Skip to main content

Phase Equilibria in the Si-B-C-N System

  • Chapter
  • First Online:
High Performance Non-Oxide Ceramics I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 101))

Abstract

Literature information on phase equilibria and materials thermodynamics of the quaternary Si-B-C-N system and its binary (Si-B, Si-C, Si-N, B-C, B-N, C-N) and ternary (Si-B-C, Si-B-N, Si-C-N, B-C-N) subsystems are reviewed. Experimental phase diagrams and thermodynamic data are compared with results from thermodynamic calculations according to the CALPHAD method (CALculation of PHAse Diagrams). Calculated thermodynamic functions, different types of phase diagrams and consistent Scheil reaction schemes for the ternary and quaternary systems are presented. The influence of multicomponent phase reactions on the development and application of refractory and hard materials of this system are discussed and a model for the explanation of the thermal stability of Si-B-C-N precursor-derived ceramics is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Riedel R (ed) (2000) Handbook of ceramic hard materials, Vol 1 and Vol 2. Wiley-VCH, Weinheim

    Google Scholar 

  2. Petzow G, Hermann M (2002) Silicon Nitride Ceramics. In: Jansen MA (ed) Structure and Bonding, Vol. 102. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  3. German RM (1985) Liquid phase sintering, Plenum Press, New York

    Google Scholar 

  4. Telle R (1990) Structure and properties of Si-doped boron carbide. In: Freer R (ed) The Physics and Chemistry of Carbides, Nitrides and Borides. Kluwer Academic Publishers, Dordrecht, p 249

    Google Scholar 

  5. Baldus HP, Wagner O, Jansen M (1992) Mat Res Soc Symp Proc 271: 821

    CAS  Google Scholar 

  6. Bill J, Aldinger F (1995) Adv Mater 7: 775

    Article  CAS  Google Scholar 

  7. Riedel R, Bill J, Kienzle A (1996) Appl Metallorg Chem 10: 241

    Article  CAS  Google Scholar 

  8. Jansen M, Jüngermann H (1997) Curr Op Solid State & Mater Sci 2: 150

    Article  CAS  Google Scholar 

  9. (a) Baldus HP, Jansen M (1997) Angew Chem 109: 338; (b) Baldus HP, Jansen M (1997) Angew Chem Int Ed Engl 36: 328

    Article  Google Scholar 

  10. Laine RM, Sellinger A (1998) Sicontaining ceramic precursors. In: Rappoport Z, Apeloig Y (eds) The Chemistry of Organic Silicon Compounds. Vol. 2, J. Wiley & Sons Ltd., London, p 2245

    Chapter  Google Scholar 

  11. Baldus HP, Jansen M, Sporn D (1999) Science 285: 699

    Article  CAS  Google Scholar 

  12. Bill J, Wakai F, Aldinger F (eds) (1999) Precursor-derived ceramics. Wiley-VCH, Weinheim, New York, 36: 328

    Google Scholar 

  13. Weinmann M, Schuhmacher J, Kummer H, Prinz S, Peng J, Seifert HJ, Christ M, Müller K, Bill J, Aldinger F (2000) Chem Mater 12: 623

    Article  CAS  Google Scholar 

  14. Filipozzi L, Derré A, Conard J, Piraux L, Marchand A (1995) Carbon 33: 1747

    Article  CAS  Google Scholar 

  15. Hegemann D, Riedel R, Oehr C (1999) Chem Vap Deposition 5: 61

    Article  CAS  Google Scholar 

  16. Suenaga K, Willaime F, Loiseau A, Colliex C (1999) Appl Phys A 68: 301

    Article  CAS  Google Scholar 

  17. Pampuch R (1999) J Europ Ceram Soc 19: 2395

    Article  CAS  Google Scholar 

  18. Bill J, Schuhmacher J, Müller K, Schempp S, Seitz J, Dürr J, Lamparter HP, Weinmann M, Golczewski J, Peng J, Seifert HJ, Aldinger F (2000) Z Metallkd 91: 335

    CAS  Google Scholar 

  19. Wiedemeier H, Singh M (1989) Interfacial characterization of silicon nitride reinforced ceramic-matrix composites: a thermodynamic approach. In: Lin RY, Arsenault RJ, Martins GP, Fishman SG (eds) Interfaces in Metal-Ceramics Composites. The Minerals, Metals & Materials Society

    Google Scholar 

  20. Lee KN, Jacobson NS (1995) J Am Ceram Soc 78: 711

    Article  CAS  Google Scholar 

  21. Riedel R, Greiner A, Miehe G, Dreßler W, Fueß H, Bill J, Aldinger F (1997) Angew Chem 109: 657

    Article  Google Scholar 

  22. Liu AY, Cohen ML (1989) Science 245: 841

    Article  CAS  Google Scholar 

  23. Kroll P, Hoffmann R (1998) Angew Chem Int Ed 37: 2527

    Article  CAS  Google Scholar 

  24. Saunders N, Miodownik P (1988) CALPHAD (Calculation of phase diagrams): A comprehensive guide. In: Cahn RW (ed) Pergamon Materials Series, Vol 1, Pergamon, Oxford

    Google Scholar 

  25. Lukas HL, Henig ETH, Petzow G (1986) Z Metallkd 77: 360

    Google Scholar 

  26. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn, ASM, Metals Park, Ohio

    Google Scholar 

  27. Viala JC, Bouix J (1980) J Less-Common Met 71: 195

    Article  CAS  Google Scholar 

  28. Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueß H, Kroll P, Boehler R (1999) Nature 400: 340

