Google Scholar 

  368. Bechgaard K, Jakobsen CS, Mortensen K, Pederson MJ, Thorup N (1980) Solid State Commun 33: 1119

    Google Scholar 

  369. Bechgaard K, Carneiro K, Rasmussen FG, Olsen K, Rindorf G, Jakobsen CS, Pederson HJ, Scott JE (1981) J Am Chem Soc 103: 2440

    Google Scholar 

  370. Mizuno M, Garito AF, Cava MP (1978) J Chem Soc Chem Commun 18

    Google Scholar 

  371. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo MH (eds) Organic Superconductors, Synthesis, Structure, Properties, and Theory. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  372. Urayama H, Yamochi H, Saito G, Nozawa K, Sugano T, Kinoshita M, Sato S, Oshima K, Kawamoto A, Tanaka J (1988) Chem Lett 55

    Google Scholar 

  373. Kini AM, Geiser U, Wang HH, Carlson KD, Williams JM, Kwok WK, Vandervoort KG, Thompson JE, Stupka DL, Jung D, Whangbo MH (1990) Inorg Chem 29: 2555

    Google Scholar 

  374. Pitman CU, Narita, Liang YF (1976) J Org Chem 41: 2855

    Google Scholar 

  375. Bryce MR, Moore AJ (1990) Pure & Appl Chem 62: 473

    Google Scholar 

  376. Sugimoto T, Awaji H, sugimoto I, Misaki Y, Kawase T, Yoneda S, Yoshida Z, Kobayashi T, Anzai H (1989) Chem Mater 1: 535

    Google Scholar 

  377. Sugiomoto T, Awaji H, Misaki Y, Yoshida Z, Kai Y, Nakagawa H, Kasai N (1985) J Am Chem Soc 107: 5792

    Google Scholar 

  378. Adam M, Wolf P, Räder HJ, Müllen K (1990) J Chem Soc Chem Commun 1624

    Google Scholar 

  379. Adam M, Müllen K (1993) Adv Mater submitted

    Google Scholar 

  380. Iwamura H (1990) Adv Pys Org. Chem 26: 179

    Google Scholar 

  381. Iwamura H, Miller JS (1993) Proceedings of the Symposium on the “CHEMISTRY AND PHYSICS OF MOLECULAR BASED MAGNETIC MATERIALS”. Mol Cryst Liqu Cryst 232/233: 1-360/1-366

    Google Scholar 

  382. Dougherty DA (1991) Acc Chem Res 24: 88

    Google Scholar 

  383. Miller JS, Epstein AJ, Reiff WM (1988) Acc Chem Res 21: 114

    Google Scholar 

  384. Miller JS, Dougherty DA (eds) (1989) Proceedings of the Symposium of Ferromagnetic and high spin molecular based materials. Mol Cryst Liq Cryst 176: 1

    Google Scholar 

  385. Heisenberg W (1928) Z Phys 49: 619

    Google Scholar 

  386. Bencini A, Gatteschi D (1990) EPR of exchange coupled system. Springer Verlag, Heidelberg.

    Google Scholar 

  387. Anderson PW (1963) In: Rado GT, Suhl H (eds) Magnetism. Academic, New York, vol 1 p 25

    Google Scholar 

  388. Hay PJ, Thibeault JC, Hoffmann RH (1975) J Am Chem Soc 97: 4884

    Google Scholar 

  389. Kramers HA (1934) Physica 1: 182

    Google Scholar 

  390. Anderson PW (1959) Phys Rev 115: 2

    Google Scholar 

  391. Tyutyulkov N, Karabunarliev S, Müllen K, Baumgarten M (1992) Synth Met 52: 71

    Google Scholar 

  392. Buchachenko A (1989) Mol Cryst Liq Cryst 176: 307

    Google Scholar 

  393. LePage TJ, Breslow R (1987) J Am Chem Soc 109: 6412

    Google Scholar 

  394. Miller JS, Epstein AS (1993) Angew Chem in press

    Google Scholar 

  395. McConnell HM (1963) J Chem Phys 1963 39, 1910

    Google Scholar 

  396. Mataga N, Theor Chim Acta 1968, 10, 372

    Google Scholar 

  397. Ovchinnikov AA (1978) Theor Chim Acta 47: 297

    Google Scholar 

  398. Aoki Y, Imamura A (1992) Theor Chim Acta 84: 155

    Google Scholar 

  399. McConnell (1967) Proc RA Welsh Found Conf Chem Res 11: 144

    Google Scholar 

  400. Breslow R, Juan B, Klutz RQ, Xia CZ (1982) Tetrahedron 38: 863

    Google Scholar 

  401. Miller JS, Epstein AJ (1989) Mol Cryst Liq Cryst 176: 347

    Google Scholar 

  402. Miller JS, Epstein AJ (1993) in press

    Google Scholar 

  403. Wassermann E, Murray RW, Yager WA, Trozzolo AM, Smolinsky G (1967) J Am Chem Soc 89: 5076

    Google Scholar 

  404. Itoh K (1967) Chem Phys Lett 1: 235

    Google Scholar 

  405. Schlenk W, Brauns M (1915) Ber Dtsch Chem Ges 48: 661: 669

    Google Scholar 

  406. Iwamura H (1987) Pure & Appl Chem 59: 1595 ibid 65: 57

    Google Scholar 

  407. Tyutyulkov N, Karabunarliev S (1986) Int J Quantum Chem 29: 1325

    Google Scholar 

  408. Veciana J, Vidal J, Jullian N (1989) Mol Cryst Liq Cryst 176: 443

    Google Scholar 

  409. Breslow R (1989) Mol Cryst Liq Cryst 176: 199

    Google Scholar 

  410. Coulson CA, Longuet-Higgins HC (1947) Proc R Soc Ser A 191: 39 and 192: 16

    Google Scholar 

  411. Dietz F, Müllen K, Baumgarten M, Tyutyulkov N (1993) Chem Phys in press

    Google Scholar 

  412. Even in: Buckminsterfullerene the highest spin state available is S = 1, although the neutral molecules is assumed to possess a threefold degenracy of the LUMO Baumgarten M, Gügel a, Gherghel L (1993) Adv Mater in press

    Google Scholar 

  413. Berson JA (1978) Acc Chem Res 11: 446

    Google Scholar 

  414. Berson JA (1987) Pure & Appl Chem 59: 1571

    Google Scholar 

  415. Tyutyulkov N, Karabunarliev S, Ivanov K (1989) Mol Cryst Liq Cryst 176: 139

    Google Scholar 

  416. Veciana (1989) Mol Cryst Liq Cryst 176: 75

    Google Scholar 

  417. Kirste B, Kurreck H, Lubitz W, Schubert K (1978) J Am Chem Soc 100: 2292

    Google Scholar 

  418. Kurreck H (1993) Angew Chem 105: 1472

    Google Scholar 

  419. Grimm M, Kirste B, Kurreck H (1986) Angew Chem 98: 1095 Int Ed Engl 25: 1097

    Google Scholar 

  420. Horn T, Baumgarten M, Gherghel L, Müllen K (1993) Tetrahedron Lett, 34: 5889

    Google Scholar 

  421. Longuet-Higgins HC (1950) J Chem Phys 18: 265

    Google Scholar 

  422. Klein DJ (1982) J Chem Phys 77: 3098

    Google Scholar 

  423. Itoh K (1978) Pure & Appl Chem 50: 1251

    Google Scholar 

  424. Dowd P, Chang W, Paik YH (1986) J Am Chem Soc 108: 7416

    Google Scholar 

  425. Du P, Borden WT (1987) J Am Chem Soc 109: 5284

    Google Scholar 

  426. Nash JJ, Dowd P, Jordan KD (1992) J Am Chem Soc 114: 10071

    Google Scholar 

  427. Nachtigall P, Jordan KD (1993) J Am Chem Soc 115: 270

    Google Scholar 

  428. Schmauss G, Baumgarte H, Zimmermann H (1965) Angew Chem Int Ed Engl 4: 596

    Google Scholar 

  429. Brickmann J, Kothe G (1973) J Chem Phys 59: 2807

    Google Scholar 

  430. Novak C, Kothe G, Zimmermann H (1974) Ber Bunsen-Ges 78: 265

    Google Scholar 

  431. Rajca A (1990) J Am Chem Soc 112: 5890

    Google Scholar 

  432. Nakamura N, Inoue K, Iwamura H, Fujioka, Sawaki Y (1992) J Am Chem Soc 114: 1484

    Google Scholar 

  433. Higuchi J (1963) J Chem Phys 38: 1237; ibid 39: 1847

    Google Scholar 

  434. Iwamura H (1986) Pure & Appl Chem 58: 187

    Google Scholar 

  435. Murata S, Iwamura H (1991) J Am Chem Soc 113: 5547

    Google Scholar 

  436. Baumgarten M, Müllen K, Tyutyulkov N, Madjarova G (1993) Chem Phys 169: 81

    Google Scholar 

  437. Tyutyulkov N, Ivanov Cl, Schopov I, Polansky OE, Olbrich G (1988) Int J Quantum Chem 34: 361

    Google Scholar 

  438. Yoshizawa K, Hatanaka M, Ito A, Tanaka K, Yamabe T (1993) Chem Phys Lett 202: 483

    Google Scholar 

  439. Ishida T, Iwamura H (1991) J Am Chem Soc 113, 4238–4241

    Google Scholar 

  440. Tanaka K, Yoshizawa K, Takata A, Yamabe T, Yamauchi J (1991) Synth Met 41–43: 3297

    Google Scholar 

  441. Mukai K, Nagai H, Ishizu K (1975) Bull Chem Soc Jpn 48: 2381

    Google Scholar 

  442. Calder A, Forrester AR, James PG, Luckhurst GR (1969) J Am Chem Soc 91: 3724

    Google Scholar 

  443. Yoshizawa K, Chano A, Ito A, Tanaka K, Yamabe T, Fujita H, Yamauchi J, Shiro M (1992) J Am Chem Soc 114: 5994

    Google Scholar 

  444. Yoshizawa J, Tanaka K, Yamabe T, Yamauchi J (1992) J Chem Phys 96: 5516

    Google Scholar 

  445. Torrance JB, Oostra S, Nazal A (1987) Synth Met 19: 809

    Google Scholar 

  446. Baumgarten M, Wehrmeister T, Karabunarliev S, Tyutyulkov N, Müllen K (1994) to be published

    Google Scholar 

  447. Wassermann E, Schueller K, Yager WA (1968) Chem Phys Lett 2: 259

    Google Scholar 

  448. Tukada H, Mutai K, Iwamura H (1987) J Chem Soc Chem Commun 1159

    Google Scholar 

  449. Matsumoto T, Ishida T, Ishida T, Koga N, Iwamura H (1992) J Am Chem Soc 114: 9952

    Google Scholar 

  450. Ling C, Minato M, Lahti PM, van Willigen H (1992) J Am Chem Soc 114: 9959

    Google Scholar 

  451. Dowd P (1966) J Am Chem Soc 88: 2587

    Google Scholar 

  452. Dowd P, Paik YH (1986) J Am Chem Soc 108: 2788

    Google Scholar 

  453. Jain R, Snyder GJ, Dougherty DA (1984) J Am Chem Soc 106: 7294

    Google Scholar 

  454. Novak JA, Jain R, Dougherty DA (1989) J Am Chem Soc 111: 7618

    Google Scholar 

  455. Dougherty DA, Jacobs SJ, Silverman SK, Murray MM, Shultz DA, West AP, Clites JA (1993) Mol cryst Liq Cryst in press

    Google Scholar 

  456. Fukutome H, Takahashi A, Ozaki Ma (1987) Chem Phys Lett 133: 34

    Google Scholar 

  457. Tukada H (1993) J Am Chem Soc in press

    Google Scholar 

  458. Müller U, Baumgarten M (1994) J Am Chem Soc submitted

    Google Scholar 

  459. Baumgarten M, Gherghel L, Gregorius H, Karabunarliev K, Müllen K (1993) to be published

    Google Scholar 

  460. Breslow R, Chang HW, Hill R, Wasserman E (1967) J Am Chem Soc 89: 1112

    Google Scholar 

  461. Wassermann E, Hutton RS, Kuck VJ, Chandross EA (1974) J Am Chem Soc 96: 1965

    Google Scholar 

  462. Saunders M, Berger R, Jaffe A, McBride JM, O'Neill J, Breslow R, Hoffman JM, Perchonock C, Wassermann E, Hutton RS, Kuck VJ (1973) J Am Chem Soc 95: 3017

