Skip to main content

Nonequilibrium Transport through a Kondo-dot in a Magnetic Field

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 42))

Abstract

Electron transport through a quantum-dot in the Coulomb blockade regime is modeled by a Kondo-type hamiltonian describing spin-dependent tunneling and exchange interaction with the local spin. We consider the regime of large transport voltage V and magnetic field B with max(V, B) ≫ Tk, the Kondo temperature, and show that a renormalized perturbation theory can be formulated describing the local magnetization M and the differential conductance G quantitatively. Based on the structure of leading logarithmic corrections in bare perturbation theory we argue that the perturbative renormalization group has to be generalized to allow for frequency dependent coupling functions. We simplify the full RG equations in the spirit of poor man’s scaling and calculate M and G in leading order of 1/ln[(V, B)/T k].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Aleiner, P. Brouwer, and L. Glazman, cond-mat/0103008.

    Google Scholar 

  2. L. Glazman and M. Raikh, JETP Letters 47, 452 (1988).

    Google Scholar 

  3. T. Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    Article  Google Scholar 

  4. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav and M. Kastner, Nature 391, 156 (1998).

    Article  CAS  Google Scholar 

  5. S. Cronenwett, T. Oosterkamp and L. Kouwenhoven, Science 281, 540 (1998).

    Article  CAS  Google Scholar 

  6. J. Schmid, J. Weis, K. Eberl, and K. v. Klitzing, Physica B 258, 182 (1998).

    Article  Google Scholar 

  7. J. Nygard, D. Cobden and P. Lindelof, Nature 408, 342 (2000).

    Article  CAS  Google Scholar 

  8. S. De Franceschi et al., cond-mat/0203146.

    Google Scholar 

  9. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

    Article  CAS  Google Scholar 

  10. P. W. Anderson, J. Phys. C 3, 2436 (1966).

    Article  Google Scholar 

  11. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

    Article  Google Scholar 

  12. N. Andrei, Phys. Rev. Lett. 45, 379 (1980); N. Andrei, K. Furuya and J.H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).

    Article  CAS  Google Scholar 

  13. I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 360, 641 (1991).

    Article  Google Scholar 

  14. J. Kroha and P. Wölfle, in press (Springer), cond-mat/0105491.

    Google Scholar 

  15. A. Rosch, J. Kroha and P. Wölfle, Phys. Rev. Lett. 87, 156802 (2001).

    Article  CAS  Google Scholar 

  16. M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 87, 216601 (2001).

    Article  CAS  Google Scholar 

  17. P. Coleman, C. Hooley, and P. Parcollet, Phys. Rev. Lett. 86, 4088 (2001).

    Article  CAS  Google Scholar 

  18. X.-G. Wen, cond-mat/9812431.

    Google Scholar 

  19. J. Appelbaum, Phys. Rev. Lett, 17, 91 (1966); Phys. Rev. 154, 633 (1967).

    Article  CAS  Google Scholar 

  20. J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B 54, 16820 (1996).

    Article  Google Scholar 

  21. A. Rosch, J. Paaske, J. Kroha and P. Wölfle, cond-mat/0202404.

    Google Scholar 

  22. L.I. Glazman, private communication.

    Google Scholar 

  23. A.A. Abrikosov, Physics 2, 21 (1965).

    Google Scholar 

  24. O. Parcollet, and C. Hooley, cond-mat/0202425.

    Google Scholar 

  25. A. Kaminski, Yu. V. Nazarov, and L.I. Glazman, Phys. Rev. Lett. 83, (1999); L. Glazman and A. Kaminski, Phys. Rev. B 62, 8154 (2000). 180

    Google Scholar 

  26. H. Schoeller and J. König, Phys. Rev. Lett. 84, 3686 (2000); see also M. Keil, Ph.D. thesis, U. Göttingen (2002).

    Article  CAS  Google Scholar 

  27. D.C. Ralph and R.A. Buhrman, Phys. Rev. Lett. 72, 3401 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wölfle, P., Rosch, A., Paaske, J., Kroha, J. (2002). Nonequilibrium Transport through a Kondo-dot in a Magnetic Field. In: Kramer, B. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45618-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45618-X_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42907-4

  • Online ISBN: 978-3-540-45618-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics