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Abstract. This paper describes an improved version of linear crypt-
analysis and its application to the first successful computer experiment
in breaking the full 16-round DES. The scenario is a known-plaintext
attack based on two new linear approximate equations, each of which
provides candidates for 13 secret key bits with negligible memory. More-
over, reliability of the key candidates is taken into consideration, which
increases the success rate. As a result, the full 16-round DES is breakable
with high success probability if 2** random plaintexts and their cipher-
texts are available. The anthor carried out the first experimental attack
using twelve computers to confirm this: he finally reached all of the 56
secret key bits in fifty days, out of which forty days were spent for gen-
erating plaintexts and their ciphertexts and only ten days were spent for
the actual key search.

1 Introduction

In the first paper on linear cryptanalysis [2], we introduced a new measure of
linearity of S-boxes and extended it to the entire cipher structure of DES. The
resultant linear approximate equations are effectively applicable to a known-
plaintext attack, which proved that DES is breakable with negligible memory
if 247 random plaintexts and their ciphertexts are available. This is the first
known-plaintext attack faster than an exhaustive key search, though the origin
of linear cryptanalysis can be seen in several papers [4][5][6][7].

This paper studies an improved version of linear cryptanalysis and its appli-
cation to the first successful computer experiment in breaking the full 16-round
DES. We newly introduce two viewpoints; linear approximate equations based
on the best (n—-2)-round expression, and reliability of the key candidates derived
from these equations. The former reduces the number of required plaintexts,
whereas the latter increases the success rate of our attack.

In the 2%7-method, we established two linear approximate equations of 16-
round DES using the best Ib-round expression, where each equation includes
one active S-box and hence recovers 7 secret key bits. This paper, however,
begins with two new linear approximate equations derived from the best 14-
round expression, where each equation has two active S-boxes and can recover
13 secret key bits. 'These equations give us, therefore, a total of 26 secret key
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bits, and then the remaining 56 — 26 = 30 secret key bits are within the reach
of an exhaustive search.

Moreover, we treat not only one solution of each equation but also “can-
didates” for the 13 secret key bits, where each candidate has its ranking of
reliability such that the i-th rank represents the i-th likely solution. The aim of
this approach is to give a table that relates ranking of the 26 secret key bits to
that of the 13 secret key bits. This table increases the success rate of our attack
at the cost of computational complexity; that is to say, if the most likely 26 key
bits turn out to be wrong, we can adopt the second likely 26 key bits and search
for the remaining 30 key bits again. If they are not correct either, we can try
the third likely 26 key bits.

We also prove that the cffectiveness of this method can be measured by
DES reduced to 8 rounds. This fact enables us to experimentally determine
the relationship among the number of required plaintexts, the complexity and
the success rate of our attack. As a result, DES is breakable with complexity 948
and success rate 85% if 2*% known-plaintexts are available. For another example,
success rate is 10% with complexity 2% if 2% known-plaintexts are available.

We carried out the first experimental attack of the full 16-round DES using
twelve computers (HP9735/PA-RISC 99MH#z) to confirm this scenario. The pro-
gram, described in C and assembly languages consisting of a total of 1000 lines,
was designed to solve two equations while generating 243 random plaintexts and
enciphering them. We finally reached all of the 56 secret key bits in fifty days,
out of which forty days were spent for generating plaintexts and their ciphertexts
and only ten days were spent for the actual key search.

2 Preliminaries

We follow the notations introduced in [2]. Since our scope is a known-plaintext
attack using random plaintexts, we omit the initial permutation [P, the final
permutation /P~! and PC-1. The right most bit of each symbol is referred as
the 0-th (lowest) bit, whereas the traditional rule defines the left most bit as the
first. bit [1]. The following are used throughout this paper;

r The 64-bit data after the IP; the plaintext.

C The 64-bit data before the IP~1; the ciphertext.

Py, Pr 'The upper and the lower 32-bit data of P, respectively.
Cy,CL The upper and the lower 32-bit data of €, respectively.
K The h6-bit data after the PC-1; the secret key.

K, The r-th round 48-bit subkey.

Fo(X,, Ky The r-th round F-function.

Al The i-th bit of A, where 4 is any binary vector.

Ald, g, ... k] Alf] & Al & .. & Afk]



3 Principle of the New Attack

The first purpose of linear cryptanalysis is to find the following linear approxi-
mate expression which holds with probability p # 1/2 for randomly given plain-
text P, the corresponding ciphertext (' and the fixed secret key K :

P[/I.‘lsi?a "7ia] % C"[jle'.’! "1jb] = ]\V[kl,k% "1k1‘]\ (])

where ¢1,129, ..,%q, 71, J2, -, 76 and ky, ko, .., k. denote fixed bit locations.

Since both sides of equation (1) essentially represent one-bit information,
the magnitude of |p — 1/2| expresses the effectiveness. We will refer to the most
effective linear approximate expression (i.e. |p— 1/2| is maximal ) as the best ex-
pression and its probability as the best probability, respectively. We have found
the best expression and the best probability of DES, whosc results arc summa-
rized in [2] for the number of rounds varying from n = 3 to n = 20. A practical
algorithm for deriving these values is described in [3].

In the 2*"-method, we established two equations of 16-round DES using the
best 15-round expression, which holds with probability 1/2+1.19 x 2722 {2]. Our
new attack, however, starts with the following two best 14-round expressions,
which hold with probability 1/2 — 1.19 x 272}

Py[7,18,24)  Cy[7,18,24,29] & ;1 [15]
= Ks[22] @ Ka[44] & K4[22) & K5[22] & K7[44] & Ks[22] @ K10[22) &
Kui[44] @ A12(22] B K,4(22], (2)

CL7,18,24) & Py [7,18,24,29] & PL[15]
= [(13[22] & 1{12[44] & K11[22] & [\-9[221 o) 1\3[44] & K"y[??.] D 1{5[22] 45,
K4[44] & K3[22) & K1[22], (3)
where P, C' and K denote the plaintext, the ciphertext and the secret key of
DES reduced to 14 rounds, respectively.

Then applying equations (2) and (3) to fourteen consecutive F-functions from
the 2nd round to the 15th round of 18-round DES, we have the following two
equations that hold with probability 1/2—1.19 x 2=2! for random plaintexts and
their ciphertexts (figure 1 illustrates the detailed construction of equation (4)):

Pyl7,18,24) @ Fy(Pp, K1)[7,18, 24] @ C[15] ® C1[7, 18,24, 29]
Fi6(Cr, K16)[15]

= K3[22) @ K4[44] @ K5[22] & K,(22] & Ks[44] @ Ko[22] & K1, [22] &
K1a[44] & K13[22) & K15[22), (4)

CylT,18,24] ® Fi4(Cr, K16)[7, 18,24 @ Pr[15] @ P [7,18, 24, 29]
Fy(Pp, K1)[15)

= K14[22] & K13[44] ® K 12(22] @ K10[22] & Kol44] & Ks[22] ® Ko[22] &
K5[44) ® K4[22] & K2[22]. (5)
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Fig. 1. New linear approximation of 16-round DES,

The first stage of our attack is to solve these equations to derive some of the
56 secrel key bits. Now let us consider how much memory is required to solve
them and how many secret key bits can be derived from them. For this purpose,
we here define “effective text bits”™ and “effective key bils” of equation (4) or
(5) as the text bits and the key bits which affect the left side of each equation,
respectively. If an XORed value of several text/key bits affects the left side, we
count as one effective text/key bit. Then the following can be easily seen:



— The effective text bits of equation (4) (13 bits):
P11, Pri12], Pr{13], Pr14), Pp{15], PL{16], Cr{0], CL[27), CpL[28),
Cr[29],CL[30],CL[31), Py[7,18,24) @ Cy [15) & O[T, 18,24, 29].
— The effective key bits of equation (4) (12 bits):
K4 [18], K {19], K,[20], A [21], K [22], A1 [23],
Kyg [42], ,Kl(;[43], Kqg [44], Kig [45], Ky [46], Kig [47].