    Google Scholar 

  463. Breslow R, Maslak P, Thomaides J (1984) J Am Chem Soc 106: 6453

    Google Scholar 

  464. Breslow R, Hill R, Wassermann E (1964) J Am Chem Soc 86: 5349

    Google Scholar 

  465. Fukunaga T (1976) J Am Chem Soc 98: 610

    Google Scholar 

  466. Veciana J, Rovira C, Ventosa N, Crespo MI, Palacio F (1993) J Am Chem Soc 115: 57

    Google Scholar 

  467. Hoshino M, Kimura K, Imamura M (1973) Chem Phys Lett 20: 193

    Google Scholar 

  468. Tukada H (1991) J Am Chem Soc 113: 8991

    Google Scholar 

  469. Tukada H, Mutai K (1993) Tetrahedron Lett in press

    Google Scholar 

  470. Rajca A, Utamapanya (1992) J Org Chem 47: 1760

    Google Scholar 

  471. Dougherty DA, Kaisaki DA (1990) Mol Cryst Liq Cryst 183: 71

    Google Scholar 

  472. Nakamura N, Inoue K, Iwamura H (1992) J Am Chem Soc 114: 1484

    Google Scholar 

  473. Nakamura N, Inoue K, Iwamura H (1993) Angew Chem 105: 900

    Google Scholar 

  474. Rajca A, Utamapanya S, Thayumanavan S (1992) J Am Chem Soc 114: 1884

    Google Scholar 

  475. Miller JS (1992) Adv Mater 4: 298; ibid 435

    Google Scholar 

  476. Winter H, Gotoschy B, Dormann E, Naarmann H (1990) Synth Met 341–352

    Google Scholar 

  477. Cosmo R, Dormann E, Gotschy B, Naarmann H, Winter H (1991) Synth Met 41–43: 369

    Google Scholar 

  478. Cosmo R, Naarmann H (1990) Mol Cryst Liq Cryst 185: 89

    Google Scholar 

  479. Yoshioka N, Nishide H, Tsuchida E (1990) Mol Cryst Liq Cryst 190: 45

    Google Scholar 

  480. Nishide H, Yoshioka N, Kaneko T, Tsuchida E (1990) Macromolecules 23: 4487

    Google Scholar 

  481. Iwamura H, McKelvey RD (1988) Makromolecules 21: 3386

    Google Scholar 

  482. Fujii A, Ishida T, Koga N, Iwamura H (1991) Macromolecules 24: 1077

    Google Scholar 

  483. Iwamura H, Murata S (1989) Mol Cryst Liq Cryst 176: 33

    Google Scholar 

  484. Wegner G (1977) Pure & Appl Chem 49: 443

    Google Scholar 

  485. Wegner G (1979) in: Hartfield EW (ed) Molecular metals. Plenum Press, NY, p 209

    Google Scholar 

  486. Korshak YV, Madvedeva TV, Ovchinnikov AA, Spector VN (1987) Nature 326: 370

    Google Scholar 

  487. Zhang JH, Epstein AJ, Miller JS, O'Connor CJ (1989) Mol Cryst Liq Cryst 176: 271

    Google Scholar 

  488. Cao Y, Wang P, Hu Z, Li S, Zhang L, Zhao J (1988) Solid State Commun 68: 817

    Google Scholar 

  489. Wiley DW, Calabrese JC, Miller JS (1989) Mol Cryst Liq Cryst 176: 277

    Google Scholar 

  490. Inoue K, Koga N, Iwamura H (1991) J Am Chem Soc 113: 9803

    Google Scholar 

  491. Inoue K, Iwamura H (1992) Adv Mater 4: 801

    Google Scholar 

  492. Awaga K, Sugano T, Kinoshita M (1986) J Chem Phys 85: 2211

    Google Scholar 

  493. Harrer W, Kurreck H, Reusch J, Gierke W (1975) Tetrahedron 31: 625

    Google Scholar 

  494. Shiomi D, Tamura M, Sawa H, Kato R, Kinoshita M (1993) Synth Met 1993 in press

    Google Scholar 

  495. Awaga K, Maruyama Y (1989) Chem Phys Lett 158: 556

    Google Scholar 

  496. Turek P, Nozawa K, Shiomi D, Awaga D, Awaga K, Inabe T, Maruyama Y, Kinoshita M (1991) Chem Phys Lett 180: 327

    Google Scholar 

  497. Kinoshita M, Turek P, Tamura M, Nozawa K, Shiomi D, Nakazawa Y, Ishikawa M, Takahashi M, Awaga K, Inabe T, Maruyama Y (1991) Chem Lett 1225

