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Abstract. It is often the case in applications of cryptographic protocols 
that one partv would like to determine a practical upper-bound on the 
physical distance to the other party. For instance, when a person con- 
ducts a cryptographic identification protocol at an entrance to a building, 
the access control computer in the building would like to be ensured that 
the person giving the responses is no more than a few meters away. 
The “distance bounding” technique we introduce solves this problem by 
timing the delay between sending out a challenge bit and receiving back 
the corresponding response bit. It can be integrated into common iden- 
tification protocols. The technique can also be applied in the three-party 
setting of “wallets with observers” in such a way that the intermediary 
partv can prevent the other two from exchanging information, or even 
developing common coinflips. 

1 Introduction 

A prover convincing a verifier of some assertion is a frequently recurring element 
in many applications of cryptography. One potentially useful such assertion is 
that the  prover is within a certain distance. It seems tha t  this problem has not 
been specifically adressed, let alone solved in the  literature. We introduce a tech- 
nique called “distance bounding” that enables the verifying party to determine 
a practical upper-bound on the  physical distance to a proving party. 

In the  literature, so-called “mafia frauds” have been adressed in which a party 
identifies himself to a verifying party using the  identity of a third party, without 
that  third party being aware of it. With our distance-bounding technique we can 
prevent these frauds as a special case. 

Our  distance-bounding protocols can be integrated with known public-key 
identification schemes, such tha t  the verifier cannot obtain information tha t  he 
could not have computed himself. 

In the recently proposed setting of “wallets with observers,” distance bound- 
ing can be incorporated in such a way tha t  the verifying party can determine 
a practical upper-bound to  the observer, whereas the  intermediary party can 
prevent the  other two parties from exchanging or developing information which 
can be used to compromise privacy. 

This paper is organized as follows: In Section 2 we introduce the distance- 
bounding principle. We introduce our solution in parts and  then unify them. 
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In Section 3, we describe how distance bounding can be integrated into known 
public key identification schemes. In Section 4. we describe a problem in the 
setting of wallets with observers. We then show how to use the distance-bounding 
technique to solve it. .4 final section ends this paper with some open problems. 

2 Distance- bounding protocols 

In this section, we first present the basic distance-bounding principle. \Ye then 
discuss mafia frauds and previously proposed countermeasures. lye show how 
distance bounding can be used to prevent these frauds. We go on to show how 
distance bounding can prevent frauds in which a party having access to the secret 
keys convinces a verifying party that he is within a certain distance whereas he 
is not. Both protocols are then merged into one protocol that prevents both 
at tacks. 

2.1 The distance-bounding principle 

The essential element of a distance-bounding protocol is quite simple. It consists 
of a single-bit challenge and rapid single-bit response. In practice. a series of these 
rapid bit exchanges is used, the number being indicated by a security parameter 
k. Each bit of the prover P is to be sent out immediately after receiving a 
bit from the verifier V .  The delay time for responses enables V to compute an 
upper-bound on the distance. 

What makes this approach really practical is that today’s electronics can 
easily handle timings of a few nanoseconds, and light can only travel about 30cm 
during one nanosecond. For instance, even the timing between two consecutive 
periods of a 50 Mghz clock allows light to travel only three meters and back. 
(Later on we introduce exclusive-or operations on the bits exchanged, but 10113 
chips have several such gates each with a throughput of two nanoseconds.) 

2.2 Mafia frauds 

A mafia fraud, first described in [9], is a real-time fraud that can be applied 
in zero-knowledge or minimum disclosure identification schemes bv fraudulent 
prover P and verifier t, cooperating together. It enables P to convince an honest 
verifier V of a statement related to the secret information of an honest prover 
P ,  without actually needing to know anything about this secret information. TO 
this end, when P is about to perform the protocol with v, the latter establishes. 
say, a radio link with P,  and will send any information transmitted to him by 
P straight on to P,  who in turn sends it on to V. The same strategy is applied 
by P, who sends information received from V on to p, who in turn sends it on 
to P. In effect, P and P act as a single transparent entity, sitting in the middle 
between P and V .  This enables 7 to identify himself to V as being P ,  without 
any of P and V noticing the fraud. 
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Fig. 1. A mafia fraud in the basic Fiat-Shamir identification scheme. 

In Figure 1, a mafia fraud is shown as it would be applied in the basic Fiat- 
Shamir identification scheme (see [12]). In order to enhance readability of the 
figures, we define the subscript i to run over the set { 1,. . . , k}, and computations 
are modulo n. In the most basic form of the Fiat-Shamir scheme P identifies 
himself to  V by proving knowledge of a square root X of X2 mod n, where 
X2 mod n in some way is related to P's identity or has been published in a 
trusted directory. As usual, n is the product of two distinct primes. 

In [9], Desmedt proposed a countermeasure to  mafia frauds which requires P 
to sign a message that contains his physical location on earth, and then prove 
to V knowledge of the signature. Usually in an identification scheme, P will be 
represented by some user-module, so it will be impracticable to implement this 
solution without requiring position detection or cooperation of the user. Also, it 
cannot guarantee that the verifier in the long run does not learn anything about 
the secret key of the prover. 

In [2], Beth and Desmedt propose that all transmission times be accurately 
measured. This seems to be useless owing to the significant possible variations 
in speed of computation. 

In [l], Bengio et a1 suggested that I, shield P's module from the outside world 
(e.g., in a Faraday cage) when the protocol takes place. This countermeasure 
requires trust by P that  V does not secretly modify his module in some way 
while shielded. One would rather like to identify oneself in such a way that the 
module remains visible (an infrared channel would be even better, the user- 
module never needing to leave the hands of the user). Futhermore, it requires 
special hardware equipment. 
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e bounding to prevent mafia frauds. 

2.3 Preventing mafia frauds using distance bounding 

Consider how the distance-bounding principle can be used to  prevent mafia 
frauds. We can assume that the distance between P and the fraudulent parties 
is not less than the accuracy that can be achieved with the apparatus being 
used, since otherwise obvious countermeasures can be taken. To ensure that 
the distance between V and the party P having access to the secret keys is 
measured, after the rapid bit exchanges have taken place the message formed by 
concatenating all the 2k bits sent back and forth in the distance-bounding stage 
is signed by P, using his secret key (see Figure 2): 

Step 1 V generates uniformly at  random k bits ail and P generates uniformly 

Step 2 Now the low-level distance-bounding exchanges can take place. The fol- 
at  random k bits pi. (Note: this can take place well beforehand.) 

lowing two steps are repeated k times, for i = 1,. . . , k. 
- V sends bit a, to P. 
- P sends bit pi to V immediately after he  receives a,. 

Step 3 P concatenates the 2k bits cq and pi, signs the resulting message m 
with his secret key, and sends the signature to V .  We denote concatenation 
by the symbo1"l." 

Now I, can determine an upper-bound on the distance to P using the maximum 
of the delay times between sending out bit cyi and receiving bit pi back, for 
i = 1 , .  . . , k. V accepts if and only if P is close by, and the received signature is 
a correct signature of P on m = a1 l p l l . .  . \ a k l P k .  

Proposition 1. If the signature scheme is secure and P is  not close by  to V ,  
then a mafia fraud has probability of success at most 112'. 



That is. the probability of successful cheating decreases exponentially in the 
number of repetitions of the rapid bit exchange. The simple proof of this propo- 
sition is very similar to the proof of Proposition 3 in the next section. 

2.4 

In this subsection we study a setting in which P has access to the secret keys, 
and V wants to be ensured that P is close by. A remarkable thing about the 
distance bounding stage in the protocol of the previous subsection is that the 
bits that P sends to U do not have to depend on the bits that V sends to P .  If 
P knows at  what times V will send out bits: he can have V accept by sending 
out to V a t  the correct time before he receives ai, regardless of the distance to V .  
Hence. the protocol we described for preventing mafia frauds does not prevent 
this fraud. 

Two solutions suggest themselves. The first solution consists of V sending 
bits out with randomly chosen delay times. Since P cannot anticipate when V 
expects to have received back a bit. he cannot send out bits r3, before he has 
received bit ai (since V will not accept if a response bit 4, arrives before he 
h a s  sent out bit a,). In fact. it is sufficient if V sends out bit a; at random at 
one of two discrete times, say: at  the rising edge of clock pulse 3i or 32 + 1, for 
1 5 2 5 k. The probability of the strategy having success is at  most 1/2k if the 
choices are made independently. 