    Article  CAS  Google Scholar 

  29. Lukas HL, Henig ET, Zimmermann B (1977) CALPHAD 1: 225

    Article  CAS  Google Scholar 

  30. Lukas HL, Fries SG (1992) J Phase Equilibria 13: 1261

    Article  Google Scholar 

  31. Dinsdale AT (1991) CALPHAD 15: 319

    Article  Google Scholar 

  32. Scientific Group Thermodata Europe, Grenoble Campus, 1001 Avenue Centrale, BP66, F-38402 Saint Martin D’Heres, France

    Google Scholar 

  33. Kasper B (1996) PhD Thesis, Universität Stuttgart

    Google Scholar 

  34. Kasper B, Seifert HJ, Kußmaul A, Lukas HL, Aldinger F (1997) Entwicklung eines thermodynamischen Datensatzes für das System B-C-N-Si-O. In: Aldinger F, Mughrabi H (eds) Proc Werkstoffwoche’ 96, Stuttgart, Symp 7, Materialwissenschaftliche Grundlagen. DGM-Informationsgesellschaft mbH, Frankfurt, p 623

    Google Scholar 

  35. Gröbner J, Lukas HL, Aldinger F (1996) CALPHAD 20: 247

    Article  Google Scholar 

  36. Lim SK, Lukas HL (1995) Thermodynamische Optimierung des Systems B-C-Si und seiner Randsysteme. In: Petzow G, Tobolski J, Telle R (eds) Hochleistungskeramik, Herstellung, Aufbau und Eigenschaften, Deutsche Forschungsgemeinschaft. VCH, Weinheim, p 605

    Google Scholar 

  37. Hillert M, Jonsson S, Sundman B (1992) Z Metallkd 83: 648

    CAS  Google Scholar 

  38. Liang JJ, Topor L, Navrotsky A, Mitomo A (1999) J Mater Res 14: 1959

    Article  CAS  Google Scholar 

  39. Redlich O, Kister AT (1948) Ind Eng Chem 40: 345

    Article  Google Scholar 

  40. Muggianu YM, Gambina M, Bros JP (1975) J Chim Phys 72: 83–88

    CAS  Google Scholar 

  41. Hillert M (2001) Journal Alloys and Compounds 320: 161

    Article  CAS  Google Scholar 

  42. Moissan H, Stock A (1900) C R Acad Sci (Paris) 131: 139

    CAS  Google Scholar 

  43. Knarr WA (1959) PhD thesis, University of Kansas

    Google Scholar 

  44. Brosset C, Magnusson B (1960) Nature 187: 54

    Article  CAS  Google Scholar 

  45. Trumbore FA (1960) Bell Syst Tech J 39: 205

    Google Scholar 

  46. Samsonov GV, Sleptsov VM (1963) Russ J Inorg Chem 8: 1047

    Google Scholar 

  47. Hesse J (1968) Z Metallkd 59: 499

    CAS  Google Scholar 

  48. Vick GL, Whittle KM (1969) J Electrochem Soc 116: 1142

    Article  CAS  Google Scholar 

  49. Ettmayer P, Horn HC, Schwetz KA (1970) Mikrochim Acta Suppl IV: 87

    Google Scholar 

  50. Schwettmann FN (1974) J Appl Phys 45: 1918

    Article  CAS  Google Scholar 

  51. Armigliato A et al and Masetti G et al (1977) In: Huff HR, Sirtl E (eds) Semiconductor silicon 1977. Electrochem Soc Inc, Princeton, New York, p 638 and p 648.

    Google Scholar 

  52. Arabei BG (1979) Izv Akad Nauk SSSR, Neorg Mat 15: 1589

    CAS  Google Scholar 

  53. Lugscheider E, Reimann H, Quadakkers WJ (1979) Ber Dt Keram Ges 56: 301

    CAS  Google Scholar 

  54. Ryssel H, Miller K, Haberger K, Henkelmann R, Jahnel F (1980) Appl Phys 22: 35

    Article  CAS  Google Scholar 

  55. Viala JC, Hillel R, Bouix J (1980) J Less-Common Met 71: 207

    Article  CAS  Google Scholar 

  56. Armas B, Male G, Salanoubat D, Chatillon C, Allibert M (1981) J Less-Common Met 82:245

    Article  CAS  Google Scholar 

  57. Male G, Salanoubat D (1981) Rev Int Hautes Temp Fr 18: 109

    CAS  Google Scholar 

  58. Vlasse N, Slack GA, Garbauskas M, Kasper JS, Viala JC (1986) J Sol State Chem 63: 31

    Article  CAS  Google Scholar 

  59. Borisenko VE, Yudin SG (1987) Phys Stat Sol (A) 101: 123

    Article  CAS  Google Scholar 

  60. Bolmgren H (1994) On the crystal structure and homogeneity range of rhombohedral silicon boride. Report UUIC-B18-266. Institute of Chemistry, Uppsala University, Sweden

    Google Scholar 

  61. Aselage TL (1998) J Mater Res 13: 1786

    Article  CAS  Google Scholar 

  62. Olesinski RW, Abbaschian GJ (1984) Bull Alloy Phase Diagrams 5: 478

    Article  Google Scholar 

  63. Giese RF, Economy J, Matkovich VI (1965) Z Krist 122: 144

    Google Scholar 

  64. Magnusson B, Brosset C (1962) Acta Chem Scand 16: 449

    Article  CAS  Google Scholar 

  65. Bolgar AS, Blinder AV, Muratov VB, Makarenko GN (1990) Thermodynamic properties of boron silicides. In: Silicides and their application in technology: Collection of scientific papers (in Russian). Inst Probl Materialoved, Akad Nauk UkrSSR, Kiev, p 78

    Google Scholar 

  66. Esin YuO, Kolesnikov SP, Baev VM, Ermakov AF (1978) Enthalpies of formation of liquid alloys of silicon with boron (in Russian). Tezisy Nauchn Soobshch Vses Konf Str Svoistvam Met Shlakovykh Rasplavov, 3rd edn., Vol 2, p 182

    CAS  Google Scholar 

  67. Biletskii AK, Scheretskii AA, Vitusevich VT, Shumihin VT (1988) Metals 3: 66

    Google Scholar 

  68. Gordienko SP (1995) Powder Metallurgy and Metal Ceramics 34: 660

    Article  Google Scholar 

  69. Armas B, Chatillon C, Allibert M (1981) Rev Int Hautes Temper Refract 18: 153

    CAS  Google Scholar 

  70. Noguchi R, Suzuki K, Tsukihashi F, Sano N (1994) Met Mater Trans B 25B: 903

    Article  CAS  Google Scholar 

  71. Tanahashi M, Fujisawa T, Yamauchi C (1998) Shigen-to-Sozai 114: 807

    Article  CAS  Google Scholar 

  72. Zaitsev AI, Kodentsov AA (2001) J Phase Equilibria 22: 126

    Article  CAS  Google Scholar 

  73. Kaufman L, Uhrenius B, Birnie D, Taylor K (1984) CALPHAD 8: 25

    Article  CAS  Google Scholar 

  74. Dirx RR, Spear KE (1987) CALPHAD 11: 167

    Article  Google Scholar 

  75. Goujard S, Vandenbulcke L, Bernard C (1994) CALPHAD 18: 369

    Article  CAS  Google Scholar 

  76. Goujard S, Vandenbulcke L, Bernard C, Blondiaux G, Debrun JL (1994) J Electrochem Soc 141: 452

    Article  CAS  Google Scholar 

  77. Kistler-de Coppi (1985) PhD Thesis, ETH Zürich

    Google Scholar 

  78. Hall RN (1958) J Appl Phys 29: 914

    Article  CAS  Google Scholar 

  79. Scace RI, Slack GA (1959) J Chem Phys 30: 1551

    Article  CAS  Google Scholar 

  80. Dolloff RT (1960) Research study to determine the phase equilibrium relations of selected metal carbides at high temperatures. WADD Technical Report 60-143, Wright Air Development Division

    Google Scholar 

  81. Nozakie T, Yatsurugi Y, Akiyama N (1970) J Electrochem Soc 117: 1566

    Article  Google Scholar 

  82. Voltmer FW, Padovani FA (1973) Semicond Silicon, Pop Int Symp Silicon Mater Sci Technol 2nd: 75–82

    Google Scholar 

  83. Oden LL, McCune RA (1987) Met Trans A 18 A: 2005

    Article  Google Scholar 

  84. Suhara S, Yuge N, Fukai M, Aratani F (1989) CAMP-ISIJ 2: 1341

    Google Scholar 

  85. Kleykamp H, Schumacher G (1993) Ber Bunsenges Phys Chem 97: 799

    CAS  Google Scholar 

  86. Yanaba K, Akasaka M, Takeuchi M, Watanabe M, Narushima T, Iguchi Y (1997) Mater Trans JIM 38: 990

    CAS  Google Scholar 

  87. Ottem (1997) cited in [86]

    Google Scholar 

  88. Olesinski RW, Abbaschian GJ (1984) Bull Alloy Phase Diagrams 5: 486

    Article  Google Scholar 

  89. Kieffer R, Gugel E, Ettmayer P, Schmidt A (1969) Mater Res Bull 4: 153

    Article  Google Scholar 

  90. Humphrey GL, Todd SS, Coughlin JP, King EG (1952) Report RI4888. US Dept Interior, Bureau of Mines

    Google Scholar 

  91. Kelley KK (1941) J Am Chem Soc 63: 1137

    Article  CAS  Google Scholar 

  92. Walker BE, Ewing CT, Miller RR (1962) J Chem Eng Data 7: 595

    Article  CAS  Google Scholar 

  93. Koshchenko VI, Demidenko AF, Prokofev NK, Yachmenev VE, Radchenko AF (1979) Inorg Mater 15: 1017

    Google Scholar 

  94. Koshchenko VI, Grinberg YK, Koshchenko RV (1985) Inorg Mater 21: 197

    Google Scholar 

  95. Magnus A (1923) Ann d Physik IV 70: 303

    Article  CAS  Google Scholar 

  96. Guseva EA, Bolgar AS, Gorbaenko SP, Gorbatyuk VA, Fesenko VV (1966) Teplofiz Vyschikh Temp 4: 649

    CAS  Google Scholar 

  97. Chekhovskoy VY (1971) J Chem Thermodyn 3: 289

    Article  Google Scholar 

  98. Ruff O, Grieger P (1933) Z Anorg Allg Chem 211: 145

    Article  CAS  Google Scholar 

  99. Yudin BF, Markholiya TP (1969) Russ J Appl Chem 42: 2439

    Google Scholar 

  100. Greenberg E, Natke CA, Hubbard WN (1970) J Chem Thermodyn 2: 193

    Article  CAS  Google Scholar 

  101. Chipman J, Fulton JC, Gokcen N, Caskey Jr GR (1954) Acta Metallurg 2: 439

    Article  CAS  Google Scholar 

  102. Drowart J, De Maria G, Inghram MG (1958) J Chem Phys 29: 1015

    Article  CAS  Google Scholar 

  103. Grieveson P, Alcock CB (1960) The thermodynamics of metal silicides and silicon carbide. In: Popper P (ed) Special Ceramics. Heywood, London, p 183