    Google Scholar 

  498. Chiang LY, Goshorn DP (1989) Mol Cryst Liq Cryst 176: 229

    Google Scholar 

  499. Miller JS, Epstein AJ (1989) Mol Cryst Liq Cryst 176: 347

    Google Scholar 

  500. Miller JS, Calabrese JC, Harlow RL, Dixon DA, Zhang JH, Reiff WM, Chittipaldi S, Selover MA, Epstein AJ (1990) J Am Chem Soc 112: 5496

    Google Scholar 

  501. Epstein AJ, Miller JS (1993) Proceedings of Electrical and related properties or organic solids. Capri I, (1992) Mol Cryst Liq Cryst 228: 99

    Google Scholar 

  502. Cannon RD (1980) “Electron Transfer Reactions”, Butterworth, London

    Google Scholar 

  503. Paddon-Row MN, Jordan KD (1988) In: Liebman JF, Greenberg A (eds) Modern models of bonding and delocalization, chap 3. VCH Publishers, New York

    Google Scholar 

  504. Marcus RA (1956) J Chem Phys 24: 979

    Google Scholar 

  505. Marcus RA (1965) J Chem Phys 43: 679

    Google Scholar 

  506. Closs G, Miller JR (1988) Science 240, 440

    Google Scholar 

  507. Santamaria J (1988) In: Fox MA, Cannon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam

    Google Scholar 

  508. Grampp G, Jaenicke W (1984) Ber Bunsenges Phys Chem 88: 325; ibid 88: 335

    Google Scholar 

  509. Gerson F, Kowert B, Peake PM (1974) J Am Chem Soc 96: 118

    Google Scholar 

  510. Kuznetsov AM, Ulstrup J, Vorotyntsev MA (1988) Solvent effects in charge transfer processes. In: Dogonadze RR, Kalman E, Kornyshev AA, Ulstrup J (eds) The chemical physics of solvation. Studies in physical and theoretical chemistry, vol 38, chap 3, Elsevier, Amsterdam

    Google Scholar 

  511. Gerson F, Wellauer T, Oliver AM, Paddon-Row MN (1990) Helv Chim Acta 73: 1586

    Google Scholar 

  512. Liang N, Miller JR, Closs GL (1990) J Am Chem soc 112: 5353

    Google Scholar 

  513. Jordan KD, Paddon-Row MN (1992) Chem Rev 92: 395

    Google Scholar 

  514. Kochi JK (1988) Angew Chem 100: 1331; Int Ed Engl 27: 1227

    Google Scholar 

  515. Wasielewski MR (1992) Chem Rev 92: 435

    Google Scholar 

  516. Baumgarten M, Müllen K (1992) AIP Conf Proc; St. Thomas, Virgin Islands 262: 68–76

    Google Scholar 

  517. Hopfield J, Onuchic JN, Beratan DN (1988) Science 214: 817

    Google Scholar 

  518. Mehring M (1989) In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers III. Springer, Berlin Heidelberg New York, p 242

    Google Scholar 

  519. Aviram A (1988) J Am Chem Soc 110: 5687

    Google Scholar 

  520. Joachim C, Launay JP (1990) J Mol Electronics 6: 37

    Google Scholar 

  521. Aviram A, Ratner MA (1974) Chem Phys Lett 29: 277

    Google Scholar 

  522. Aviram A, Seiden PE, Ratner MA (1982) In: Carter FL (ed) Molecular electronic devices. Marcel Dekker, New York, p 5

    Google Scholar 

  523. Metzger RM, Panetta CA, Miura Y, Torres (1987) Synth Met 18: 787

    Google Scholar 

  524. Torres E, Panetta CA, Metzger RM (1987) J Org Chem 52: 2944 (1987)

    Google Scholar 

  525. Metzger RM, Panetta CA (1991) New J Chem 15: 209

    Google Scholar 

  526. Binnig G, Rohrer H, Gerber Ch, Weibl E (1982) Phys Rev Lett 49: 57

    Google Scholar 

  527. Roberts GG (ed) (1990) “Langmuir Blodgett Films” Plenum Press, New York

    Google Scholar 

  528. Sariciftci NS, Neugebauer H, Mehring M (1991) Synth Met 41–43: 2971

    Google Scholar 

  529. Burroughes JH, Friend RH (1991) In: Brédas JL, Silbey R (eds), Conjugated polymers. Kluwer, Dordrecht, p 555

    Google Scholar 

  530. Kmetz AR, Willisen FK (1976) Non-emissive electrooptic displays. Plenum, New York

    Google Scholar 

  531. Inganas O, Lundström I (1987) Synth Met 21: 13

    Google Scholar 

  532. Inganas O, Lundström I, Skotheim TA (1986) In: Skotheim TA (ed) Handbook of conducting polymers. Marcel Dekker, New York, p 524