- Fhe cffective text bits of equatlon (5) (13 lnts)
Jp [, Cp (L ],C (13}, C1.{14], C1[15], CL{16], PL[0], P[27], Pr[28],
P[ [29), P[30), P2[31], 'H[( 18, 24] & P [15) @ Pr|T, 18,24, 29].
— The effective key bits of equation (5) (12 bits):
[\15[18],[&16[ 9},]&1@[20],[\1(;[21],1\1@[22],[{16[23],
K1[42), K[43, K1[44], K1 [45], K1 [46], K, [47].

Note that Py (7,18, 24] & Cy[15) i C'L[7,18,24,29] and Cy(7,18,24] & Pg[15]) &
Pr{7,18,24,29] represent one-hit information. This observation shows that 13
secret key bits — 12 effective key bits and one bit of the right side — can be
derived from each equation using just 13 text bits. We hence obtain a total of 26
secret key bits — they are not duplicated  from equations (4) and (5) using
information on 26 text bits.

Let us next consider how to solve these equations. If one substitutes an
incorrect key value for K or Kyg in equation (4) or (5), the probability that the
left side equals zero is expected to be closer to 1/2 (not necessarily 1/2). This
leads us to maximum likelihood method in regard to key candidates; for each
key candidate, we count the number of times that the left side of the equation
equals zero. Then, the resultant counter value must reflect the reliability of the
corresponding key candidate. We have implemented this scenarto as follows:

Algorithm for breaking 16-round DES (1)

Data Counting Phase

Step 1 Prepare 2'3 counters T4, (0 <t4 < 2'%) and initialize them by zeros,
where {4 corresponds to each value on 13 effective text bits of equation (4).

Step 2 For cach plaintext P and the corresponding ciphertext C', compute the
value ‘44" of Step 1, and count up the 7'4;, by one.

Key Counting Phase
Step 3 Prepare 2'% counters ¥ Ay, (0 < k4 < 2'?) and initialize them by zeros,
where k4 corresponds to each value on 12 eflective key bits of equation (4).
Step 4 For each k4 of Step 3, let K Ag, be the sum of T'A;,’s such that the
left side of equation (1), whose valuc can be uniquely determined by ¢ 4 and
ka4, 1s equal to zero.
Step 5 Rearrange K Ap, m order of magnitude of |A'A;, — N/2| and rename
them K A;, (0< {4 < 2'?). Then, for each 4,
I (KA, — N/2) <0, guess that the right side of equation (4) is 0.
It (H,A — N/2) > 0, guess that the right side of equation (4) is 1.




At this stage, the key candidate corresponding to H,A represents the [4-th
likely 13 secret key bits. The total size of required counters is 2' 4 212, and the
computational complexity, which depends on Step 2 only, is O(N). Note that
Step 2 is parallelizable.

Equation (5) can be also solved in the same manner, in which case we will use
the notations T'By,, KN By, and sz instead of T'4,,, K Ay, and H;A. Our
algorithm recovers, therefore, a total of 26 secret key bits, whose bit locations
(after the PC—1) are as follows:

K0}, K[1], K[3], K'[4], K (8], K[9], K[14], K[15], K'[18], K[19], K[24], K [25], K[31],
K[32), K[38), K[39], K[41], K[42], K[44], K'[45], K[50], K[51], A [54], K [55],

K5l K[13]& K[17] b K[20] & K[46],

K2} e K{7) ¢ K1) 4 K[22) ¢ K[26] & K[37] O K[52].

The next stage of our attack is to derive the remaining 56 — 26 = 30 secret key
bits. Qur aim is to increase the success rate by repeating the search in order of
reliability of 26 secret key bits. In other words, we want to make the following
algorithin work effectively:

Algorithm for breaking 16-round DES (II)

Exhaustive Search Phase

Step 6 Let W, (m =10,1,2,.....) be a series of candidates for the 26 secret key
bits arranged in order of their reliability.

Step 7 Forcach W, search for the remaining 30 secret key bits until the correct
value 1s found.

Now we have to describe W,,, explicitly by {4 and {g. Since the most likely candi-
date for the 26 key bits clearly correspands to K Ag and K By, we should consider
this combination at first, which will be referred to as Wy = (ﬂg ,ﬁo_);’l“lle_s_gc—
ond likely candidates are obviously W, = (K Ay, KB,) and Wy = (KA, K Bo)
with the same reliability. Then, are the next likely ones Wy = (TFZU,YFB’Z) and
Wy = (Hz,ﬁo), or Wiy = ("IZ'?L,T&Z) ? How many candidates are needed
to finish Step 7 in reasonable time 7 In the next chapter we will give a practical
solution of these problems.

4 Success Rate and Complexity

We relate the problems to DES reduced to 8 rounds, which will be referred to
as “8-round DES” below. Now consider the following two equations of 8-round

DES derived from the best 6-round expression which holds with probability
1/2 = 1.95 x 279

Py[7,18,24) & Fy(Pr, K1)[7,18.24] & Cy[15] @ C1[7, 18,24, 29]
Fo(Cp, Ks)[15] = K3[22) @ K, [44] & Ks[22] & K7[22), (6)



Crl7,18,24) & Fs(CL, Ks)[7, 18, 24] & Py[15] & PL[7, 18, 24, 29] &
Fi(Pp, K1)[15] = Ks[22) & K5[44] & K4[22] & K, [22). (7)

Note that the left side of each equation is essentially the same as equation (4)
or (5), respectively. We make use of this fact to evaluate the efficiency of our
altack. The following lemma, which is an extension of lemma 4 in [2], relates the
full 16-round DES to 8-round DES:

Lemmal. Let N be the number of given random plaintexts and p be the prob-
ability that the following equation holds:

P[h* ti CER! la] “B C"[jlvj'b ~":jb] (:E Fvl(Pa ]\71)[11‘1)“’2) ey 'U,d] G)
Fn(c'vw Arn)[”l;”?: T’e] = [{[klyk'E» --'vkc]- (8)

Assuming |p—1/2| s sufficiently sinall, the probability that the I-th likely solution
of equation (8) agrees with the real key depends on 1, uy,us, ..., ug, v1,v2,..., Ve,

and /Np — 1/2| only.

This lemma tells us that the success rate of our attack on 8-round DES with Ng

plaintexts is the sane as that on 16-round DES with ¢ plaintexts as long as
the following relation holds:

\/N8|1.95 X 2_91 =V ]\715]1‘19 X 2_21|. (9)

'This is equivalent to
1.49 x 272 x Nig = Ng, (10)

and hence 243 plaintexts on 16-round DES, for instance, correspond to 1.49 x 217
plaintexts on 8-round DES.

Note: According to the common definition of & round DES, which adopts eight
F-functions from the first to the eighth round of 16-round DES, equations (6)
and (7) yield only 23 secret key bits because three of 26 bits are duplicated.
To avoid this difference from the case of 16-round DES, this paper treats the
8-round DES whose key schedule part is modified so that no secret key bit is
duplicated. Our computer experiments on 8-round DES below were carried out
under this condition.

We made computer experiments in solving equation (6) 100,000 times to
estimate the behavior of solutions of equation (4). Figure 2 illustrates the results
interpreted as the case of 16-round DES, where the ordinate (y axis) shows the
probability that the rauking of a solution of equation (4) is not greater than the
value of the abscissa (z axis); for example, when we solve equation (4) with 2%
known plaintexts, the probability that the sccret key agrees with one of 7(71',‘4
(0 < 14 < 100) is expected to be 86%. The lowest curve represents the case
where we select a key candidate randomly: namely, y = 2/2!3.

Figure 3 summarizes our attack on the full 16-round DES, where the reliability
of Wy, = (KNA;,,KBiy) has been determined in order of the magnitude of
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(la+1)x(Ig+1), which is the formula derived experimentally from the case of the
8-round DES. The abscissa and ordinate denote the computational complexity
and the success probability, respectively. This figure tells us that when we attack
the full 16-round DES with 273 plaintexts, the probability that the secret key
can be found within m = 213 (i.e. complexity 2% x 213 = 213) is expected to be
85%. For another example, the success probability is expected to be 10% with
complexity 2°0 if 23% known plaintexts arc available. The lowest curve represents
the trivial case where we search for the 56 secret key bits exhaustively: y = 27755,

5 The Computer Experiment

We made the first computer experiment in breaking the full 16-round DES on
the basis of the above scenario. The program, implemented by software only,
was described in C and assembly languages consisting of a total of 1000 lines. It
occupies 1Mbyte in running. The main flow of the program is as follows (we use
C-like notations):

for( i=0; 1<2**; i++ ){ /* parallelizable */

P = Generate.Random_Plaintext();
C = Encipher_Plaintext( P ); /¥ using the secret key K */

TAl 13bit_address_pointed by P.and-C 1++; /% Step 2 */
TB[ 13bit_address_pointed_ by P_and.C ]++; /* Step 2 */

}

for( k=0; k<2!?; k++ ){ /* each value on effective key bits */
for( t=0; t<2'3; t+4+ }{ /* each value on effective text bits */

if( Left_Side_of Equation 4( t, k ) == 0 )
KAL k1 += TAL t 1; /* Step 4 */
if( Left_Side.of Equation. 5( t, k ) == 0 )
KBl x 1 +=TBL t 1; /* Step 4 */
}
}

Rearrange.Counters( KA, KA ); /* Step 5 */
Rearrange Counters( KB, KB ); /* Step 5 */

for( m=0; m<2?%; m++ ){ /* parallelizable */

K26 = Derivem_ th Likely 26bits( m, KA, KB ); /* Step 6 */
Return Value = Search_ Remaining 30bits( K26 ); /* Step 7 */
if{ Return_Value == FOUND ) exit( SUCCESS );

}

exit( FAILURE ); /* theoretically possible
but practically unreachable */
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We used a sequence {¢",¢',9%,¢° ....} for Generate Random Plaintext() rou-
tine, where g is a generator of cyclic group GF(2%%)*, which is convenient for
our purpose, parallel computing. Encipher Plaintext() is a routine for en-
ciphering plaintexts under a fixed key, which runs at the rate of 19Mbit/sec.
On the other hand, Search_Remaining 30bits() is also an enciphering rou-
tine but encodes a fixed plaintext under given keys, which runs at the rate of
9Mbit /sec. Rearrange.Counters() is a sorting routine for a 2!*-dimensional ar-
ray. Derivem th Likely 26bits() can be also easily implemented using the
(la+1) x {{g + 1) rule.

Calculations of both the first and last loops were carried out in parallel by
12 computers. It took 40 days to finish the first loop, where almost all time
was spent for Encipher.Plaintext() routine. The middle loop and the sorting
routine were easily executed. The last loop took 10 days and finally resulted in
all of the h6 secret key bits.

6 Concluding Remarks

We have described an improvement of linear cryptanalysis and presented the
first successful experiment in breaking the full 16-round DES. The topics below
are remarks and possible further improvements.

= 'The author does not know whether Step 1 ~ Step 5 give the best way for
solving equations (4) and {5). It should be noted that we have not made
use of all information available from these equations: to be concrete, when
we substitute A(# A1) and K{z(# Kyg) for A} and Ryg in the left side
of equation (4), the probability that the equation holds depends on only
Ky ¢ K| and KWis b Kig. This fact obviously indicates more than what
we have realized in this paper. Therefore if this property could be used
effectively, the reliability of the solution might be improved.

— In this paper, we have solved two equations to obtain 26 key bits and then
searched for the remaining 30 key bits. However, it is also possible to solve
more equations to have more key bits before the search procedure (Steps 6
and 7). For example, there are two second best expressions that hold with
probability 1/2 — 1.49 x 272}, Although the reliability of these solutions
15 lower, this loss might be recoverable by repeating the search procedure,
because the number of the remaining key bits is then smaller.

— The results on figure 2 and figure 3 have been derived experimentally. If
we succeed in tracing curves in figure 2 with simple functions, figure 3 can
be also formalized and then a new combination rule will give more effective
results instead of the ({4 + 1) x (Ip + 1) rule.

More detailed discussion including experimental data, which we have omitted
due to lack of space, will appear in the full paper.
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