    Google Scholar 

  104. Davis SG, Anthrop DF, Searcy AW (1961) J Chem Phys 34: 659

    Article  CAS  Google Scholar 

  105. Kirkwood DH, Chipman J (1961) J Phys Chem 65: 1082

    Article  CAS  Google Scholar 

  106. d’Entremont JC, Chipman J (1963) J Phys Chem 67: 499

    Article  Google Scholar 

  107. Rein RH, Chipman J (1963) J Phys Chem 67: 839

    Article  CAS  Google Scholar 

  108. Sambasivan S, Capobianco C, Petuskey W (1993) J Am Ceram Soc 76: 397

    Article  CAS  Google Scholar 

  109. (a) Rocabois P, Chatillon C, Bernard C (1995/96) High Temperatures-High Pressures 27/28: 3; (b) Rocabois P, Chatillon C, Bernard C (1995/96) High Temperatures-High Pressures 27/28: 25

    Article  CAS  Google Scholar 

  110. Kleykamp H (1998) Ber Bunsengesellschaft Phys Chem 102: 1231

    CAS  Google Scholar 

  111. Coltters RG (1985) Mater Sci Eng 76: 1

    Article  CAS  Google Scholar 

  112. Gurvich LV, Veyts IV, Alcock CB (eds) (1991) Thermodynamic properties of individual substances. Fourth edition, Vol 1 and 2, Hemisphere Publishing Corporation

    Google Scholar 

  113. Kaufman L (1979) CALPHAD 3: 45

    Article  Google Scholar 

  114. Carlson ON (1990) Bull Alloy Phase Diagrams 11: 569

    Article  CAS  Google Scholar 

  115. Kaufman L (1979) CALPHAD 3: 275

    Article  CAS  Google Scholar 

  116. Dörner P, Gauckler LJ, Krieg H, Lukas HL, Petzow G, Weiss J (1981) J Mater Sci 16: 935

    Article  Google Scholar 

  117. Weiss J, Lukas HL, Lorenz J, Petzow G, Krieg H (1981) CALPHAD 5: 125

    Article  CAS  Google Scholar 

  118. Kaiser W, Thurmond CD (1959) J Appl Phys 30: 427

    Article  CAS  Google Scholar 

  119. Yatsurugi Y, Akiyama N, Endo Y (1973) J Electrochem Soc 120: 975

    Article  CAS  Google Scholar 

  120. Narushima T, Ueda N, Takeuchi M, Ishii F, Iguchi Y (1994) Mater Trans JIM 35: 821

    CAS  Google Scholar 

  121. Kostanovskii AV, Evseev AV (1994) High Temperature 32: 25

    Google Scholar 

  122. Cerenius Y (1999) J Am Ceram Soc 82: 380

    CAS  Google Scholar 

  123. Guzman IYa, Demidenko AF, Koshchenko VI, Fraifel’d MS, Egner YuV (1976) Inorg Mater 12: 1546

    Google Scholar 

  124. Koshchenko VI, Grinberg Y (1982) Inorg Mater 18: 903

    Google Scholar 

  125. Rocabois P, Chatillon C, Bernard C (1996) J Am Ceram Soc 79: 1351–1360

    Article  CAS  Google Scholar 

  126. Neel DC, Pears CD, Oglesby S (1962) The thermal properties of thirteen solid materials to 5000 °F or their destruction temperatures. Tech Doc Rep WADD-TR-60-924. South Res Inst, Birmingham

    Google Scholar 

  127. Wood JL, Adams GP, Mukerji J, Margrave JL (1973) Proc Third Int Conf Chem Thermodyn, Baden bei Wien, 2: 115

    Google Scholar 

  128. (a) O’Hare PAG, Tomaszkiewicz I, Beck II CM, Seifert HJ (1999) J Chem Thermodyn 31: 303; (b) O’Hare PAG, Tomaszkiewicz I, Seifert HJ (1997) J Mater Res 12: 3203

    Article  CAS  Google Scholar 

  129. Matignon C (1913) Bull Soc Chim Fr 13: 791

    CAS  Google Scholar 

  130. Hincke WB, Brantley LR (1930) J Am Chem Soc 52: 48

    Article  CAS  Google Scholar 

  131. Pehlke RD, Elliott JF (1959) Trans Metall Soc AIME 215: 781

    CAS  Google Scholar 

  132. McLaine LA, Coppel CP, Little AD (1966) Equilibrium studies of refractory nitrides. Technical Report AFML-TR-65-99, Part 11, Dec 1966

    Google Scholar 

  133. Ryklis ÉA, Bolgar AS, Fesenko VV (1969) Poroshk Metall (Kiev) 73: 92

    Google Scholar 

  134. Colquhoun I, Wild S, Grieveson P, Jack KH (1973) Proc Brit Ceram Soc 22: 207

    Google Scholar 

  135. Wild S, Grieveson P, Jack KH (1972) The thermodynamics and kinetics of formation of phases in the Ge-N-0 and Si-N-0 systems. In: Popper P (ed) Special Ceramics 5. British Ceramic Research Association, Stoke-on-Trent, Chap 20, p 271

    Google Scholar 

  136. Blegen K (1977) Equilibria and kinetics in the systems Si-N and Si-N-O. In: Riley FL (ed) Nitrogen Ceramics. Proc Nato Advanced Study Institute on Nitrogen Ceramics Noordhoff, Leyden, Chap 21, p 223

    Google Scholar 

  137. Andrievskii RA, Lyutikov RA (1996) Russ J Phys Chem 70: 526

    Google Scholar 

  138. Durham SJP, Shanker K, Drew RAL (1991) Canadian Metallurgical Quarterly 30: 39

    CAS  Google Scholar 

  139. Hendry A (1977) Thermodynamics of silicon nitride and oxynitride. In: Riley FL (ed) Nitrogen Ceramics. Proc Nato Advanced Study Institute on Nitrogen Ceramics, Noordhoff, Leyden, p 183