    Google Scholar 

  533. Friend RH (1992) Synth Met 51: 357

    Google Scholar 

  534. Yoneyama H, Wakamato K, Tamura H (1985) J Electrochem Soc 132: 2414

    Google Scholar 

  535. Yosino K, Kaneto K, Inuishi Y (1983) Jpn J Appl Phys 22: L157

    Google Scholar 

  536. Kobayashi T, Yoneyama H, Tamura H (1984) J Elektroanal Chem 177: 281

    Google Scholar 

  537. LaCroix JC, Kanazawa KK, Diaz AF (1989) J Electrochem Soc 136: 1308

    Google Scholar 

  538. Wolf JF, Miller GG, Shacklette, Elsenbaumer RL, Baughman RH US Patent 4, 893, 908

    Google Scholar 

  539. Braun D, Heeger AJ (1991) Appl Phys Lett 58: 1982

    Google Scholar 

  540. Adachi C, Tsutsui T, Saito S (1993) Appl Phys

    Google Scholar 

  541. Grem G, Leditzky G, Ulrich B, Leising G (1992) Adv Mater 4: 36

    Google Scholar 

  542. Holmes AB (1992) Nature 356: 47

    Google Scholar 

  543. Heeger AJ (1992) Nature 357: 477

    Google Scholar 

  544. Reimers JR, Hush NS (1990) Inorg Chem 29: 3886

    Google Scholar 

  545. Joachim C, Launay JP, Woitellier S (1990) Chem Phys 147: 131

    Google Scholar 

  546. Heine B, Sigmund E, Maier S, Port H, Wolff HC, Effenberger F, Schlosser H (1990) J Molec Electronics 6: 51

    Google Scholar 

  547. Yao H, Okada T, Mataga N (1989) J Phys Chem 93: 7388

    Google Scholar 

  548. Rettig W (1986) Angew. Chemie 98: 969; Int. Ed. Engl 125: 971

    Google Scholar 

  549. Lippert E, Lüder W, Boos H (1962) In: Mangini A (ed) Adv in molecular spectroscopy. Pergamon, Oxford, p 443

    Google Scholar 

  550. Bonacic-Koutecky V, Koutecky J, Michl J (1987) Angew Chem 99: 216, Int. Ed. Engl 26: 218

    Google Scholar 

  551. Rettig W (1991) Nachr Chem Tech Lab 39: 398406

    Google Scholar 

  552. Barbara PF, Jarzeba W (1988) Acc Chem Res 21: 195

    Google Scholar 

  553. Mataga N, Yao H, Okada T, Rettig W (1989) J Phys Chem 93: 3383–86

    Article  Google Scholar 

  554. Fritz R, Rettig W, Müller U, Müllen K (1994) (to be published)

    Google Scholar 

  555. Dobkowski J, Rettig W, Paeplow B, Koch KH, Müllen K, Lapouyade R, Grabowski ZR (1994) J Am Chem Soc in press

    Google Scholar 

  556. Haarer D, Blumen A (1988) Angew Chem 100: 1252; Int Ed Engl 27: 1210

    Google Scholar 

  557. Hoegl H, Sus O, Neugebauer W (1962) US Pat 3 037 861

    Google Scholar 

  558. Shattuk DM, Vahtra U (1969) US Pat 3 484 237

    Google Scholar 

  559. Abkowitz M, Bässler H, Stolka M (1991) Phil Mag B 63: 201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Baumgarten, M., Müllen, K. (1994). Radical ions: Where organic chemistry meets materials sciences. In: Mattay, J. (eds) Electron Transfer I. Topics in Current Chemistry, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57565-0_74

Download citation

  • DOI: https://doi.org/10.1007/3-540-57565-0_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57565-8

  • Online ISBN: 978-3-540-48225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics