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Abstract. This paper drrcribes ail improved version of linear crypt- 
analysis and its applicat,ion t,o t .hr first, successful coniput,er experiment 
in breaking the full 16-round DES. ‘Ihe scenario is a known-p]a.intext 
at,ta.ck based on t,wo new linear approximate equations, each of which 
provides candidates for 13 secret. key bits wit,h negligible memory. More- 
over, reliability of the key candidates is taken into consideration, which 
increases the siicccss r a k .  As a result, the full 16-round DES is breakable 
wit,h high success probability if 243 random plaintexts and their cipher- 
texts are available. Thc aiit,hor ca.rried out, the first experimental attack 
iisiiig twrlvr computers to  confirm t , l i k :  t i c  lirially reached all of the 56 
secret, key bit.s i n  fifty days, out o f  which f0rt.y clays were spent for gen- 
erating plaintexts and t,heir ciphertexts and only t>en days were spent for 
tshe actual key search. 

1 Introduction 

In the  first paper on linear cryptaiialysis “21, we i n h d u c e d  a new iiieasiire of 
linearity of S-boxes a.nd extcncled it, t o  t8hc entire cipher structure of IIES. ‘rhc 
resultant linear approximate equations are effectively applicable to a known- 
plaintext attack, which proved that DES is breakable with negligible memory 
if 247 random plaintexts and t,heir c.iphertext#s art: available. This is the first’ 
known-plaintext att8ack fast,er than an exhaustive key search, though the origin 
of linear crypt,analysis can be seen in several papers [4][5][6][7]. 

This paper st,udies an improved version of linear cryplarialysis and it,s appli- 
cation t,o the  first successful comput,er experiineril iii breaking the full 16-roiind 
DES. We newly introduce two vicwpoints; linear approximate equat,ions based 
on the best (n-2)-round expression, and reliability of the  key candidates derived 
from these equa.tions. The  former reduces the number of required plaint.exts, 
whereas the  1a.tter increases t,he success ratme of our attack. 

In the ‘tZk7-method, we est.a.hlishrd t,wo linear approximate equations of 16- 
round DES using the  best, 15-round expression, where each equation includes 
one active S-box and hence recovers 7 secret key bits. This paper, however, 
begins with t w o  new linear approxirriate eyuatioris derived from the best 14- 
round expression, where each cqaation has t8wo active S-boxes and caii recover 
13 secret key bits. ‘Lliese equa.tions give us, therefore, a total of 26 secret) key 
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bits. and then the remaining 56 - 26 = 30 secret key bits are within the reach 
of an  exhaustive sca.rch. 

Moreover, we treat not, only one solution of each equation but  also "can- 
dida,t#es" for the 13 secret key bits, where each candidate has i ts  ranking of 
reliabi1it)y such that, t,he i-th rank represents the i-th likely solution. The aim of 
t,his approach is to give a. table that relates ranking of the 26 secret key bits to 
that, of the 13 secret key t>it,s. This tahlc increases thc success rate of our attack 
at the  cost of' computatmional complexity; that, is t80 say, if the most likely 26 key 
bits turn out to be wrong, we can a,clopt. t,he second likely 26 key b i k  and search 
for t,he remaining 30 key bits again. If they are not correct either, we can try 
the third likely 26 key hit8s. 

We also prove that, t h r  cffectivencss of this met,hod can be measured by 
DES reduced to 8 rounds. 'rhis f ac l  enables 11s to experimentally delerrriine 
the  relationship among the nurnber of required plaintexts, the complexity and 
l,he success ratme of our attack. As a result, DES is breakable with complexity 243 
and succcss rate 85% if 243 known-plaintexts are available. For another example, 
success rate is 10% with complexity 25'' if 238 known-plaintexh are available. 

We carried out, tjhe first, experiinent,al atstack of t,he full 16-round LIES using 
twelve computers (HP9735/PA-RISC 99MHz) to confirm this scenario. The pro- 
gram, described in C a.nd assembly languages consisting of' a total of 1000 lines, 
was designed to solve t,wo equations while generating 243 random plaintexts a.nd 
enciphering theni. We finally reached all of the 56 secret, key bits in fift,y days, 
out, of which forty days were sperit for geriera.tirig plaintexts and their ciphertexts 
and only ten days were spent for t.he act,ual kr3y search. 