    Google Scholar 

  140. Chase Jr. MW, Davis CA, Downey Jr. JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF Thermochemical Tables. 3rd edn, J Phys Chem Ref Data 14. American Chemical Soc, American Inst of Physics, Nat Bureau of Standards

    Google Scholar 

  141. Heuer AH, Lou VLK (1990) J Am Ceram Soc 73: 2785

    CAS  Google Scholar 

  142. Elliott RP, Van Thyne RJ (1961) The boron-carbon system. Final Technical Report ARF 2200-12, US Atomic Energy Commission

    Google Scholar 

  143. Lowell CE (1967) J Am Ceram Soc 50: 142

    Article  CAS  Google Scholar 

  144. Kieffer R, Gugel E, Leimer G, Ettmayer P (1971) Ber Dt Keram Ges 48: 385

    CAS  Google Scholar 

  145. (a) Bouchacourt M, Thevenot F (1981) J Less-Common Met 82: 219; (b) Bouchacourt M, Thevenot F (1981) J Less-Common Met 82: 227

    Article  CAS  Google Scholar 

  146. Beauvy M (1983) J Less-Common Met 90: 169

    Article  CAS  Google Scholar 

  147. Samsonov GV, Zhuravlev NN, Annuel IG (1956) Fiz Met Metalloved 3: 309

    CAS  Google Scholar 

  148. Zhuravlev NN, Makarenko G, Samosonov GV (1960) Izvest Akad Nauk SSSR, Otdel Tekh Nauk Met I Toplivo 1: 133

    Google Scholar 

  149. Bouchacourt M, Thévenot F, Ruste J (1978) J Less-Common Met 59: 139; Bouchacourt M, Thevenot F (1979) J Less-Common Met 67: 327

    Article  CAS  Google Scholar 

  150. Thévenot F (1990) J Europ Ceram Soc 6: 205

    Article  Google Scholar 

  151. Schwetz KA, Karduck P (1991) J Less-Common Met 175: 1

    Article  CAS  Google Scholar 

  152. (a) Werheit H, Kuhlmann U, Laux M, Lundström T (1993) Phys Stat Sol B 179: 489; (b) Werheit H, Kuhlmann U, Lundström T (1994) J Alloys Compounds 204: 197

    Article  CAS  Google Scholar 

  153. Okamoto H, J Phase Equilibria 13: 436

    Google Scholar 

  154. Gilchrist KE (1985) High Temp-High Pressures 17: 671

    CAS  Google Scholar 

  155. Wood C, Emin D, Gray PE (1985) Phys Rev B (Solid State) 31: 6811

    CAS  Google Scholar 

  156. Matsui T, Arita Y, Naito K, Imai H (1991) J Nucl Mater 186: 7

    Article  CAS  Google Scholar 

  157. Medwick PA, Fischer HE, Pohl RO (1994) J Alloys Compounds 203: 67

    Article  CAS  Google Scholar 

  158. King EG (1949) Ind Eng Chem 41: 1298

    Article  CAS  Google Scholar 

  159. Sheindlin AE, Belevich IS, Kozhenikov IG (1972) Teplofiz Vysok Temp 10: 421

    CAS  Google Scholar 

  160. Smith D, Dworkin AS, Van Artsdalen ER (1955) J Am Chem Soc 77: 2654

    Article  CAS  Google Scholar 

  161. Domalski ES, Armstrong GT (1968) J Res Nat Bureau Std-A, Phys and Chem 72A: 133

    Google Scholar 

  162. Gal’chenko GL, Timofeev BI, Makarenko GN, Samsonov GV (1970) Russ J Phys Chem 44: 1400

    Google Scholar 

  163. Hong KC, Kleppa OJ (1978) J Chem Thermodyn 10: 797

    Article  CAS  Google Scholar 

  164. Froment K, Fouletier J, Fouletier M (1991) J Appl Electrochem 21: 175

    Article  CAS  Google Scholar 

  165. Froment AK, Chatillon C, Colin M (1991) Rev Int Htes Temp Réfract 27: 141

    CAS  Google Scholar 

  166. Froment K, Chatillon C, Fouletier J, Fouletier M (1992) J Nucl Mater 188: 280

    Article  CAS  Google Scholar 

  167. Dörner P (1982) PhD thesis, Universität Stuttgart

    Google Scholar 

  168. Kuhlmann U, Werheit H, Schwetz KA (1992) J Alloys Comp 189: 249

    Article  CAS  Google Scholar 

  169. Seifert HJ, Kasper B, Lukas HL, Aldinger F (2001) Thermodynamic assessment of the B-C system. In: Marin-Ayral RM, Record MC (eds) Compte-Rendus, Journées d’Etude des Equilibres entre Phases (XXVII JEEP). March 22 and 23, 2001, Montpellier, France, p 123

    Google Scholar 

  170. (a) Ploog K, Rauh P, Stoeger W, Schmidt H (1972) J Cryst Growth 13/14: 350; (b) Ploog K, Schmidt H, Amberger E, Will G, Kossobutzki KH (1972) J Less-Common Met 29: 161

    Article  Google Scholar 

  171. Saitoh H, Yoshida K, Yarbrough WA (1993) J Mater Res 8: 8

    Article  CAS  Google Scholar 

  172. Wen H (1994 ) Thermodynamische Berechnungen der Konstitution des Systemes Al-B-C-N-Si-Ti. VDI Fortschrittsberichte, Reihe 5, Nr. 333, Düsseldorf

    Google Scholar 

  173. Bundy FP, Wentorf RH (1963) J Chem Phys 38: 1144

    Article  CAS  Google Scholar 

  174. Corrigan FR, Bundy FP (1975) J Chem Phys 63: 3812

    Article  CAS  Google Scholar 

  175. Solozhenko VL, Turkevich VZ, Holzapfel WB (1999) J Phys Chem B 103: 2903

    Article  CAS  Google Scholar 

  176. Solozhenko VL (1988) Dokl Phys Chem 301: 592

    Google Scholar 

  177. Dvorkin AS, Sasmor DJ, Van Artsdalen ER (1954) J Chem Phys 22: 837

    Article  Google Scholar 

  178. Sirota NN, Kofman NA, Petrova ZhK (1975) Izv. AN BSSR, Ser Fiz-Mat Nauk (USSR) 6: 75

    Google Scholar 

  179. Gorbunov VE, Gavrichev KS, Totrova GA, Bochko AV, Lazarev VB (1988) Russ J Phys Chem 62: 9

    Google Scholar 

  180. Gavrichev KS, Solozhenko VL, Gorbunov VE, Golushina LN, Totrova GA, Lazarev VB (1993) Thermochim Acta 217: 77

    Article  CAS  Google Scholar 

  181. Sirota NN, Kofman NA (1975) Sov Phys-Dokl 20: 861

    Google Scholar 

  182. Solozhenko VL, Yachmenev VE, Vil’kovsky VA, Sokolov AN, Shul’zhenko AA (1987) Russ J Phys Chem 61: 1480

    Google Scholar 

  183. Gorbunov VE, Gavrichev KS, Totrova GA, Bochko AV, Lazarev VB (1987) Russ J Phys Chem 61: 3357

    CAS  Google Scholar 

  184. Solozhenko VL, Yachmenev VE, Vil’kovsky VA, Petrusha IA (1989) Inorg Mater 25: 134

    Google Scholar 

  185. Atake T, Honda A, Saito Y, Saito K (1990) Jpn J Appl Phys 29: 1869

    Article  Google Scholar 

  186. Sirota NN, Kofman NA (1976) Sov Phys-Dokl 21: 516

    Google Scholar 

  187. Gavrichev KS, Gorbunov VE, Solozhenko VL, Totrova GA, Golushina LN (1992) Zh Fiz Khim 66: 2824

    CAS  Google Scholar 

  188. Prophet H, Stull DR (1963) J Chem Eng Dat 8: 78

    Article  CAS  Google Scholar 

  189. Lusternik VE, Solozhenko VL (1992) Zh Fiz Khim 66: 1186

    Google Scholar 

  190. McDonalds RA, Stull DR (1961) J Phys Chem 65: 1918

    Article  Google Scholar 

  191. Agoshkov VM, Bogdanova SV (1990) Sov J Superhard Mater 12: 26

    Google Scholar 

  192. Solozhenko VL (1993) Zh Fiz Khim 67: 1580

    CAS  Google Scholar 

  193. Mezaki R, Tilleux EW, Barnes DW, Margrave JL (1962) In: Thermodynamics of Nuclear Materials. IAEA, Vienna, p 494

    Google Scholar 

  194. Kiseleva IA, Mel’chakova LV, Topor ND (1963) Izv Akad Nauk SSSR Neorg Mater (USSR) 9: 256

    Google Scholar 

  195. Solozhenko VL, Chaikovskaya IYA, Sokolov AN, Shul’zhenko AA (1987) Russ J Phys Chem 61: 412

    Google Scholar 

  196. Solozhenko VL, Chaikovskaya IYa, Petrusha IA (1989) Inorg Mater 25: 1414

    Google Scholar 

  197. Mayorova AF, Mudretsova SN, Solozhenko VL, Ryabova LA (1992) Proc Int Ceramic Congress, Istanbul, Turkey, 19–23 Oct 1992 (TCS, Istanbul, 1992) p 659

    Google Scholar 

  198. Solozhenko VL (1993) Thermochim Acta 218: 221

    Article  CAS  Google Scholar 

  199. Solozhenko VL (1993) Thermochim Acta 218: 395

    Article  CAS  Google Scholar 

  200. Solozhenko VL, Turkevich VZ (1992) J Therm Anal 38: 1181

    Article  CAS  Google Scholar 

  201. Solozhenko VL (1995) J Therm Anal 44: 97

    Article  CAS  Google Scholar 

  202. Gal–chenko GL, Kornilov AN, Skuratov SM (1960) Russ J Inorg Chem 5: 1282

    Google Scholar 

  203. Wise SS, Margrave JL, Feder HM, Hubbard WN (1966) J Phys Chem 70: 7

    Article  CAS  Google Scholar 

  204. Leonidov VYa, Tirnofeev IV (1989) Russ J Inorg Chem 34: 1545

    Google Scholar 

  205. Leonidov VYa, Timofeev IV, Solozhenko VL, Rodionov IV (1987) Russ J Phys Chem 61: 1503

    Google Scholar 

  206. Leonidov VYA, Timofeev IV, Lazarev VB, Bochko AV (1988) Zh Neorg Khim (USSR) 33: 1597

    CAS  Google Scholar 

  207. Leonidov VYa, O’Hare PAG (1992) Pure Appl Chem 64: 103

    Article  CAS  Google Scholar 

  208. Hoch M, White D (1956) Technical Research Report MCC 1023 TR 214. Ohio State University Research Foundation, Columbus, Ohio

    Google Scholar 

  209. Schissel P, Williams W (1959) Bull Am Phys Soc 4: 139

    Google Scholar 

  210. Dreger LH, Dadape VV, Margrave JL (1962) J Phys Chem 66: 1556

    Article  CAS  Google Scholar 

  211. Hildenbrand DL, Hall WF (1963) J Phys Chem 67: 888

    Article  Google Scholar 

  212. Gavrichev KS, Solozhenko VL, Lazarev VB (1994) Inorg Mater 30: 1025

    Google Scholar 

  213. Solozhenko VL (1995) J Hard Mater 6: 51

    CAS  Google Scholar 

  214. Rogl P (2001) Int J Inorg Mater 3: 201

    Article  CAS  Google Scholar 

  215. (a) Goenna J, Meurer HJ, Nover G, Peun T, Schoenbohm D, Will G (1998) Mater Lett 33: 321; (b) Will G, Nover G, Goenna J (2000) J Solid State Chem 154: 280

    Article  Google Scholar 

  216. Prochazka S (1981) The sintering process for SiC, a review. Technical report 81-CRD-314, General Electric, Schenectady, NY

    Google Scholar 

  217. Portnoi KI, Samsonov GV, Solonnikova LA (1960) Russ J Inorg Chem 5: 988

    Google Scholar 

  218. Secrist DR (1964) J Am Ceram Soc 47: 127

    Article  CAS  Google Scholar 

  219. Meerson GA (1966) Investigations of some hard alloys in the boron-silicon-carbon system. Mod Develop Powder Met, Proc Int Powder Met Conf 3: 95

    CAS  Google Scholar 

  220. Dokukina IV, Kalinina AA, Sokhor MI, Shamrai FI (1967) Izv Akad Nauk SSSR, Neorg Mater 3: 630

    CAS  Google Scholar 

  221. Shaffer PTB (1969) Mat Res Bull 4: 213

    Article  CAS  Google Scholar 

  222. Kalinina AA, Sokhor MI, Shamrai FI (1971) Izv Akad Nauk SSSR, Neorg Mat 7: 778

    CAS  Google Scholar 

  223. (a) Gugel E, Kieffer R, Leimer G, Ettmayer P (1972) Investigation in the ternary system boron-carbon-silicon. Nat Bur Stand Spec Publ, Solid State Chemistry, Proc 5th Mat Res Symp 364: 505; (b) Kieffer R, Gugel E, Leimer G, Ettmayer P (1972) Ber Dt Keram Ges 49: 41

    Google Scholar 

  224. Gierlotka S, Oleksyn O, Palosz B (1994) Mater Sci Forum 166–169: 529

    Article  Google Scholar 

  225. Werheit H, Kuhlmann U, Laux M, Telle R (1994) J Alloys and Compounds 209: 181

    Article  CAS  Google Scholar 

  226. Lipp A, Röder M (1966) Z Anorg Allg Chemie 344: 225

    Article  CAS  Google Scholar 

  227. (a) Kato T, Yoshimura M, Somiya S (1981) Yogyo-Kyokai-Shi 89: 356; (b) Kato T, Yoshimura M, Somiya S (1986) Rep Res Lab Eng Mat, Tokyo Inst Tech 11: 45

    Google Scholar 

  228. Isomura K, Fukuda T, Ogasahara T, Funahashi T, Uchimura R (1989) Proc UNITECR 89. Trosel LS (ed) J Am Ceram Soc 624

    Google Scholar 

  229. Thévenot F, Doche C, Mongeot H, Guilhon F, Miele P, Cornu D, Bonnetot B (1997) J Solid State Chem 133: 164

    Article  Google Scholar 

  230. Baldus HP, Jansen M, Wagner O (1994) Key Eng Mater 89–91: 75

    Google Scholar 

  231. Kavecky S, Janekova B, Sajgalik P (2000) Key Eng Mater 175: 49

    Google Scholar 

  232. Kroke E, Li YL, Konetschny C, Lecomte E, Fasel C, Riedel R (2000) Mater Sci Eng R26: 97

    CAS  Google Scholar 

  233. Kleebe HJ, Suttor D, Müller H, Ziegler G (1998) J Am Ceram Soc 81: 2971

    Article  CAS  Google Scholar 

  234. Seifert HJ, Peng J, Aldinger F (2001) J Alloys and Compounds 320: 251

    Article  CAS  Google Scholar 

  235. Rassaerts H, Schmidt A (1966) Planseeberichte für Pulvermetallurgie 14: 110

    CAS  Google Scholar 

  236. Seifert HJ, Aldinger F (1999) Thermodynamic calculations in the system Si-B-C-N-O. In: Bill J, Wakai F, Aldinger F (eds) Precursor-Derived Ceramics. Wiley-VCH, Weinheim, New York, p 165

    Google Scholar 

  237. Peng J, Seifert HJ, Aldinger F (2000) Thermal analysis of Si-C-N ceramics derived from polysilazanes. In: Müller G (ed) Ceramics-Processing, Reliability, Tribology and Wear. Proc EUROMAT’ 99, Vol 12, Wiley-VCH, Weinheim, p 120

    Chapter  Google Scholar 

  238. Lorenz J, Hucke EE, Lukas HL, Petzow G (1983) Formation of SiC by the reaction of Si-containing vapour with porous glassy carbon. In: Vincenzini P (ed) Ceramic Powders. Elsevier, Scientific Publishing Company, Amsterdam

    Google Scholar 

  239. Nickel KG, Hoffmann MJ, Greil P, Petzow G (1988) Adv Ceramic Materials 3: 557

    CAS  Google Scholar 

  240. Wada H, Wang MJ, Tien TY (1988) J Am Ceram Soc 71: 837

    Article  CAS  Google Scholar 

  241. Misra AK (1991) J Mater Sci 26: 6591

    Article  CAS  Google Scholar 

  242. Neidhardt U, Schubert H, Bischoff E, Petzow G (1994) Key Eng Mater 89–91: 187

    Google Scholar 

  243. Li Y, Hu Z, Gao Y, Liang Y (1995) J Mater Sci Technol 11: 466

    CAS  Google Scholar 

  244. Seifert HJ, Lukas HL, Aldinger F (1998) Ber Bunsenges Phys Chem 9: 1309

    Google Scholar 

  245. Jha A (1993) J Mater Sci 28: 3069

    Article  CAS  Google Scholar 

  246. Gugel E, Ettmayer P, Schmidt A (1968) Ber Dt Keram Ges 45: 395

    CAS  Google Scholar 

  247. Kandori T, Kamiya N, Kamigaito O (1975) Japan J Appl Phys 14: 137

    Article  CAS  Google Scholar 

  248. Schröder F (ed), Gmelin handbook of inorganic chemistry, Silicon B3 (1986) 8th edn., Springer-Verlag Berlin, Heidelberg, New York, Tokyo, p 527