The second solution consists of ensuring V that P must choose bits 0, de- 
pending on ai. One way to do this involves creating a public bitstring ml I . . . (nu 
once (the choice of the bits mi is irrelevant). The following protocol implements 
this (see Figure 3): 

Step 1 V generates uniformly at  random k bits ai. 
Step 2 Xow the low-level distance-bounding exchanges can take place. The fol- 

Preventing the prover from sending bits out too soon 

lowing steps are repeated k times, for i = 1,. . . , k .  
- V sends bit a; to 'P. 
- P sends bit 0i = a, $mi to V immediately after receiving bit ai from V .  

V verifies whether the bit-string (a1 5 & ) I .  .. I ( a h  % P k )  equals the public bit- 
string. If so. V computes an upper-bound on the distance to P using the max- 
imum of the delay times between sending out bit ai and receiving bit pi back, 
for i = 1 , .  . . , k. V accepts if and only if P is close by. 

As before, it is easy to see that the probability that V accepts when P is not 
close by is at most 1/2k. 

2.5 

By combining the two protocols. we can prevent both types of fraud. As before, 
i t  is assumed that a bit-string ml I . . . lrng is published. The following protocol 
can be used (see Figure 4): 

Step 1 V generates uniformly at  random k hits a t .  

Preventing both types of fraud 
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Fig. 3. Preventing the response bits from being sent out too soon 

Step 2 P generates uniformly a t  random k bits m,. As before. both P and V can 
do so well beforehand. P commits to k bits m, using a secure commitment 
scheme. 

Step 3 Now the low-level distance-bounding exchanges can take place. The fol- 
lowing steps are repeated k times. for i = 1.. . . . k. 
- V sends bit a, to 7’. 
- P sends bit 0, = 0, @ m, to V immediately after he receives a,. 

Step 4 P opens the commitment(s) on the bits J, by sending the appropriate 
information to V. P concatenates the 2k bits a, and 3,, signs the resulting 
message m with his secret key and sends the resulting signature to V .  

With the information received in Step 4. V verifies whether the bits a, t? d, are 
indeed those commited to in Step 2. If this holds. then V computes m in the 
same way as P did and verifies whether the signature he received is indeed a 
correct signature of P on m. If so. he computes an upper-bound on the distance 
to P using the maximum of the delay times, and accepts if and only if ?’ is close 
by. 

3 Integration with public key identification schemes 

The fact that  a secure signature scheme must be used in the protocols of Sub- 
section 2.3 and 2.5 can be a problem when the prover wishes only to identify 
himself by for example proving knowledge of a square root S of S’ mod n (m 
in the basic Fiat-Shamir identification scheme): it is not clear how he should sign 
the message by using his secret information S; also. since V receives information 
that he could not have computed himself. it is not clear whether he obtains use- 
ful information for computing the secret keys. In this section. we show how to 

integrate distance bounding with known public key identification schemes such 
that no useful information is transferred. 
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Fig. 4. Distance bounding to prevent both types of fraud 

3.1 Preventing mafia frauds 

To prevent mafia frauds, we have the distance-bounding protocol dictate that  P 
respond to challenges formed as the exclusive-or of the bits sent and received, 
instead of signing the concatenation. We illustrate this with the basic Fiat- 
Shamir scheme: 

Step 1 P generates uniformly a t  random k numbers R, E z:, and sends their 
squares R? mod n to V .  P also generates uniformly at random k bits pi and 
commits to these bits (and their order) by sending a commitment on them 
to v. 

Step 2 U generates uniformly a t  random k bits ai. 
Step 3 Sow the low-level distance-bounding exchanges can take place. Hereto, 

the following steps are repeated k times, for i = 1 , .  . , , k. 
- V sends bit a, to P. 
- P sends bit 0, to V immediately after he receives ai from V .  

Step 4 P opens the commitment on the bits pi made in Step 1 by sending the 
appropriate information to V .  Furthermore, P determines the k responses 
.Y'*Ri corresponding to challenges ci = ai @ P i ,  for 1 5 i 5 k, and sends 
them to V .  

V determines the L challenges c, in the same way as P did, and verifies that the k 
responses are correct. Then V verifies whether the opening of the commitments 
by P is correct. If this holds, V computes an upper-bound on the distance to P 
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Fig. 5.  Distance bounding in the Fiat-Shamir identification scheme. 

using the maximum of the delay times between sending ai and receiving pi, for 
i = 1,. . . , k. U accepts if and only if P is close by. 

Proposition 2. If the commitment scheme i s  secure, then this protocol is a proof 
of knowledge of a square root of Xz mod n that does not reveal any useful infor- 
mation for computing a root of X2 mod n. 

Sketch of proof. In effect, this protocol is the parallel version of the basic Fiat- 
Shamir identification protocol. In [I11 it is proven that this protocol reveals no 
useful information. 

Since the binary challenges are chosen mutually random, the verifier cannot 
choose them as the outcome of a collision-free hash-function of the information 
known to him before Step 2. That  is, the verifier does not receive information 
that he cannot compute himself. In particular, the transcript of an execution of 
the protocol cannot be used as a digital signature to convince others that the 
execution took place. 

Proposition 3. If the commitment scheme is secure, P is not close b y  to V and 
both follow the protocol, then the mafia fraud has probability of success at most 
1/2k. 

Sketch of proof. In order to have any chance at all of having V accept, the fraud- 
sters and v must perform the rapid bit exchange first entirely with V and 
then with P (or vice versa), otherwise V will not accept because the computed 
upper-bound on the distance will not be tight enough (see Figure 6). 

However, since a commitment was sent in Step 2, it is clear that  with prob- 
ability 1 - 1/2k the fraudsters cannot prevent P and U from ending up with 
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Fig. 6. Can P and apply a mafia fraud? 

at least one different challenge (i.e. Oi @ 6, # a, @ 7,). Therefore, a t  least one 
response of P is correct with respect to a challenge that is complementary to the 
challenge V expects a response to. Clearly, one cannot convert X'R to S'@' R 
without knowing X. 

Note that if at  least one of P and It generates the challenge bits according to a 
distribution other than the uniform one (i.e., does not follow the protocol), this 
only increases the probability of successful cheating for 7 and 5. 

Although we had the prover commit himself, it does not really matter whether 
the prover or the verifier commits. This holds for the protocol in the next section 
as well. 
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Fig. 7. Distance bounding in the Schnorr identification scheme. 

3.2 

In order to prevent both types of frauds, as in Subsection 2.5, one can straight- 
forwardly modify this protocol. To this end, in Step 1 P commits to k bits mi, 
and in Step 3 P will reply with response bits p, = a, @ mi. Finally, the re- 
sponses of P in Step 4 must be computed with respect to the multi-bit challenge 
C Y I I P ~ (  .. . l a k l p k  (using the concatenation of the xor-values does not prevent 
mafia frauds). This technique can be integrated in (minimum disclosure) identi- 
fication schemes with multi-bit challenges, such as [5, 14, 15, 171, retaining the 
same security level for P. Observe that the same propositions hold for this mod- 
ified protocol; the only distinction is that the challenge bits can be chosen as 
the outcome of a collision-free hashfunction, and hence the transcript can serve 
as a digital signature. 

Figure 7 shows how one might incorporate distance bounding into the Schnorr 
identification scheme. In this protocol, (p, q, g ,  h = g2 mod p) is the public key 
of P(as in [17]). 

Preventing both types of fraud 

4 Distance bounding in wallets with observers 

Up t o  now, we have considered distance-bounding protocols in a model with two 
legitimate parties. In this section, we will discuss distance bounding in a certain 
three-party setting. The goal of V is to  determine an upper-bound to P, and 
the task of the intermediary is to  prevent undesired flow of information between 
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P and V .  Our technique allows the  intermediary to prevent common coinflips 
between V and F ,  This can be thought of as a generalization of the L‘warden’s 
problem” (see [18]). 

Recently, transaction systems based on “wallets with observers” have been 
proposed (see [6 ] ) .  This setting can simultaneously offer privacy and security to 
an unprecedented extent. This is achieved by embedding within each user-module 
a tamper-resistant device called an observer. The observer is incorporated in a 
user-module in such a way that any message it sends to the outside world has to 
pass through the user-module. That is, the user-module acts as an intermediary 
party. The benefit of this setting is that one can design protocols such that 
the observer and the user-module both have to participate in order to have a 
verifier accept. In this way, a user cannot, say, double-spend the same coin in an 
electronic cash system since the observer will not participate a second time (see 

Often, it will be sufficient to  prevent outflow (any information going from the 
observer to  the verifier not specified by the protocol) and inflow (any information 
going from the verifier to the observer not specified by the protocol). Inflow and 
in particular outflow can be a serious threat to the privacy of the user. 

In [8] the privacy aspect of the  wallet with observer setting has been inves- 
tigated under an even more stringent requirement: even if an observer were to 
store all information it receives during the period it is embedded within a user- 
module, it still should be impossible (independent of computing resources) to 
link a payment to a user by examining afterwards the information inside the ob- 
server and all information gat hered by the verifying parties. This possibility is 
not excluded by preventing inflow and inflow, since for example a single random 
number known to both an observer and a shop would enable linking: the fact 
that the user-module took part in generating it (so that no information could 
be encoded within it, thus preventing both inflow and outflow) is irrelevant in 
this matter. That is, one must also prevent “common coinflips.” In [S], the term 
“shared information” is proposed, encompassing inflow , outflow, and common 
coinflips. The essential technique ( “divertability” ) needed to prevent shared in- 
formation in such a setting has been proposed earlier by Desmedt in [9], and 
was generalized in [IS]. Prevention of shared information in some instances can 
be viewed as a slight generalization of divertability, in that the keys have to be 
shared together with the intermediary in a suitable way. 

A fraud that can be applied in this three-party setting is one in which a user 
illegitimately uses an observer embedded within someone else’s wallet. A possible 
motivation for doing so is that typically observers will gather (part of) negative 
credentials which can prevent the user from doing transactions he would like to 
do (see e.g. (71). Also, another observer might have (part of) certain positive 
credentials the user would like to make use of. One can imagine a fraudulent 
organization specializing in lending, a t  a distance, observers with positive cre- 
dentials (or without certain negative ones) to users who are willing to pay for 
this. In effect, when the user wants to do a transaction for which he needs certain 
positive credentials, he could use a radio link with the fraudulent organization 

e.g. [31). 
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and lets an appropriate observer authorize the transaction. We will call this the 
“observer fraud.” 

4.1 Preventing the observer fraud 

Using our distance-bounding technique we show how the verifier in the three- 
party setting can determine an upper-bound on the distance to the observer, 
such that the user-module can prevent shared information. We only describe 
one protocol that meets the most stringent requirements: no shared information, 
no release of useful information for computing the secret key, and the verifier 
obtains no information that he could not have computed himself (transcripts 
cannot serve as proof that the protocol took place). For easy comparison with 
the distance-bounding protocol shown in Section 3, our discussion will be based 
on the three party version of the Fiat-Shamir protocol (see [9, 161). 

We need a new notion called a “xor-commitment scheme.” This is a com- 
mitment scheme which enables one to commit to the exclusive-or a @ p of two 
bits a and p, whereas one only knows a commitment on p but not itself. In 
addition, one should be able to open the xor-commit if and only if one knows 
how to open the commitment on p, and this opening information must leak no 
Shannon information on the bits a and p, and the random choices involved in 
the commitment on p. 

An implementation of an xor-commitment scheme can be realized with RSA, 
based on the technique of probabilistic encryption (see [13]). Let n be a Blum 
integer. In order to encrypt a bit a, the commiter chooses T E z i  at random 
and computes commit(a) := ( - 1 ) ” ~ ~  mod n. According to the quadratic resid- 
uocity assumption (see [13]), it is infeasible to decide whether commit(a) is 
a quadratic residue or not (i.e., whether Q = 1 or 0 ) ,  unless one knows the 
factorization of n. Given a commitment commit(a) = ( - 1 ) ” ~ ’  mod n of a bit 
a and a commitment commit(@ = (-1)Os2 mod n of a bit p, it follows that 
commit(a @ p)  = ( - 1 ) a @ o ~ 2 ~ 2  mod n is an xor-commitment on a @ p. When 
opening this commit, one reveals T S  mod n, which does not contain any infor- 
mation on s. 

We denote the observer by 0, the verifier by V and the user-module by U. 
For clarity, we leave out the fact that to prevent shared information the secret 
and public keys must be shared between the observer and the user-module in a 
suitable way. It is not hard to see how to do this using some of the techniques 
suggested in [7]. 

In the protocol, 0 knows a square root X of X 2  mod n, and 0 wishes to 
convince V of this fact in such a way that U does not learn it, whereas U can be 
ensured that there is no shared information. V wants to be convinced not only 
of the fact that 0 knows a square root of X 2  mod n, but also that 0 is close 
by. In essence, this is the setting of the mafia fraud, with the intermediary party 
(7 and v in mafia frauds, and U in this situation) also trying to prevent shared 
information. 

The protocol is as follows (see Figure 8):. 
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Fig. 8. Diverted Fiat-Sharnir identification protocol with distance bounding. 

Step 1 0 generates k random numbers R; ER z: and sends the squares 
R: mod n of these numbers to  U. 0 also generates k bits pi, and sends a xor- 
commitment on them to ?A. (Clearly, if we use the specific xor-commitment 
just described, a commitment for each bit would be needed.) 

Step 2 U first verifies that the numbers received from 0 all have Jacobi symbol 
1. If this is the case, he generates at random k bits y, ER {0,1} as well as k 
bits 6; ER ( 0 , l ) .  U also generates k numbers S, ER z:. He then computes 
the k products R! . S!(X2)78@6* mod n and sends them to U. U also sends 
xor-commitment(s) on 0; @ bi to U. 

Step 3 U generates k challenge bits a, E R  (0, l}, which he will use for the rapid 
bit exchange. 

Step 4 Now the rapid exchange of bits can take place. Hereto, the following 
four exchanges are repeated k times, for i = 1,. . . , k: 
- V sends bit a; to U. 
- U sends a; 03 ~i to 0 immediately after receiving a;. 
- 0 sends challenge bit /3, to U immediately after receiving a; @ 7;. 
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- U sends @; @ 6, to V immediately after receiving pi. 
Step 5 0 opens the k commits on the bits pi to U 0 also computes the k 

responses R,Xfl-@ai@7* mod n and sends them to U. 
Step 6 U verifies whether the responses of 0 are correct with respect to the chal- 

lenges a,@.y@/3, and the squares received from 0 in Step 3. V verifies whether 
the bits that 0 sent to him in Step 4 are those he commited to. If all the ver- 
ifications hold, then U computes the k responses C; S; . R;Xpt@7s@p1 mod n 
by multiplying, for 1 5 i 5 k, the i-th response of 0 by Si mod n and a 
correction-factor C,. The correction-factor is equal to X2 mod n if and only 
if y; @ 6; = 1 and a* @ @ 6; = 1, otherwise it is equal to 1. U sends all 
these responses to V. Furthermore, U opens the xor-commitments to the k 
values P; @ 6, to V .  

Afterwards, V verifies whether the responses of U are correct with respect to the 
challenges Pi @ 6, @a, and the squares received from V in Step 3. He also verifies 
whether the bits received from U in Step 4 are those U commited to. If all the 
verifications hold, then V derives an upper-bound on the physical distance to 
0 by using the maximum of the delays between sending out a, and receiving 
pi @ 6; from U, for 1 5 i 5 k. V accepts if and only if 0 is close by. 

Although we write commit(. . . ,pi,. . . ,) we do not mean to imply with this 
that a multi-bit commitment must necessarily be used: one might as well use k 
single-bit commitments. 

It is straightforward to show that V accepts if all parties follow the protocol, 
and that Propositions 2 and 3 hold. 

Since one can easily show tha t  for each view of V and for each view of 0 in 
this protocol, there is exactly one set of random choices that could have been 
made by U such that the views are from the same execution of the protocol, 
there is no shared information. Clearly, for the protocol as we described it, this 
only holds for executions concerning proof of knowledge of the particular number 
X2 mod n. However, as we noted before, if the knowledge of X2 mod n is divided 
between 0 and U in a suitable way (as described in [8]), the property of absence 
of shared information holds for the set of all proofs of knowledge, regardless of 
the particular number X2 mod n that the proof is concerned with. 

Finally, as in Proposition 3 it is easy to seq that the following must hold. 

Proposition 4. If 0 and V follow the protocol, then U cannot (with probability 
of success greater than 1/2k) trick V into believing that 0 is close b y  if this i s  
not the case. 

As before, if a t  least one of 0 and V generates challenge bits according to  
a distribution other than the uniform one, then U’s probability of successful 
cheating will only increase. 

5 Open problems and further work 

We would like to present two potentially fruitful areas for further investigation. 
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First is the physics and  practical implementation of distance-bounding tech- 
nology. We know little about the physical limits or  precisely how best to use 
current technology. Some experimental work might also be interesting. 

Second is dealing with a problem not adressed here. T h e  techniques presented 
do not prevent frauds in which a distant party with access to the secret keys is 
cooperating with a party close by (without conveying the secret keys). The  frauds 
were suggested informallv under the name “the terrorist fraud” by Desmedt 
in [9]. We are currently working on some ideas preventing such frauds using 
distance bounding. 
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