2 Preliminaries 

We follow the  notations iiit,roduced in 121. Since our scope is a. known-plaintext 
at,tack usirig random plaintexts, we onlit, t,he initial permuta,tion I P ,  the final 
permutation I P - ' ,  and PG1. The  right rriost, bit of each symbol is referred as 
t,lie 0-t.h (lowest) hit,, whereas t.he t,radit,ioiial rule defines the lefl most bit as the 
first, bit, [I]. Tlie following are used throughout. this paper; 

I' 
c 
J'H, PL 
C H I  Cl, 
lz' 
KV 
F r ( X r 3  ICT) 

Alil 

The Ij4-bit8 da,t,a aft,er t,hc I P ;  t,hc plaintext,. 
The  64-bit da ta  beforc t,hr I F 1 ;  the  c i p h e r k d .  
'I'he upper and the lower 32-bil da ta  of P ,  respectively. 
'The, upper arid the lower 32-hit, da ta  of C,', respectively. 
'The 5(j-bit, data a fkr  t,he PC'-1; t,hc sccret key. 
The  r--t,h round 48-bit subkey. 
Th?  r-t,li round F-function. 
The i-t.h hit) of A ,  where A is any binary vcct,or. 

A[i ,  j ,  . . l  k]  A [ i ]  +: A4 b] tfi . . . $1 11 [k.] 
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3 Principle of t he  New Attack 

The  first, purpose of linear cryplanalysis is t,o find t,he following 1inea.r approxi- 
mate expression which holds with probabilit<y p # 1 /2  for randonily given plain- 
t,ext, P ,  the corresponding cipliertext C,' and the fixed secret, key 11' : 

where i l ,  i?, .., i,, j1,  j 2 ,  .., jh a i d  k l ,  k 2 ,  .., k ,  deiiote fixed bit, locations. 
Since bot,h sides of equalion ( 1) esseiit,ially represent, onc-bit, inforniat>ion, 

the  rnap i tmude  of lp - 1/21 expresses t.hc cffcctiveness. We will refer to Che inost, 
effectshe linea,r approximate expression ( i t .  111- 1/21 is rnaxinial ) as t.he hest, ex- 
pression arid its proba.hility as the best probability, respectively. We have found 
the  best, expression and  I h e  best probahilit,y of DFS, whosc rcsuks arc summa- 
rized in [2] for the number of rounds varyiiig froiii n = 3 to  11. = 'LO. A pract>ical 
algorithm for deriving these values is described in [3]. 

111 the 2"-method, we established two equations of 16rouncrl DES using t'he 
best 15-round expression, which holds with probability 1 / 2 +  1.19 x 2-?? 121. Our 
new attack, however, starts with t8he followiiig t,wo best 14-round expressions, 
which hold with probability 1/2 - 1.19 x 2 -  'l: 

P L ! ~ ,  18,241 @ C ~ [ 7 , 1 8 , 2 4 , 2 9 ]  @ C ~ [ 1 5 ]  
= Ii2[22] @ K3[44] t2i 1<4[a2] @ 1it;[22] tb Ar7[44] $i 1<8[22] 63 I<l0[22] tb 

Kii[44] @ h-12[22] 3 1<14[22], (2) 

C;[7,18,24] CB PH[7,18,24,29] t~ P;[15] 
= 1<13[22] @ 1<12[44] @ K11['22] @ h ~ [ ' L 2 ]  K,[44] CJ3 I i7[22] @ 1is[22] 4, 

1<4[44] 133 1<3[22] tfi 1i1[22], ( 3 )  

where P ,  C and I< denote the plaintext, the ciphertext and the secret key of 
DES reduced to  14 rounds, respectively 

Then  applying equations (2) and (3)  to fourtecn consecutive F-functions from 
the 2nd round to the 15th rouiid of 16-round UES, we have the following two 
equations tha t  hold with probability l / 2  - 1 19 x 2-21 for random plaintexts and 
their ciphertexts (figure I illustrates the detailed construction of equation (4)) 

PH[7,18,24] B Fi(Pr., I<l)[I',  18,241 @ C;,[15] CE Ct[7 ,18 ,24 ,29]  6) 
F 1 6  (CL 3 1(16 ) [ 151 

= K3['L'L] @ K4[44] iii 1i5['22] & 1<7p2] (3, fi,[44] @ K9[22] 81 1<11[22] C f ,  

1<1?[44] @ li13[22] di Ii,,[22], (4) 
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Fig. 1. New linear approximation oi 16-ronnd DKS.

The first stage of our attack is to solve tliese equations to derive some of the
56 secret key bits. Now let us consider how much memory is required to solve
them and how many secret key bits can be derived from them. For this purpose,
we here define ''effective text, bits" and "effective key bits" of equation (4) or
(5) as the text bits and the key bits which affect the left side of each equation,
respectively. If an XORed value of several text/key bits affects the left side, we
count as one effective text/key bit. Then the following can be easily seen:



The effective text bits of equation (4) (13 bits):
PL[tt],PL[l2],PL[W],PL{U],PL[\$\, PLm,CL[Q],CL[27},CL[2i],
CL[29], CL[30], CL[31],PH[7,18,24] © CH[15] * C£[7,18, 24, 29].
The effective key bits of equation (4) (12 bits):
^ [ 1 8 ] , A'![19], A-J20], A, [21], AJ22], A'^23],
/v]6[42], A'i6[43], A:16[44], A-16[45], A-1fi[46], A'16[47].

The effective text bits of equation (5) (13 bits):
Cx[11], CY[12], CL[13], CJ,[L4],C'L[15], C L [ 1 6 ] , PI[0], Pi[27], P L [ 2 8 ] ,
Pr,[29], Pz,[30], P£[31], CH[7,18, 24] © PH[15] © Pi[7,18,24,29].
The effective key bits of equation (5) (12 bits):

A'i [42], A'x [43], A'i [44], Kx [45], Kx [46], A'i [47].

Note that P H [ 7 , 18,24] e C//[15] 4) CL[7,18,24,29] and CH[1,18,24] ® P# [15] 0
Pi [7, 18, 24, 29] represent one-bit information. This observation shows that 13
secret key bits — 12 effective key bits and one bit of the right side — can be
derived from each equation using just 13 text bits. We hence obtain a total of 26
secret key bits — they are not duplicated from equations (4) and (5) using
information on 26 text bits.

Let us next consider how to solve these equations. If one substitutes an
incorrect key value for A] or Ki§ in equation (4) or (5), the probability that the
left side equals zero is expected to be closer to 1/2 (not necessarily 1/2). This
leads us to maximum likelihood method in regard to key candidates; for each
key candidate, we count the number of times that the left side of the equation
equals zero. Then, the resultant counter value must reflect the reliability of the
corresponding key candidate. We have implemented this scenario as follows:

Algorithm for breaking 16-round DES (I)

Data Counting Phase
Step 1 Prepare 213 counters TAt.x (0 < t& < 213) and initialize them by zeros,

where iA corresponds to each value on 13 effective text bits of equation (4).
Step 2 For each plaintext P and the corresponding ciphertext C\ compute the

value '£4' of Step 1, and count up the TAiA by one.

Key Counting Phase
Step 3 Prepare 212 counters KAkA (0 < k^ < 212) and initialize them by zeros,

where kA corresponds to each value on 12 effective key bits of equation (4).
Step 4 For each k^ of Step 3, let KAj.^ be the sum of TAtA's such that the

left side of equation (4), whose value can be uniquely determined by t,\ and
h'A, is equal to zero.

Step 5 Rearrange KAf.A in order of magnitude of \KAkA — N/2\ and rename
them WAiA (0 < lA < 212). Then, for each lA,

If (KA(A - N/2) < 0, guess that the right side of equation (4) is 0.
If (KT1, - N/Z) 5 0, guess t h d thr right side of ec(iinLiori (4) I-, 0
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At, this s t , a g ,  t,he key c,a.nditlat,e corwsl,onclirig t,o mlA reprcscntms t<he l,-t>h 
likely 13 secret key I>it8s. The trot8al siw of required counkrs is 2'" + 2", and t-llr 
c.ornput3at.ional c.omplrxit>y, which deprnds on Step 2 only, is O ( N ) .  Note t.liat 
Step 2 is pa.rallelizal.)le. 

Equat,ion (5) can lw also solved in the  saiiir iiianiicr, in which case we will use 
the notatoioiis TI&, , li BkB and %%I, iiist,ead of 7'.4,+, ~ 1<Ak+,  and mi,, . Our 
algorit,hm recovers, t,herefore, a. t,ot.al of 26 secret kcy bits, wliow bit 1ocat.ions 
(aft8er the  PC:--l) are as follows: 

The  next stage of' our atstack is t,o derive the rcmiairiing 56 - 26 = 30 secret key 
bils. Our a im is tjo increase t.hr success r a k  by repeat,ing the seasch in order of 
reliability of' 26 secret key bits. In other words, we want. to niake the following 
algorithin work eEec.tively: 

Algorithm for breaking l6-rou11d DES (11) 

Exhaustive Search Phase 
Step 6 Let W, (m. = O,1,2,  .....) h r  ;-1 series of ca.ndidates for the 26 secret key 

Step 7 For each W,,, , search for tmlie rema.ining 30 secret, key hits unt,il the correct, 
bits arranged in order of t.heir reliability. 

va.lue is found. 

Now we have t,o describe W',n explicitly by 1.4 aiid I B .  Since t,he most likely candi- 
da.te for the 26 key bits clearly corresponds t,o -0 and mo, we should c.onsider 
this combination at, first, which will be referred to as Wo = (KAo,I<B&rlizec- 
ond likely candidates are obviously W1 = ([<Ao. 12B1) arid 6V2 = ( K A l ,  KRo) 
with the same reliability. Then, are the next, likely ones W3 = ( I<Ao,KBz)  and 
W, = ( K A . L , K ' B ~ ) ,  or 14'3 = (A'Al ,  I<B1) ' I  How rmny candidates arc needed 
to finish Step 7 in reasonable t,iine '! I11 the riexl chapter we will give a practical 
solution of these problems. 

_ _ _ _  
_ _ -  

- -  
_ _ -  _ _ -  

4 Success Rate and Complexity 

We relate the problems t o  DES reduced to 8 rounds, which will be referred l o  

as "8-round DES" below Now consider the following two equations of $-round 
DES derived from the best 6-round cxpression which holds with probability 
1/2 - 1 9 5  x '2-9 

PH[7,18,24] Gj FI(PL,K1)[7, 18,241 t~ C,q[15] Gj C L [ ~ ,  18,24,29] CF 

Ek(CL, &)[I51 = 1<3[22] r p  1\(*[31-] @ 1 < 5 [ 2 2 ]  CJI I<,[22], (6 )  
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C ' H [ i ,  18,241 tb Fs(C7~, 1<8)[7, 18,241 if+ 1-'~[[15] C€ 1';.[7, 18,24,29] 6F 
J'i(PT,, Z<1)[15] = I<6[223 @ 11'5[44] 6 11'4[22] % l i 2 [ 2 2 ]  ( 7 )  

Note that the left side of each equation 15 esseritidly the same as equation (4) 
or ( 5 ) ,  respectively We make use of this fact to evaluate the efficiency of our 
attack The followirig lemma, which IS c i ~ i  extension of lemma 4 in [2], relates the 
full 16-round DES to 8-round DES 

Lemnial. Le t  N be the n u m b e r  of yzven random plaintexts and p be the prob- 
ability t h a t  t he  followzng equat ion holds: 

P[il. i 2 ,  . . . l  ia] C,'[jl, j2, ...) jt,] cfi F'l( P, I<~)[u~,zL~, ... ud] G )  

F,,(C, K n ) [ ~ ) i , ' t ) z !  .... ?lC,] = A ' [ k l ,  ka ,  . . . ,  k c ] .  (8) 

Assriming Ip- 1/21 25 suf icaent ly  sinall, t h e  probabzlity th,at t he  1-th, likely ~ o l u t i o n  
of equation (8 )  agrecs wilh t h e  i-eal key depen .ds  on 1, ' u ~ , u L , ,  . . . ~  ? i d ,  ? ) I ; u ~ ,  ...,' c,, 
and f l i p  - 1/21 only. 

This lemnia tells 11s tha t  the succ,ess ra.te of our attack on R-round DES with !Vs 
plaintexts is the saint: as thi i t  on l6-round DES with A'IE plaintexts as long a,s 
t,he following relation holds: 

' lh i s  is equivalent to 
1.49 x 2-  x AT16 = iV8, (1U)  

and hence 243 plaintexts on 16-round DES, for instance, correspond to 1.49 x 217 
plaintexts on 8-round DES. 

Note: According to the coninion definition of 8-round DES, which adopts eight' 
F-funct,ions from the first to t,lw eight,h round of 16-round DES, cquat,ions (6) 
and ( 7 )  yield only 23 secret key bits heca,usc three of 26 bits are duplicated. 
To avoid this difference from t,he case of 16-round UES, this paper treats the 
&round DES whose key schedule part is modified so tha t  no secret key hit is 
duplicated. Our coiiipiiter expcrinienbs on 8-roirnd DEY bclow were carried out' 
under this condition. 

We made cornput,er experinient,s iri solving equation (6) 100,000 times tmo 
estimate t<he behavior of solut,ioris of equation (4 ) .  Figure 2 illustrates t,he result,s 
int,crpreted as the  case of 16-round DES, where t,lie ordinate (y  axis) shows the 
probability t,hat the rarikirig of a solution of equation (4) is not, greater than t.he 
value of the abscissa ( ;P axis); for example, when we solve equation (4) with .L4" 
known plaiiit,exts, thc probahilit,y t,hat the sccret, key agr with one of K A I , ~  
(0 5 1~ < 100) is expected t,o be 86%. T h o  lowest, curve represents t,he case 
where wc select) a key candidak  randomly: namely. y = 2/213. 
Figure 3 sninmariaes our at,t,aclt on t,he full l(j-round DES, whcre the reliabi1it.g 
of W,,, = (I<Ai,2i, has been detmmiincd iii order of t,he magnitude of 

-__ 
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(1.44-3) x ( I ~ + l ) \  which is ttie formula derived esperiitient,ally from t,lic CBS(' of t,hr 
8-round DES. The abscissa and ordinate clenotr t,he conipui,at,ional complexity 
a.nd the success probabilit,y, iwpectmively. This figiire klls us t,hat, wlieri we at lack 
the full 16-round DES wit.h 2''''3 plaint,est,s. t.lip proha.hilit,y t,hat t,he secret key 
can he  found within m = 213 (i.e. complexity 2'' x 213 = P'), is expt>ct,cd t>o h c  
85%. For a.not,her example, thc S U C C ~ S S  probahilit,y is expected to he. 10% wil,li 
complexity 2'" if 238 know11 pla.intext,s arc  a.vailable. 'Lhe lowcst, curve r ep~es (~J1k  
the  t'rivial case whcre we searrh for thc 56 secret, key bit,s cxhaust,ively: g = 2s-s'i. 

5 The Computer Experiment 

We ma.de the first comput.er expt.rirri~iit, iii I)rea.king the. full 16-round DES on 
the hasis of the  above scenario. The prograrii, iniplernent,ed by software oidy, 
was described in C and assembly languages cousist.ing of a t o h l  of 1000 lines. I1 
occupies lMbyte  in runiiing. The main Bow of the program is as follows (we use 
C-like n o t a h n s ) :  

f o r (  i=O; i<243; i+t ) {  /* p a r a l l e l i z a b l e  */ 
P = Generate-Random-Plaintext ( )  ; 
C = Encipher-Plaintext(  P ) ;  /* using the  sec re t  key K */ 

T A [  i3bit-address-pointed-by-P-and-C I++; /* Step 2 */ 
T B [  13bit-address-pointed-by-P-and C I++; /* Step 2 */ 

1 
for( k=O; k<2l'; k++ ) {  /* each value on e f f ec t ive  key b i t s  */ 
f o r (  t=O; t<213; t tt  ) {  /* each value on e f f ec t ive  t e x t  b i t s  * /  

i f (  Left-Side-of-Equation-4( t ,  k ) == 0 
f<R[ k 1 += T,4[ t I ;  /*  Step 4 */ 

i f (  Left-Side-of-Equation-5( t ,  k ) == 0 ) 
I<B[ k 3 t= TD[ t 1 ; /* Step 4 */ 

} 
1 

__ 
RearrangeXounters( I i A ,  KA4 - 1 ;  /* Step 5 */ 
RearrangeXounters( I<B, f<B 1; /* Step 5 */ 

f o r (  m=O; m<2'4; m++ ) {  /* p a r a l l e l i z a b l e  */ 
_ _ -  

K26 = Derivem-th-Likely-26bi ts(  m, fi-4, f<l? 1; /* Step 6 */ 
Return-Value = Search-Remaining-30bits( K26 ) ;  /* Step 7 */  
if( Return-Value == FOUND ) e x i t (  SUCCESS > ;  

1 
e x i t (  FAILURE ) ;  /* t heo re t i ca l ly  possible  

but p r a c t i c a l l y  unreachable */ 
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We used a sequence {g0,g',g2,g3! mu- 
t,inc, where y is a generat.or of cyclic group G'F'(2b4)x, which is convenient, for 
our  purpose, parallel coniput4ing. Encipher-Plaintext ( )  is a routine for en- 
ciphering p1aintext)s under a fixed key? which runs at, t3he r a k  of 19Mvlbit</sec. 
on t,he other hand, Search-Remaining-30bits ( )  is also an enciphering row 
tsirie but encodes a fised plaintext under given keys, which runs at the rat.e of 
HMbitB/sec.. Rearrange-Counterso is a sorting routine for a 212-diiiiensionaI ar- 
ray. Derivern-th-Likely-26bits ( )  ca.11 be also easily implemented using the 
( l ~  + 1) x ( I B  + I )  rule.. 

Calculations of bot8h t.lie first and last, loops were carried out in parallel by 
12 conipiit,rrs. I t  took 40 days t o  finish the first loop, where almost all t>irne 
wa.s spent, for Encipher-Plaintext (1 routine:. The  middle loop and the sortsing 
routiiie were easily cxecuted. 'I'lie last loop t.ook 10 days and finally resuked in 
all of h e  56 secret, kry bits. 

1 for Generat e-Random-Plaint ext ( 

6 Concluding Remarks 

We have drscrihed a n  iniyroveiiieiit. of linear crypt,analysis and presented t8he 
first si~cccssful experinlent, in brraking t,he full 1G-round DES. Thc topics below 
are remarks and possible fur ther  iniprovements. 

- 'l'lie aut$lior does not, know whethrr Step 1 N Step 5 give the hest way for 
solving equat8ions ( 4 )  and (5) .  I t  should be riot.rd that we have not nmde 
use of all informat,ion a.vailable froiii t hese equations: t o  be c o n c r e k ,  when 
we substitute I<;(# K l )  and Iii6(# I<],;) for I<l and Iil,j in t,he left sidc 
of equaation (4 ) ,  t,he probahilit,y that, t,he equation holds depends on only 
I<,  65)  1i.i and / < 1 6  + 1ii6. This €act ohvioiisly indica.tes more than wha.k 
wc have realized in t,his paper. 'lherefore if t,his propertmy could b e  used 
effecl.ively, t.he reliability o f  the solution might be improved. 

~ In t,his paper,  we have salved t,wo equat,ions to obtain 26 key bits and t.hen 
searchcd for t,lie remaining 30 key hit,s. However, it  is also possible to solve 
more equations to have Inore key bits before the search procedure (Steps 6 
and 7). For esaiiiple, there are two second bcst, cxpressions tha t  hold with 
probabilit,y 112 - 1.49 x 2-" , Alt.lioiigh t,lic reliability of these solutions 
is lower, this loss might. bc recoverable by repeating the, search procedure, 
bccause t,hr :iuniher. of t,he renlainirig key bits is h i i  sinaller. 

~~ 'The resiilt,s on figure i! and figure 3 have been derived experimentally. Jf 
we succeed in t,raciiig curves in figiire 2 with sirriple funct.ions, figure 3 can 
tw also forriialized and t.hcn a new conihiiiation rule will give more effective 
results instead uf t.he ( I A  + I )  x (Iu + I )  rule. 

More dehilcd discussion including experimental da.t,a, which we have ornil.ted 
due t,o lack of space, will appear i n  t ,hc full  papc:r. 
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