    Google Scholar 

  249. Rocabois P, Chatillon C, Bernard C (1999) High Temp-High Press 31: 433

    Article  CAS  Google Scholar 

  250. J. Seitz (1996) PhD thesis, University of Stuttgart, Germany

    Google Scholar 

  251. Seitz J, Bill J (1996) J Mater Sci Lett 15: 391

    CAS  Google Scholar 

  252. Seifert HJ (1999) Z Metallkd 90: 1016

    CAS  Google Scholar 

  253. Bill J, Seitz J, Thurn G, Duerr J, Canel J, Janos BZ, Jalowiecki A, Sauter D, Schempp S, Lamparter HP, Mayer J, Aldinger F (1998) Phys Stat Sol A 166: 269

    Article  CAS  Google Scholar 

  254. Inomata Y, Inoue Z (1973) Yogyo-Kyokai-Shi 81: 441

    CAS  Google Scholar 

  255. Riedel R (1994) Adv Mater 6: 549

    Article  CAS  Google Scholar 

  256. Oscroft RJ, Thompson DP (1991) High-temperature reactions in the B-Al-Si-N-C system. 4th Int Symp Ceram Mater and Components f Engines. Swedish Ceramic Soc, p 172

    Google Scholar 

  257. Ruh R, Kearns M, Zangvil A, Xu Y (1992) J Am Ceram Soc 75: 864

    Article  CAS  Google Scholar 

  258. Badzian AR, Niemyski T, Appenheimer S, Olkuœnik E (1972) Graphite-boron nitride solid solutions by chemical vapor deposition. In: Proc 3rd Int Conf on Chemical Vapor Dep, Salt Lake City, UT, p 747

    Google Scholar 

  259. Badzian AR (1981) Mater Res Bull 16: 1385

    Article  CAS  Google Scholar 

  260. Chen SH, Diefendorf RJ (1980) Electrical properties of the system: boron-nitrogen-carbon. In: Proc Yd Int Carbon Conf Baden-Baden, p 44

    Google Scholar 

  261. Kaner RB, Kouvetakis J, Warble CE, Sattler ML, Bartlett N (1987) Mater Res Bull 22: 399

    Article  CAS  Google Scholar 

  262. Bill J, Riedel R, Passing G (1992) Z Anorg Allg Chem 610: 83

    Article  CAS  Google Scholar 

  263. Saugnac F, Teyssandier F, Marchand A (1992) J Am Ceram Soc 75: 161

    Article  CAS  Google Scholar 

  264. Derré A, Filipozzi L, Bouyer F, Marchand A (1994) J Mater Sci 29: 1589

    Article  Google Scholar 

  265. Sirota NN, Zhuk MM, Mazurenko AM, Olekhnovich AI (1977) Vestsi Akad Nauk BSSR, Ser Fiz-Mat Nauk 2: 111; Chemical Abstracts (1977) 87: 59009

    Google Scholar 

  266. Sauter DH (2000) PhD thesis, Universität Stuttgart, Germany

    Google Scholar 

  267. Solozhenko VL, Turkevich VZ, Sato T (1997) J Am Ceram Soc 80: 3229 Solozhenko VL (1997) Europ J Solid State Inorg Chem 34: 797

    CAS  Google Scholar 

  268. Nicolich JP, Hofer F, Brey G, Riedel R (2001) J Am Ceram Soc 84: 279

    CAS  Google Scholar 

  269. Solozhenko VL, Andrault D, Fiquet G, Mezouar M, Rubie DC (2001) Appl Phys Lett 78:1385

    Article  CAS  Google Scholar 

  270. Bill J, Kamphowe TW, Müller A, Wichmann T, Zern A, Weinmann M, Schuhmacher J, Müller K, Peng. J, Seifert HJ, Aldinger F (2001) Appl Organomet Chem 15: 777

    Article  CAS  Google Scholar 

  271. Seifert HJ, Peng J, Aldinger F (1999) Die Konstitution von Si-B-C-N Keramiken. In: Heinrich J, Ziegler G, Hermel W, Riedel R (eds) Werkstoffwoche’ 98, Vol VII, Keramik/Simulation Keramik. Wiley-VCH, Weinheim, p 339

    Google Scholar 

  272. Peng J, Seifert HJ, Aldinger F (2000) Thermal stability of precursor-derived Si-(B-)C-N ceramics. In: Bansal NP, Singh JP (eds) Innovative Processing and Synthesis: Ceramics, Glasses and Composites IV. Ceramic Transactions, Vol 115, The American Ceramic Society, USA, p 251

    Google Scholar 

  273. Seifert HJ, Peng J, Aldinger F (2001) Appl Organomet Chem 15: 794

    Article  CAS  Google Scholar 

  274. Singh RN, Brun MK (1988) Adv Ceram Mater 3: 235

    CAS  Google Scholar 

  275. Jalowiecki A, Bill J, Aldinger F, Mayer J (1996) Composites Part A 27 A: 717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seifert, H.J., Aldinger, F. (2002). Phase Equilibria in the Si-B-C-N System. In: High Performance Non-Oxide Ceramics I. Structure and Bonding, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45613-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45613-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43131-2

  • Online ISBN: 978-3-540-45613-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics