Skip to main content

The Meaning of Decoherence*

  • Conference paper
  • First Online:
Decoherence: Theoretical, Experimental, and Conceptual Problems

Part of the book series: Lecture Notes in Physics ((LNP,volume 538))

Abstract

The conceptual and dynamical aspects of decoherence are analyzed, while their consequences on several fundamental applications are discussed. This mechanism, which is based on a universal Schrodinger equation, is furthermore compared with the phenomenological description of open systems by means of ‘quantum dynamical maps’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglin, J.R., and Zurek, W.H. (1996): A Precision Test of Decoherence. (e-print quant-ph/9611049)

    Google Scholar 

  2. Belavkin, V.P. (1988): “Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes.” In Modeling and Control of Systems, ed. by Blanquière, A. (Springer)

    Google Scholar 

  3. Bohm, D., and Bub, J. (1966): A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bohr, N. (1928): The Quantum Postulate and the Recent Development of Atomic Theory. Nature 121, 580

    Article  MATH  ADS  Google Scholar 

  5. Brun, M., Hagley, Dreyer, J., Maître, X., Maali, Y., Wunderlich, C, Raimond, J.M., and Haroche, S. (1996): Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement. Phys. Rev. Lett. 77, 4887

    Article  ADS  Google Scholar 

  6. Caldeira, A.O. and Leggett, A.J. (1983): Path Integral Approach to Quantum Brownian Motion. Physica 121A, 587

    ADS  MathSciNet  Google Scholar 

  7. Chiao, R. Y. (1998): Tunneling Times and Superluminality: a Tutorial, (e-print quant-ph/9811019)

    Google Scholar 

  8. Davies, E.B. (1976): Quantum Theory of Open Systems (Academic Press)

    Google Scholar 

  9. Demers, J.-G. and Kiefer, C. (1996): Decoherence of Black Holes by Hawking Radiation. Phys. Rev. D53, 7050

    Article  ADS  MathSciNet  Google Scholar 

  10. d'Espagnat, B. (1966): “An elementary note about mixtures” In Preludes in theoretical physics, ed. by De-Shalit, A., Feshbach, H., and van Hove, L. (North Holland)

    Google Scholar 

  11. Diósi, L. (1987): A Universal Master Equation for the Gravitational Violation of Quantum Mechanics. Phys. Lett. A120, 377

    ADS  Google Scholar 

  12. Diósi, L. (1988): Continuous quantum measurement and Ito formalism. Phys. Lett. A129, 419

    ADS  Google Scholar 

  13. Diósi, L. and Lukacz, B. (1994): Stochastic Evolution of Quantum States in Opoen Systems and in Measurement Processes (World Scientific)

    Google Scholar 

  14. Dirac, P.A.M. (1947): The Principles of Quantum Mechanics. (Clarendon Press)

    Google Scholar 

  15. Dürr, S., Nonn, T. and Rempe, G. (1998): Origin of quantum mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33

    Article  ADS  Google Scholar 

  16. Ekert, A. and Jozsa, R. (1996): Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733

    Article  ADS  MathSciNet  Google Scholar 

  17. Ellis, J., Mohanty, S., and Nanopoulos, D.V. (1989): Quantum Gravity and the Collapse of the Wave Function. Phys. Lett. B221, 113

    ADS  Google Scholar 

  18. Favre, C. and Martin, P.A. (1968): Dynamique quantique des systemes amortis non-markovien. Helv. Phys. Acta 41, 333

    MATH  Google Scholar 

  19. Feynman, R.P. and Vernon Jr., F.L. (1963): The Theory of a General Quantum System Interacting with a Linear Dissipative System. Ann. Phys. (N.Y.), 24, 118

    Article  ADS  MathSciNet  Google Scholar 

  20. Gerlach, U.H. (1988): Dynamics and symmetries of a field partitioned by an accelerated frame. Phys. Rev. D38, 522

    ADS  MathSciNet  Google Scholar 

  21. Ghirardi, G.C., Rimini, A., and Weber, T. (1986): Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D34, 470

    ADS  MathSciNet  Google Scholar 

  22. Ghirardi, G.C., Pearle, Ph., and Rimini, A. (1990): Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A42, 78

    ADS  MathSciNet  Google Scholar 

  23. Gisin, N. (1984): Quantum Measurement and Stochastic Processes. Phys. Rev. Lett. 52, 1657

    Article  ADS  MathSciNet  Google Scholar 

  24. Gisin, N. and Percival, I. (1992): The quantum-state diffusion model applied to open systems. J. Phys. A25, 5677

    ADS  MathSciNet  Google Scholar 

  25. Giulini, D., Joos, E., Kiefer, C, Kupsch, J., Stamatescu, I.-O., and Zeh, H.D. (1996): Decoherence and the Appearance of a Classical World in Quantum Theory (Springer)

    Google Scholar 

  26. Giulini, D., Kiefer, C, and Zeh, H.D. (1995): Symmetries, superselection rules, and decoherence. Phys. Lett. A199, 291

    ADS  MathSciNet  Google Scholar 

  27. Gorini, V., Kossakowski, A., and Sudarshan, E.C.G. (1976): Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821

    Article  ADS  MathSciNet  Google Scholar 

  28. Habib, S., Kluger, Y., Mottola, and Paz, J.P. (1996): Dissipation and Decoherence in Mean Field Theory. Phys. Rev. Lett. 76, 4660

    Article  ADS  Google Scholar 

  29. Haroche, S. and Raimond, J.M. (1996): Quantum Computing: Dream or Nightmare? Phys. Today 49, (August) 51

    Google Scholar 

  30. Hawking, S.W. (1987): Quantum Coherence down the Wormhole. Phys. Lett. B195, 337

    ADS  MathSciNet  Google Scholar 

  31. Hepp, K. (1972): Macroscopic Theory of Measurement and Macroscopic Ob-servables. Helv. Phys. Acta 45, 237

    Google Scholar 

  32. Hu, B.L., Paz, J.P., and Zhang, Y. (1992): Quantum Brownian Motion in a General Environment: A model for system-field interactions. Phys. Rev. D45, 2843

    ADS  MathSciNet  Google Scholar 

  33. Jadczyk, A. (1995): On Quantum Jumps, Events and Spontaneous Localization Models. Found. Phys. 25, 743

    Article  ADS  MathSciNet  Google Scholar 

  34. Joos, E. (1984): Continuous Measurement: Watchdog Effect versus Golden Rule. Phys. Rev. D29, 1626

    ADS  MathSciNet  Google Scholar 

  35. Joos, E. (1986): Why do we observe classical spacetime? Phys. Lett. A116, 6

    ADS  MathSciNet  Google Scholar 

  36. Joos, E. and Zeh, H.D. (1985): The Emergence of Classical Properties through Interaction with the Environment. Z. Phys. B59, 223

    Article  ADS  Google Scholar 

  37. Karolyhazy, F., Frenkel, A. and Lukácz, B. (1986): “On the possible role of gravity in the reduction of the wave function”, In Quantum Concepts in Space and Time, ed. by Penrose, R. and Isham, C.J. (Clarendon Press)

    Google Scholar 

  38. Kiefer, C. (1992): Decoherence in quantum electrodynamics and quantum cosmology. Phys. Rev. D46, 1658

    ADS  Google Scholar 

  39. Kiefer, C. (1998): Interference of two independent sources. Am. J. Phys. 66, 661

    Article  ADS  Google Scholar 

  40. Kraus, K. (1971): General State Changes in Quantum Theory. Ann. Phys. (N.Y.) 64, 311

    Article  ADS  MathSciNet  Google Scholar 

  41. Kübler, O. and Zeh, H.D. (1973): Dynamics of Quantum Correlations. Ann. Phys. (N.Y.) 76, 405

    Article  ADS  Google Scholar 

  42. Kwiat, P.G., Steinberg, A.M. and Chiao, R.Y. (1992): Observation of a ‘quantum eraser’: A revival of coherence in a two-photon interference experiment. Phys. Rev. 45, 7729

    Article  ADS  Google Scholar 

  43. Lindblad, G. (1976): On the Generators of Quantum Mechanical Semigroups. Comm. Math. Phys. 48, 119

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Ludwig, G. (1990): Die Grundstrukturen einer physikalischen Theorie (Springer-Verlag)

    Google Scholar 

  45. Mensky, M.B. (1979): Quantum restrictions for continuous observations of an oscillator. Phys. Rev. D20, 384

    ADS  Google Scholar 

  46. Monroe, C, Meekhof, King, B.E., and Wineland, D.J. (1996): A “Schrödinger Cat” Superposition State of an Atom. Science 272, 1131

    Article  ADS  MathSciNet  Google Scholar 

  47. Mott, N.F. (1929): The wave mechanics of α-ray tracks. Proc. R. Soc. London A126, 79

    Google Scholar 

  48. Myers, R. (1997): Pure states don’t wear black. Gen. Rel. Grav. 29, 1217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Nagourney, W. Sandberg, J., and Dehmelt, H. (1986): Shelved Optical Electron Amplifier: Observation of Quantum Jumps. Phys. Rev. Lett. 56, 2797

    Article  ADS  Google Scholar 

  50. Nicklaus, M. and Hasselbach, F. (1993): Wien Filter: A wave-packet-shifting device for restoring longitudinal coherence in in charged-matter-wave interferometer. Phys. Rev. A48, 152

    ADS  Google Scholar 

  51. Omnès, R. (1997): General theory of decoherence effect in quantum mechanics. Phys. Rev. A56, 3383

    ADS  Google Scholar 

  52. Pearle, Ph. (1976): Reduction of the state vector by a non-linear Schrodinger equation. Phys. Rev. D13, 857

    ADS  MathSciNet  Google Scholar 

  53. Pearle, Ph. (1979): Toward Explaining Why Events Occur. Int. J. Theor. Phys. 48, 489

    Article  MathSciNet  Google Scholar 

  54. Pearle, Ph. (1989): Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A39, 2277

    ADS  Google Scholar 

  55. Pearle, Ph. and Squires, E.J. (1994): Bound State Excitation, Nucleon Decay Experiments, and Models of Wave Function Collapse. Phys. Rev. Lett. 73, 1

    Article  ADS  Google Scholar 

  56. Peierls, R. (1985): “Observation in Quantum Mechanics and the collapse of the wave function”, In Symposium on the Foundations of Modern Physics, ed. by Lahti, P. and Mittelstaedt, P. (World Scientific)

    Google Scholar 

  57. Penrose, R. (1986): “Gravity and state vector reduction”, In Quantum Concepts in Space and Time, ed. by Penrose, R. and Isham, C.J. (Clarendon Press)

    Google Scholar 

  58. Peres, A. (1996): Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. Primas, H. (1983): Chemistry, Quantum Mechanics and Reductionism, (Springer-Verlag)

    Google Scholar 

  60. Rempe, G., Walther, H. and Klein, N. (1987): Observation of Quantum Collapse and Revival in a One-Atom Maser. Phys. Rev. Lett. 58, 353

    Article  ADS  Google Scholar 

  61. Sauter, Th., Neuhauser, W., Blatt, R. and Toschek, P.E. (1986): Observation of Quantum Jumps. Phys. Rev. Lett. 57, 1696

    Article  ADS  Google Scholar 

  62. Schmidt, E. (1907): Zur Theorie der linearen und nichtlinearen Integral-gleichungen. Math. Ann. 63, 433

    Article  MathSciNet  Google Scholar 

  63. Schrödinger, E. (1935): Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555

    MATH  Google Scholar 

  64. Scully, M.O., Englert, B.-G., and Walther, H, (1991): Quantum optical tests of complementarity. Nature 351, 111

    Article  ADS  Google Scholar 

  65. Tegmark, M. (1993): Apparent Wave Function Collapse Caused by Scattering. Found. Phys. Lett. 6, 571

    Article  Google Scholar 

  66. Unruh, W.G. and Zurek, W.H. (1989): Reduction of the wave packet in quantum Brownian motion. Phys. Rev. D40, 1071

    ADS  MathSciNet  Google Scholar 

  67. Werner, R.F. (1989): Quantum states with Einstein-Rosen correlations admitting a hidden variable model. Phys. Rev. A40, 4277

    ADS  Google Scholar 

  68. Woolley, R.G. (1986): Molecular Shapes and Molecular Structures. Chem. Phys. Lett. 125, 200

    Article  ADS  Google Scholar 

  69. Zeh, H.D. (1970): On the Interpretation of Measurement in Quantum Theory. Found.Phys. 1, 69

    Article  ADS  Google Scholar 

  70. Zeh, H.D. (1971): “On the irreversibility of time and observation in quantum theory.” In Foundations of Quantum Mechanics (Fermi School of Physics IL), ed. by d'Espagnat, B. (Academic Press)

    Google Scholar 

  71. Zeh, H.D. (1973): Toward a Quantum Theory of Observation. Found. Phys. 3, 109

    Article  ADS  Google Scholar 

  72. Zeh, H.D. (1993): There are no quantum jumps, nor are there particles! Phys. Lett. A172, 189

    MathSciNet  Google Scholar 

  73. Zeh, H.D. (1999): The Physical Basis of the Direction of Time. 3rd edn. (Springer-Verlag)

    Google Scholar 

  74. Zurek, W.H. (1981): Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D24, 1516

    ADS  MathSciNet  Google Scholar 

  75. Zurek, W.H. (1982): Environment-induced superselection rules. Phys. Rev. D26, 1862

    ADS  MathSciNet  Google Scholar 

  76. Zurek, W.H. (1986): “Reduction of the Wave Packet: How Long Does it Take?” In Frontiers of Nonequilibrium Statistical Physics, ed. by G.T. Moore and M.T. Scully (Plenum)

    Google Scholar 

  77. Zurek, W.H. (1991): Decoherence and the Transition from Quantum to Classical. Phys. Today 44, (Oct.) 36

    Google Scholar 

  78. Zurek, W.H. (1998): Decoherence, einselection and the existential interpretation (the rough guide). Phil. Trans. R. Soc. Lond. A356, 1793

    Article  ADS  MathSciNet  Google Scholar 

  79. Zurek, W.H., Habib, S., and Paz., J.P. (1993): Coherent States via Decoherence. Phys. Rev. Lett. 70, 1187

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeh, H.D. (2000). The Meaning of Decoherence* . In: Blanchard, P., Joos, E., Giulini, D., Kiefer, C., Stamatescu, IO. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol 538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46657-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-46657-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66899-2

  • Online ISBN: 978-3-540-46657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics