Skip to main content

Protein Array Technology: The Tool to Bridge Genomics and Proteomics

  • Chapter
  • First Online:
Book cover Chip Technology

Abstract

The generation of protein chips requires much more efforts than DNA microchips. While DNA is DNA and a variety of different DNA molecules behave stable in a hybridisation experiment, proteins are much more difficult to produce and to handle. Outside of a narrow range of environmental conditions, proteins will denature, lose their three-dimensional structure and a lot of their specificity and activity. The chapter describes the pitfalls and challenges in Protein Microarray technology to produce native and functional proteins and store them in a native and special environment for every single spot on an array, making applications like antibody profiling and serum screening possible not only on denatured arrays but also on native protein arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maier E, Meier-Ewert S, Bancroft D, et al (1997) Automated array technologies for gene expression profiling. Drug Discovery Today 2(8): 315–324

    Article  Google Scholar 

  2. Lander ES (1999) Array of hope. Nat Genet 21(1 Suppl):3–4

    Article  CAS  Google Scholar 

  3. Meier-Ewert S, Lange J, Gerst H, et al (1998) Comparative gene expression profiling by oligonucleotide fingerprinting. Nucleic Acids Res 26(9): 2216–2223

    Article  CAS  Google Scholar 

  4. Schena M, Shalon D, Heller R, et al (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93(20): 10614–10619

    Article  CAS  Google Scholar 

  5. Heller RA, Schena M, Chai A, et al (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA 94(6): 2150–2155

    Article  CAS  Google Scholar 

  6. Khan J, Saal LH, Bittner ML, et al (1999) Expression profiling in cancer using cDNA microarrays. Electrophoresis 20(2): 223–229

    Article  CAS  Google Scholar 

  7. Khan J, Bittner ML, Chen Y, et al (1999) DNA microarray technology: the anticipated impact on the study of human disease. Biochim Biophys Acta 1423(2): M17–28

    CAS  Google Scholar 

  8. Eickhoff H, Schuchhardt J, Ivanov I, et al (2000) Tissue gene expression profiling using arrayed normalized cDNA libraries. Genome Res 10(8): 1230–1240

    Article  CAS  Google Scholar 

  9. Schuchhardt J, Beule D, Malik A, et al (2000) Normalization strategies for cDNA microarrays. Nucleic Acids Res 28(10): E47

    Article  CAS  Google Scholar 

  10. Walter G, Büssow K, Cahill D, et al (2000) Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 3(3): 298–302

    Article  CAS  Google Scholar 

  11. Emili AQ, Cagney G (2000) Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol 18(4): 393–397

    Article  CAS  Google Scholar 

  12. Klose J, Kobalz U (1995) 2-dimensional electrophoresis of proteins-an updated protocol and implications for a functional-analysis of the genome. Electrophoresis 16(N6): 1034–1059

    Article  CAS  Google Scholar 

  13. Gauss C, Kalkum M, Lowe M, et al (1999) Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20(3): 575–600

    Article  CAS  Google Scholar 

  14. Frank R (1992) Spot synthesis: an easy technique for the positionally addressable parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  15. Heyman JA, Cornthwaite J, Foncerrada L, et al (1999) Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res 9(4): 383–392

    CAS  Google Scholar 

  16. Büssow K, Cahill D, Nietfeld W, et al (1998) A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res 26(21):5007–5008

    Article  Google Scholar 

  17. Büssow K, Nordhoff E, Lübbert C, et al (2000) A human cDNA library for high-throughput protein expression screening. Genomics 65(1): 1–8

    Article  CAS  Google Scholar 

  18. Lueking A, Holz C, Gothold C, et al (2000) A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif 20:372–378

    Article  CAS  Google Scholar 

  19. Lueking A, Horn M, Eickhoff H, et al (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270(1): 103–111

    Article  CAS  Google Scholar 

  20. Egelhofer V, Büssow K, Luebbert C, et al (2000) Improvements in Protein Identification by MALDI-TOF-MS Peptide Mapping. Anal Chem 72(13): 2741–2750

    Article  CAS  Google Scholar 

  21. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485): 1760–1763

    CAS  Google Scholar 

  22. Parinov S, Barsky V, Yershov G, et al (1996) DNA sequencing by hybridization to microchip octa-and decanucleotides extended by stacked pentanucleotides. Nucleic Acids Res 24(15):2998–3004

    Article  CAS  Google Scholar 

  23. Arenkov P, Kukhtin A, Gemmell A, et al (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278(2): 123–131

    Article  CAS  Google Scholar 

  24. Schuerenberg M, Luebbert C, Eickhoff H, et al (2000) Prestructured MALDI-MS sample supports. Anal Chem 72(15): 3436–3442

    Article  CAS  Google Scholar 

  25. Müller U, Nyarsik L, Horn M, et al (2001) Development of a technology for automation and miniaturisation of protein crystallisation. J Biotechnol (in press)

    Google Scholar 

  26. Sanders GHW, Manz A (2000) Chip-based microsystems for genomic and proteomic analysis. Trends Anal Chem 19(6):364–378

    Article  CAS  Google Scholar 

  27. Cheung VG, Morley M, Aguilar F, et al (1999) Making and reading microarrays. Nat Genet 21(1Suppl):15–19

    Article  CAS  Google Scholar 

  28. Ge H (2000) UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Res 28(2):e3

    Article  CAS  Google Scholar 

  29. Rogers KR (2000) Principles of affinity-based biosensors. Mol Biotechnol 14(2): 109–129

    Article  CAS  Google Scholar 

  30. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21(6): 1164–1177

    Article  CAS  Google Scholar 

  31. Uetz P, Giot L, Cagney G, et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770): 623–627

    Article  CAS  Google Scholar 

  32. Holt LJ, Enever C, de Wildt RM, et al (2000) The use of recombinant antibodies in proteomics. Curr Opin Biotechnol 11(5):445–449

    Article  CAS  Google Scholar 

  33. Hoogenboom HR, de Bruine AP, Hufton SE, et al (1998) Antibody phage display technology and its applications. Immunotechnology 4(1): 1–20

    Article  CAS  Google Scholar 

  34. Collins J (1997) Phage Display. In: Moos WH, Pavia MR, Ellington A, Kay BK (eds) Annual Reports in Combinatorial Chemistry and Molecular Diversity, vol 1. Kluwer Academic Pub, pp 210–262

    Google Scholar 

  35. Holt LJ, Büssow K, Walter G, et al (2000) By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res 28(15):E72

    Article  CAS  Google Scholar 

  36. de Wildt RM, Mundy CR, Gorick BD, et al (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9): 989–994

    Article  CAS  Google Scholar 

  37. Latif N, Baker CS, Dunn MJ, et al (1993) Frequency and specificity of antiheart antibodies in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting. J Am Coll Cardiol 22(5): 1378–1384

    Article  CAS  Google Scholar 

  38. Pohlner K, Portig I, Pankuweit S, et al (1997) Identification of mitochondrial antigens recognized by antibodies in sera of patients with idiopathic dilated cardiomyopathy by two-dimensional gel electrophoresis and protein sequencing. Am J Cardiol 80(8): 1040–1045

    Article  CAS  Google Scholar 

  39. McCurdy DK, Tai LQ, Nguyen J, et al (1998) MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab 63(1):3–13

    Article  CAS  Google Scholar 

  40. Joos TO, Schrenk M, Hopfl P, et al (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21(13): 2641–2650

    Article  CAS  Google Scholar 

  41. Martzen MR, McCraith SM, Spinelli SL, et al (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286(5442): 1153–1155

    Article  CAS  Google Scholar 

  42. Cohen CB, Chin-Dixon E, Jeong S, et al (1999) A microchip-based enzyme assay for protein kinase A. Anal Biochem 273(1):89–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eickhoff, H. et al. (2002). Protein Array Technology: The Tool to Bridge Genomics and Proteomics. In: Hoheisel, J., et al. Chip Technology. Advances in Biochemical Engineering/Biotechnology, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45713-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45713-5_6

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43215-9

  • Online ISBN: 978-3-540-45713-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics