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Abstract. We propose a multimodal free form registration algorithm
based on maximization of mutual information. Images to be aligned are
modeled as a viscous fluid that deforms under the influence of forces de-
rived from the gradient of the mutual information registration criterion.
Parzen windowing is used to estimate the joint intensity probability of
the images to be matched. The method was verified by for registration
of simulated T1-T1, T1-T2 and T1-PD images with known ground truth
deformation. The results show that the root mean square difference be-
ing the recovered and the ground truth deformation is smaller than 1
voxel.

1 Introduction

Maximization of mutual information has been demonstrated to be a very general
and reliable approach for affine registration of multimodal images of the same
patient or from different patients, including atlas matching [7,9]. In applications
where local morphological differences need to be quantified, affine registration
is no longer sufficient and non-rigid registration (NRR) is required, aiming at
finding a 3D vector field describing the deformation at each point. Applications
for NRR include shape analysis (to warp all shapes to a standard space) and
atlas-based segmentation (to compensate for gross morphological differences be-
tween atlas and study images). Different approaches have been proposed for
extending the mutual information criterion to NRR. Spline-based approaches
[8,6] can correct for gross shape differences, but a dense grid of control points
is required to characterize the deformation at voxel level detail, implying high
computational complexity. Block matching [4] or free-form approaches, using
a non-parameterized expression for the deformation field, assign a local defor-
mation vector to each voxel individually, but need appropriate constraints for
spatial regularization of the resulting vector field. Elastic constraints are suit-
able when displacements can be assumed to be small, while for large magnitude
deformations a viscous fluid model is more appropriate.
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Recently, a multimodal NRR algorithm was presented in [5], defining the
forces driving the deformation at each voxel such that mutual information is
maximized and using a regularization functional derived from linear elasticity
theory. In this paper, we extend the approach of [5] by replacing the elastic model
by the viscous fluid regularization model of Christensen et al. [3] and thus gener-
alize the method of [3] to multimodal image registration based on maximization
of mutual information. The Navier-Stokes equation modelling the viscous fluid
is solved by iteratively updating the deformation field and convolving it with a
Gaussian filter. The deformation field is regridded as needed during iterations
as in [3] to assure that its Jacobian remains positive everywhere, such that the
method can handle large deformations. We verified the robustness of the method
by applying realistic known deformations to simulated multispectral MR images
and evaluating the difference between the recovered and ground truth deforma-
tion fields in terms of displacement errors and of tissue classification errors when
using the recovered deformation for atlas-based segmentation.

2 Method

2.1 The Viscous Fluid Algorithm

We follow the approach of [3] to deform an template image F onto a target image
G, using an Eulerian reference frame to represent the mapping T = x − u(x)
of fixed voxel positions x in target space onto the corresponding positions x −
u(x) in the original template space. The deforming template image is considered
as a viscous fluid whose motion is governed by the Navier-Stokes equation of
conservation of momentum. Using the same simplifications as in [3], this equation
can be written as

∇2v + ∇ (∇.v) + F (x,u) = 0 (1)

with F (x,u) a force field acting at each position x that depends on the defor-
mation u and that drives the deformation in the appropriate direction, and with
v(x, t) the deformation velocity experienced by a particle at position x:

v =
du

dt
=
∂u

∂t
+

3∑
i=1

vi
∂u

∂xi
(2)

with v = [v1(x, t), v2(x, t), v3(x, t)]
T and u = [u1(x, t), u2(x, t), u3(x, t)]

T .
In section 2.2, we derive an expression for the force field F such that the

viscous fluid flow maximizes mutual information between corresponding voxel
intensities. When the forces are given, solving (1) yields deformation velocities,
from which the deformation itself can be computed by integration over time. In
[3] the Navier-Stokes equation is solved by Successive Over Relaxation (SOR),
but this is a computationally expensive approach. Instead, we follow the ap-
proach of [2] and obtain the velocity field by convolution of the force field with
a Gaussian kernel ψ:

v = ψ � F (3)
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The displacement u(k+1) at iteration (k + 1) is then given by:

u(k+1) = u(k) + R(k).∆t (4)

with R(k) the perturbation to the deformation field:

R(k) = v(k) −
3∑

i=1

v
(k)
i

[
∂u(k)

∂xi

]
(5)

The time step ∆t is constrained by ∆t ≤ max(‖R‖).∆u, with ∆u the maximal
voxel displacement that is allowed in one iteration.

To preserve the topology of the object image, the Jacobian of the deforma-
tion field should not become negative. When the Jacobian becomes anywhere
smaller than some positive threshold, regridding of the deformed template image
is applied as in [3] to generate a new template, setting the incremental displace-
ment field to zero. The total deformation is the concatenation of the incremental
deformation fields associated with each propagated template.

2.2 Force Field Definition

We define an expression for the force field F (x,u) in (1) such that the viscous
fluid deformation strives at maximizing mutual information I(u) of correspond-
ing voxel intensities between the deformed template image F(x − u) and the
target image G(x). We adopt here the approach of [5] who derived an expression
for the gradient ∇uI of I with respect to the deformation field u, modelling the
joint intensity distribution pF,G

u (i1, i2) of template and target images as a con-
tinuous function using Parzen windowing. If the deformation field u is perturbed
into u + εh, variational calculus yields the first variation of I:

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

=
∫∫

∂

∂ε

[
pF,G

u+εh(i1, i2) log
pF,G

u+εh(i1, i2)

pF (i1)pG
u+εh(i2)

]
ε=0

di1di2

=
∫∫ (

1 + log
pF,G

u (i1, i2)
pF (i1)pG

u(i2)

)
∂pF,G

u+εh(i1, i2)
∂ε

∣∣∣∣∣
ε=0

di1di2 (6)

The joint intensity probability is constructed from the domain of overlap V of
both images (with volume V ), using the Parzen windowing kernel ψ(i1, i2):

pF,G
u (i1, i2) =

1
V

∫
V
ψ(i1 − F(x − u), i2 − G(x))dx (7)

Inserting (7) in (6) and rearranging as in [5], yields

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

=
1
V

∫
V

[
ψ �

∂Lu

∂i1

]
(F(x − u),G(x))∇F(x − u)h(x)dx (8)

with

Lu(i1, i2) = 1 + log
pF,G

u (i1, i2)
pF (i1)pG

u(i2)
(9)
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Fig. 1. Left: T1 MPRAGE Patient image; Middle: CSF segmented using standard
prior; Right: CSF segmented after non-rigid matching of the atlas.

Table 1. Root mean square error ∆T in millimeter between ground thruth and recov-
ered deformation fields within the brain region for different multimodal image combi-
nations of BrainWeb simulated MR brain images at different noise levels.

Case T1/T1 T1/T2 T1/PD
0% 3% 7% 0% 3% 7% 3%

1 0.384 0.430 0.465 0.577 0.759 0.685 0.723
2 0.304 0.398 0.433 0.443 0.640 0.649 0.661
3 0.351 0.411 0.459 0.505 0.753 0.775 0.772

We therefore define the force field F at x to be equal to the gradient of I
with respect to u(x), such that F drives the deformation to maximize I:

F (x,u) = ∇uI =
1
V

[
ψ �

∂Lu

∂i1

]
(F(x − u),G(x))∇F(x − u) (10)

2.3 Implementation Issues

The method was implemented in Matlab, with the image resampling and his-
togram computation coded in C. The histogram was computed using 128 bins for
both template and target images. Parzen windowing was performed by convolu-
tion of the joint histogram with a 2D Gaussian kernel. The maximal displacement
at each iteration∆u was set to 0.3 voxels and regridding was performed when the
Jacobian became smaller than 0.5. Iterations were continued as long as mutual
information I(u) increased, with a maximum of 75 iterations. A multiresolution
optimization strategy was adopted by smoothing and downsampling the images
at 3 different levels of resolution, starting the process at the coarsest level and
gradually increassing resolution as the method converged. Computation time for
matching two images of size 128x128x80 is about 50 minutes.
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Table 2. Overlap coefficient for different tissue classes of tissue maps obtained with
ground thruth and recovered deformation fields for different multimodal image combi-
nations of BrainWeb simulated MR brain images. Noise level was 3% in each case.

Case T1/T1 T1/T2 T1/PD
WM GM CSF WM GM CSF WM GM CSF

1 0.9282 0.9179 0.8698 0.8579 0.8320 0.7645 0.8604 0.8454 0.7844
2 0.9253 0.9277 0.8969 0.8595 0.8463 0.7839 0.8564 0.8373 0.7818
3 0.9279 0.9260 0.8795 0.8460 0.8270 0.7579 0.8552 0.8028 0.7413

3 Experiments

The method was validated on simulated images generated by the BrainWeb
MR simulator [1] with different noise levels. In all experiments the images were
non-rigidly deformed by known deformation fields T ∗. These were generated
by using our method to match the T1 weighted BrainWeb image to real T1
weighted images of 3 periventricular leukomalacia patients, typically showing
enlarged ventricles. We evaluate how well the recovered deformation T , obtained
by matching the original T1 weighted BrainWeb image to the T1, T2 or proton
density (PD) weighted images deformed by T ∗, resembles the ground truth T ∗.
Both deformations were compared by their root mean square (RMS) error ∆T
evaluated in millimeter over all brain voxels B:

∆T =

√
1
NB

∑
B

(|T (x) − T ∗(x)|)2 (11)

We also verified the impact of possible registration errors on atlas-based seg-
mentation by comparing the (hard classified) tissue maps M and M∗, obtained
by deforming the tissue maps of the original image using T and T ∗ respec-
tively. We measure the difference between M and M∗ by their overlap coeffi-
cient Oj(M,M∗) for 3 tissue types j, white matter (WM), grey matter (GM)
and cerebro-spinal fluid (CSF):

Oj(M,M∗) =
2Vj(M,M∗)

Vj(M) + Vj(M∗)
(12)

with Vj(M,M∗) the volume of the voxels that are assigned to class j in both
maps and Vj(M) and Vj(M∗) the volume of the voxels assigned to class j in
each map separately.

Figure 1 shows the registration result of the BrainWeb T1 image to one of
the patient images and the segmentation of CSF obtained using the method of
[9] with affine and with our non-rigid atlas registration procedure. Note how
the segmentation of the enlarged ventricles is much improved by using non-rigid
atlas warping.

Table 1 shows the RMS error ∆T computed for T1 to T1, T2 and PD regis-
tration of the BrainWeb images at different noise levels (each time identical for
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Fig. 2. Left: Original BrainWeb T1 template; right: BrainWeb target image obtained
by applying a known deformation; middle: template matched to target. Top: T1/T1
registration; middle: T1/T2; bottom: T1/PD.

object and target images), for 3 different ground truth deformations. All values
are smaller than one voxel, with the most accurate results being obtained for
T1/T1-matching. The overlap coefficients for WM, GM and CSF in the ground
truth and recovered tissue maps are tabulated in table 2. The results are visu-
alized in figure 2 and figure 3.

4 Discussion

We present an algorithm for non-rigid multimodal image registration using a
viscous fluid model by defining a force field that drives the deformation such that
mutual information of corresponding voxel intensities is maximized. Our method
is in fact the merger of the mutual information based registration functional
presented in [5] with the viscous fluid regularization scheme of [3].

The joint intensity probability of the images to be matched is estimated using
Parzen windowing and is differentiable with respect to the deformation field. The
size of the Parzen windowing kernel needs to be properly chosen such that the
criterion is a more or less smooth function of the deformation field. This choice
is related to the image noise. For all experiments described above, the same
kernel was used, indepedently of the multispectral nature of the images. In the
current implementation, the extension of the Parzen estimator is automatically
computed using a leave k out cross validation technique maximizing an empirical
likelihood of the marginal densities[10,11]. The impact of the Parzen windowing
kernel on the registration process needs further investigation.



A Viscous Fluid Model for Multimodal Non-rigid Image Registration 547

Fig. 3. Misclassified WM (left), GM (middle) and CSF (right) voxels of recovered vs
ground truth deformation using the results in figure 2. Top: T1/T1 registration; middle:
T1/T2; bottom: T1/PD.

Another relevant implementation parameter is the time step ∆t or the max-
imal displacement ∆u allowed at each iteration that is specified to update the
displacements after solving the Navier-Stokes equation. Selecting a larger value
for ∆t will result in larger displacement steps and a more frequent regridding
of the template as the Jacobian of the transformation is more likely to become
non-positive. A smaller value of ∆t on the other hands implies a larger number
of iterations for convergence. More experiments are needed to properly tune this
parameter.

We validated our algorithm using simulated T1, T2 and PD images from
BrainWeb with different noise levels and different realistic ground truth deforma-
tions generated by registration of the simulated image with real patient images.
Although the RMS error was found to be subvoxel small in all cases, T1/T1
registration gave more accurate results than T1/T2 or T1/PD registration. The
contrast between gray and white matter especially is much better in T1 than in
T2 or PD and the algorithm succeeds better at recovering the interface between
both tissues in T1 than in T2 or PD. We also compared T1-to-T2 versus T2-to-
T1 registration and found that somewhat better results are obtained using T1
as the template image. This can be explained by the fact that the forces driving
the registration depend on the gradient of the template image, which is better
defined in T1 than in T2 at the interface between white and gray matter.
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5 Conclusions

We have presented a multimodal free-from registration algorithm based on max-
imization of mutual information that models the images as a viscous fluid. The
forces deforming the images are defined as the gradient of mutual information
with respect to the deformation field, using Parzen windowing to estimate the
joint intensity probability. We have validated our method for matching simulated
T1-T1, T1-T2 and T1-PD images, showing that the method performs quite well
in both mono and multi-modal conditions. Future work includes the introduction
of more spatial information and more specific intensity models into the similarity
criterion in order to make the registration more robust.
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