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Abstract. Linear cryptanalysis remains the most powerful attack
against DES at this time. Given 243 known plaintext-ciphertext pairs,
Matsui expected a complexity of less than 243 DES evaluations in 85
% of the cases for recovering the key. In this paper, we present a the-
oretical and experimental complexity analysis of this attack, which has
been simulated 21 times using the idle time of several computers. The
experimental results suggest a complexity upper-bounded by 241 DES
evaluations in 85 % of the case, while more than the half of the ex-
periments needed less than 239 DES evaluations. In addition, we give a
detailed theoretical analysis of the attack complexity.
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1 Introduction

Linear cryptanalysis against DES [10] has been introduced by Matsui [6,7] and
remains at this time the most powerful attack against this cipher. A single exper-
imental implementation [7] has been carried out. During this attempt, Matsui
managed to break a DES key in about 50 days on 12 powerful computers, the
plaintext-ciphertext pairs generation lasting 40 days and the exhaustive search
for the remaining unknown bits taking the last 10 days. It was noticed that the
second phase performed faster than one could expect theoretically.
Although several authors have studied, generalized and applied the linear crypt-
analysis concept in several ways, little work concerning its success probability
and its complexity has been done, and while it is widely accepted that linear
cryptanalysis of DES, given 243 known plaintext-ciphertext pairs, has a success
probability of 85 % within a complexity of 243 DES evaluations, it was conjec-
tured that this value is pessimistic [9,3].
Motivated by this fact, by the parallel implementation concept of Biham [1] and
the actual 64-bit processor performances, we propose in this paper a theoretical
and experimental complexity analysis. By using a fast DES routine implemented
for the Intel MMX architecture, the production part of the attack has been run
several time, virtually breaking a total of 21 keys.
This paper is organized as follows: in §2, we recall some theoretical background
on the attack. In §3, we describe briefly the design of the fast DES routine and
the attack implementation. In §4, we discuss and complete the success probabil-
ity and complexity model. In §5, we discuss some issues on the linear expression
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biases, the piling-up approximation and the wrong-key randomization hypothe-
sis, comparing the known theoretical results to our experimental ones and finally
we give in §6 our experimental results.

2 Matsui’s Attack

In this paper, we deal with the improved attack [7] proposed by Matsui against
DES. The attack’s core is unbalanced linear expressions, i.e. equations involving
a modulo two sum of plaintext and ciphertext bits on the left and a modulo two
sum of key bits on the right. Such an expression is unbalanced if it is satisfied with
probability 1 p = 1

2+κε with 0 < ε ≤ 1
2 and κ ∈ {−1, 1} when the plaintexts and

the key are independent and chosen uniformly at random and where κ depends
on the key value.
Given some plaintext bits Pi1 , . . . ,Pir , ciphertext bits Cj1 , . . . ,Cjs and key bits
Kk1 , . . . ,Kkt , and using the notation Xl1 ⊕ Xl2 ⊕ . . . ⊕ Xlu = X[l1,...,lu], we can
write a linear expression L as

L : P[i1,...,ir] ⊕ C[j1,...,js] = K[k1,...,kt] (1)

Matsui’s improved attack operates on 14 rounds using two biased linear expres-
sions which collect statistical information on 26 bits out of the first and last
round subkeys. The remaining 30 unknown key bits have to be searched exhaus-
tively. The linear expression (1) involves thus two terms of F -function and can
be rewritten as

L : P[i1,...,ir] ⊕ C[j1,...,js] ⊕ F (1)
[l1,...,lu]

(
P,K(1)

)⊕
F

(16)
[m1,...,mv ]

(
C,K(16)

)
= K[k1,...,kt] (2)

where F (1)
[l1,...,lu]

(
P,K(1)

)
is the modulo two sum of some bits resulting from the

F -function output in the first round and K(1) is the subkey of round 1. A similar
notation is used for the last F -function.
The attack main idea is related to the following assumption:

Assumption 1 (Wrong-key randomization hypothesis [3]). For any lin-
ear expression L operating on n rounds for which

∣∣∣∣Pr
[
L = 0 | K(1) = k(1), . . . ,K(n) = k(n)

]
− 1
2

∣∣∣∣
is large for virtually all values k(1), . . . , k(n) of the round keys, the following is
true: for virtually all possible full keys (k(1), . . . , k(n)) and for all estimates k̂ of

1 In the literature, this non-linearity measure is often called linear probability, and
expressed as LPf (a, b) = (2Pr[a · x = b · f(x)]− 1)2, where a and b are the masks
selecting the plaintext and ciphertext bits, respectively. In this paper, we will refer
to the bias ε for simplicity reasons.
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the last round key,
∣∣Pr [L = 0 | K = kr]− 1

2

∣∣∣∣∣Pr [L = 0 | K = k̂
]
− 1

2

∣∣∣ 
 1 ∀k̂ �= kr (3)

where kr is the right key.

Intuitively, the decryption of the first and the last round with wrong subkey can-
didates can be considered as two rounds more of encryption. Thus, the plaintext
and the ciphertext will be less dependent, and the linear expressions less biased.
The first linear cryptanalysis phase (see Fig. 1) consists in evaluating the bias
of both linear expressions for all possible subkey candidates and for all known
plaintext-ciphertext pairs. In a second phase (Fig. 2), the two lists of subkey
candidates corresponding each to a linear expression are sorted in a maximum-
likelihood manner, combined, and the missing bits are finally searched exhaus-
tively for each pair of subkey candidate until the right key is found.
The complexity C of the attack is then related to the number of needed DES

encryptions in the exhaustive search part while its success probability PC within
a given complexity C is also related to the success while guessing the right part
of both linear expressions.

1: N = number of known plaintext-ciphertext pairs at disposal.
2: for linear expressions L1 and L2 do
3: for all subkey candidates k̂i, 1 ≤ i ≤ 212 do
4: Ck̂i = number of times out of N where left part of (2) is equal to 0 when

K = k̂i.
5: end for
6: end for

Fig. 1. Matsui’s algorithm 2 [7] (phase 1)

3 Implementation of the Attack

The linear cryptanalysis attack against DES, except the exhaustive search part,
has been implemented as described in [7]. After having determined the rank of
the right subkey candidate in the final list, it is not difficult to compute 2 the
expected complexity (in DES function evaluations) of the exhaustive search part:

E[Ĉ] = (r − 1) · 230 + 229
2 The strategy used to combine the two lists of 13-bit subkey candidates is Matsui’s
proposed one [7]: sort the pairs by increasing r = i · j (see lines 12-13 of Fig. 2),
where i and j are the respective ranks in the 13-bit subkey lists.
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1: for linear expressions L1 and L2 do
2: Sort the Ck̂i ’s by decreasing

∣
∣
∣N2 − Ck̂i

∣
∣
∣ and rename them C∗j , 1 ≤ j ≤ 212.

3: for 1 ≤ j ≤ 212 do
4: /* κ is defined in Sect. 2 (expected bias of L) */
5: if

(
C∗j − N

2

)
κ > 0 then

6: Guess K[k1,...,kt] = 0
7: else
8: Guess K[k1,...,kt] = 1
9: end if
10: end for
11: end for
12: Form 224 (C∗i , C

∗
j )r pairs where r := i · j.

13: Sort them by increasing r and rename them Dk, 1 ≤ k ≤ 224.
14: for 1 ≤ k ≤ 224 do
15: Fix the key bits given by Dk and search exhaustively the remaining 30 bits of

K until the right key is found.
16: end for

Fig. 2. Matsui’s algorithm 2 [7] (phase 2)

where r is the rank in the list D of subkey candidates. The complexity’s estima-
tion error has thus a maximal value of 229 DES evaluations, which is negligible
almost all the time.
The computational most intensive part of the attack being data encryption, the
involved DES routine speed is a key parameter regarding the time needed to
process 243 plaintexts. We have thus implemented a very fast DES routine using
the bitslicing concept [1] and some attack-related optimizations. Our routine has
been designed for the Intel MMX architecture which has eight 64-bit registers
at disposal. Although this platform has several drawbacks regarding a bitsliced
implementation [8], it has the advantage of being very common.
Kwan’s gate representation of the S-boxes [5] builds the core of the implementa-
tion, the other parts of the cipher (key schedule, permutations, ...) being hard-
coded. By eliminating parts of the cipher unrelated to the attack and by using
advanced optimization techniques like instruction pairing, prefetching of the data
and code unrolling, we managed to get an encryption speed of 183 Mbps on an
Intel Pentium III clocked at 666 MHz. This represents 232.7 clock cycles for
encrypting one block of data. One can hardly compare this number with exist-
ing good implementations 3, because of the optimizations related to the attack;
however, using classical available implementations for our purposes would have
resulted in poorer performances.

3 A DES routine was implemented for similar purposes in [12] on other platforms;
they report 62 Mbps on a Ultra SPARC 200 MHz and 336 Mbps on a Alpha 21164A
500 MHz. The significant speed difference on the latter platform is due to the large
number of available 64-bit registers (and thus to a lesser number of slow memory
accesses).
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The attack has run 21 times, using the idle time of 8 to 16 computers; this
represents between 3 and 6 days for a single run.

4 Success Probability

In this section, we address a general way to characterize the probability distri-
bution of the rank of the right 13-bit subkey in the list of candidates given by a
linear approximation L.

4.1 Rank Probability

As the complexity C of the attack is closely related to the rank of the right
subkey in the candidates list, we address first the problem of estimating the
rank distribution.
LetW1, . . . ,Wn be n independent and identically distributed continuous random
variables having fW (x) and FW (x) as common density function and distribution
function, respectively. Let R be a continuous random variable independent of
the Wi’s and having fR(x) and FR(x) as density and distribution function. Sort
these n + 1 random variables in non-increasing order and rename them Z(1) >
Z(2) > . . . > Z(n+1). Finally, let Ψ be a discrete random variable taking values on
{1, . . . , n+1} which models the rank of R in the sorted list: Ψ = ψ ⇔ Z(ψ) = R.
The distribution of Ψ and its expected value are given by the following theorem,
whose proof is given in Appendix A.

Theorem 1. Under previous assumptions and for 1 ≤ ψ ≤ n ∈ N, the distribu-
tion function of Ψ is equal to

Pr [Ψ ≤ ψ] =
∫ +∞

−∞
Bn+1−ψ,ψ(FW (x))fR(x)dx

and

E [Ψ ] = 1 + n
(
1−

∫ +∞

−∞
fR(x)FW (x)dx

)

where

Ba,b(x) =
Γ (a+ b)
Γ (a)Γ (b)

∫ x

0
ta−1(1− t)b−1dt

is the incomplete beta function of order (a, b).

In order to be able to compute the densities of the estimated biases4, we first
have to make the following assumptions [13]; the two first ones are heuristic in
nature, while the last one is motivated by the law of large numbers. Ckr (Ckw)
will denote a random variable modeling the counter value (as defined at line 4
of Fig. 1) in the case of a right (wrong) subkey candidate and N is the number
of known plaintext-ciphertext pairs.
4 The mean and standard deviation of the counters and the respective biases of the
linear expression being linearly related, we will use in the following the bias termi-
nology.
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Assumption 2. The bias

Bw =
∣∣∣∣12 −

Ckw
N

∣∣∣∣
of a linear expression evaluated with wrong subkey candidates has a distribution
independent of the key value.

Assumption 3. The bias

Br =
∣∣∣∣12 −

Ckr
N

∣∣∣∣
of a linear expression evaluated with the right subkey candidates has a distribu-
tion independent of the distribution defined in Assumption 2 and independent of
the key value.

Assumption 4. The distributions of CkrN and Ckw
N are well approximated by a

normal law.

We denote in the following the normal law density with mean µ and variance
σ2 by φ(µ,σ2) and the corresponding cumulative distribution function by Φ(µ,σ2).
Because the cryptanalyst ignores the linear expression’s right part, she is more
interested in the absolute value of the biases. Noting that if X is a normal
law φ(µ,σ2), the density of Y = |X − a|, a ≤ µ is given by f (µ,σ

2)
Y (y, a) =

φ(µ,σ2)(y + a) + φ(µ,σ2)(a − y) for 0 ≤ y ≤ +∞, the bias densities in case of
wrong and right subkey candidates are respectively given by

fW (x) = f (µw,σ
2
w)(x, 12 ) (4)

fR(x) = f (µr,σ
2
r)(x, 12 ) (5)

with

µr = E
[
Ckr
N

]
=
1
2
+ κεr µw = E

[
Ckw
N

]
=
1
2
+ κεw

σ2r = Var
[
Ckr
N

]
≈ 1
4N

σ2w = Var
[
Ckw
N

]
≈ 1
4N

where κ ∈ {−1,+1} depends of the unknown key bits and Ckr (Ckw) is the
random variable modeling the value of the counter corresponding to the (a)
right (wrong) subkey. Fig. 4 gives some numerical evaluations of Theorem 1
for these densities while the following table gives the expected rank for various
amounts of known plaintext-ciphertext pairs at disposal. Here, we assume that
εr = 1.19 · 2−21 is equal to the piling-up lemma approximation and that εw = 0.
We note that Theorem 1 gives exactly the same values as Matsui’s experimental
computations [7] regarding the cumulative rank probability of the right subkey
candidate.
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N 243 242.5 242 241 240

E[Ψ ] 71.3 182.5 361.9 847.3 1311.6
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Fig. 3. Rank distribution Pr [Ψ ≤ ψ] for various amounts N of plaintext-ciphertext
pairs.

4.2 Success Probability

The attack’s success probability PC within a given complexity C is also dependent
on the error probability while guessing the bit of information about K[k1,...,kt].
Using the same assumptions as during the previous computations, it is easy to
compute this error probability (in the case where κ = +1 and K[k1,...,kt] = 0, the
other ones being symmetric).

pwg = Pr
[
“K[k1,...,kt] wrongly guessed”

]
= Φ(µr,σ2

r)

(
N

2

)
(6)

The following table gives some numerical approximations for various N :
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N 243 242.5 242 241 240

pwg 0.0004 0.0023 0.0086 0.0462 0.1170

5 Experimental Linear Expressions Biases

A key parameter regarding the linear cryptanalysis success is of course the bias
of the involved linear expression(s). As it is infeasible to compute the exact bias
of a linear expression, one uses implicit assumptions, such as the wrong-key ran-
domization one and the independence of data between two successive rounds.
The incidence of these assumptions has been well discussed in the literature
[9,2,3,4]. Although several situations where these assumptions can fail have been
suggested and discussed, it is accepted that the linear expression real bias should
be well approximated in case the of DES.
The experimental results go in this direction. We have computed the sample
means of the experimental biases B̂r and B̂w, which can be compared to the
expected values of densities (4) and (5).
In case of right key, the sample mean is equal to 5.5 · 10−7 with a standard
deviation of 0.2 · 10−7. This value has to be compared with the one given by
the piling-up approximation and (5), E[Br] = 5.674 · 10−7. As a first observa-
tion, one can note that the linear hull effect [9] is not visible for DES, the mean
experimental bias being not perceptibly greater than the piling-up lemma ap-
proximation.
Our experiments provide furthermore a good opportunity to confirm the va-
lidity of Assumption 1. The sample mean in case of wrong subkey candidates,
averaged over all the wrong subkeys and all experiments, is equal to 1.38 · 10−7
with a standard deviation of 0.03 · 10−7. This value has to be compared with
E[Bw] = 1.345 · 10−7 given by εw = 0 and (4). Obviously, as one could expect,
the mean seems to be slightly greater than for a perfect cipher and thus the
plaintext and ciphertext are still correlated. However, the bias values for the
wrong candidates are not on the same scale as those for the right candidates,
confirming the validity of Assumption 1 for DES.

6 Experimental Results

It is widely accepted that linear cryptanalysis of DES, given 243 known plaintext-
ciphertext pairs, has a success probability of PCA = 85% within a complexity
of CA = 243 DES encryptions, which are values given in [7]. Our experimental
results suggest a lower complexity.

6.1 Rank and Guessing Error Probabilities

Each of the 21 experiments provides two statistical samples. Following table sum-
marizes our results about the ranks of the right subkey candidates for various
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N 243 242.5 242 241 240

ψ ≤ 5 20 (22) 13 (13.5) 7 (7.6) 0 (2.3) 0 (0.8)
ψ ≤ 10 27 (25.8) 16 (17.1) 9 (10.5) 2 (3.6) 0 (1.3)
ψ ≤ 50 33 (33.6) 26 (26.2) 18 (18.8) 5 (8.6) 2 (3.9)
ψ ≤ 150 38 (37.7) 34 (32.3) 24 (25.7) 10 (14.3) 5 (7.7)
ψ ≤ 300 42 (39.4) 39 (35.7) 31 (30.3) 17 (19.2) 14 (11.6)
ψ ≤ 600 42 (40.8) 40 (38.5) 35 (34.6) 25 (24.7) 22 (16.8)

E[ψ] 38 (71) 129 (182) 302 (362) 654 (847) 1121 (1312)

amounts N of known plaintext-ciphertext pairs and compare them to the the-
oretical expectations (values in smaller characters) given by Theorem 1. We
observe that Theorem 1 seems to give a pessimistic rank expected value. It is
difficult to explain this fact because of the small statistical sample size. Fur-
thermore, we have noticed that Theorem 1 is very sensitive numerically. For
instance, the expected rank E[Ψ ] is equal to 113 and to 39 when we assume that
εr = 1.1 · 2−21 and εr = 1.3 · 2−21, respectively.
The experimental results regarding the remaining bit guessing error probability
are summarized in the following table. The number nwg of cases where the guess-
ing phase was unsuccessful is reported, together with the theoretical expected
values given by (6) which are given in smaller characters. One can see that (6) is

N 243 242.5 242 241 240

nwg 0 (0.02) 0 (0.10) 0 (0.36) 0 (1.94) 1 (4.91)

a bit pessimistic, which can be explained a new time by the arguments developed
below. We note furthermore that the success probability PC of the linear crypt-
analysis of DES within a given complexity C seems not to be so dependent on
the guessed bit of information about the key and that the key factor regarding
PC is the given upper bound C.

6.2 Complexity of the Attack

An exhaustive table of our experimental results regarding the complexity is
given in Appendix B. Key facts (mean, median, maximal and minimal Ĉ) are
summarized in the following table where a value of x means 2x DES evaluations:
Our experimental results lead to the following observations:

– Given 243 known plaintext-ciphertext pairs, our experiments have a com-
plexity of less than 241 DES evaluation with a success probability of 86
% where more than the half of the cases have a complexity less than 239.
Furthermore, if an attacker is ready to decrease her success probability, the
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N 243 242.5 242 241 240

µĈ 41.4144 47.1516 48.9504 50.2121 51.4154
Ĉmed 38.1267 41.8023 44.2949 48.5492 51.0533
Ĉmin 32.1699 29.0000 36.5157 43.8552 41.9750
Ĉmax 45.4059 51.2973 52.3671 52.1953 53.1000

complexity drops dramatically (less than 234 DES evaluations with a success
probability of 10 %).

– Given 242.5 known plaintext-ciphertext pairs (i.e. with 30 % less pairs), half
of the experiments have a complexity less than 242 DES evaluations.

– With only 240 pairs at disposal, the complexity is far lower than an exhaus-
tive search.

Even if we have to take these experimental results carefully because of the rela-
tive small number of statistical samples, they suggest strongly a lower complexity
than expected by Matsui in [7] and we risk the following conjecture:

Proposition 1. Given 243 known plaintext-ciphertext pairs, it is possible to re-
cover a DES key using Matsui’s linear cryptanalysis within a complexity of 241

DES evaluations with a success probability of 85 %.

7 Conclusion

The first goal of this research was to perform an experimental linear cryptanalysis
of DES as many times as possible in order to get a better insight into the real
complexity and success probability of this attack. Using a very fast DES function
developed for the Intel MMX architecture, we have simulated Matsui’s attack
21 times.
Our experimental results suggest a lower complexity than estimated by Matsui.
Given 243 known plaintext-ciphertext pairs, the complexity was upper-bounded
by 241 DES evaluations with a success probability of 85 %. This has to be
compared with the estimated 243.
We give furthermore a detailed theoretical analysis of the rank probability of the
right subkey in the list of candidates, confirming Matsui’s experimental results,
and we discuss the validity of our theoretical model towards the experimental
results, together with several issues regarding past research.
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2. U. Blöcher and M. Dichtl, Problems with the linear cryptanalysis of DES using
more than one active S-box per round, FSE ’94, LNCS, vol. 1008, Springer-Verlag,
1995, pp. 265–274.

3. C. Harpes, G. Kramer, and J.L. Massey, A generalization of linear cryptanaly-
sis and the applicability of Matsui’s piling-up lemma, Advances in Cryptology -
EuroCrypt ’95, LNCS, vol. 921, Springer-Verlag, 1995, pp. 24–38.

4. Z. Kukorelly, The piling-up lemma and dependent random variables, Cryptography
and coding: 7th IMA conference, LNCS, vol. 1746, Springer-Verlag, 1999.

5. M. Kwan, Reducing the gate count of bitslice DES,
http://eprint.iacr.org/2000/051.ps, 2000.

6. M. Matsui, Linear cryptanalysis method for DES cipher, Advances in Cryptology
- EuroCrypt ’93, LNCS, vol. 765, Springer-Verlag, 1993, pp. 386–397.

7. , The first experimental cryptanalysis of the Data Encryption Standard,
Advances in Cryptology - Crypto ’94, LNCS, vol. 839, Springer-Verlag, 1994, pp. 1–
11.

8. L. May, L. Penna, and A. Clark, An implementation of bitsliced DES on the pen-
tium MMX TM processor, Information Security and Privacy: 5th Australasian
Conference, ACISP 2000, LNCS, vol. 1841, Springer-Verlag, 2000.

9. K. Nyberg, Linear approximation of block ciphers, Advances in Cryptology - Eu-
roCrypt ’94, LNCS, vol. 950, Springer-Verlag, 1995, pp. 439–444.

10. National Bureau of Standards, Data encryption standard, U. S. Department of
Commerce, 1977.
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A Proof of Theorem 1

As a first step, let’s consider the following situation: let W1,W2, . . . ,Wn be n
independent and identically distributed continuous random variables having fW
as density function and FW as distribution function. We arrange the values of
W1,W2, . . . ,Wn in strictly5 increasing order and denote them by W(1) < W(2) <
. . . < W(n). The distribution function FW(i) of W(i) is given by the following
Lemma whose proof can be found in [11].

Lemma 1. Under previous assumptions, the distribution function of the i-th
smallest random variable is

FW(i)(x) = Bi,n−i+1 (F (x))

5 The probability that equal values occur is 0.
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where

Ba,b(x) =
Γ (a+ b)
Γ (a)Γ (b)

∫ x

0
ta−1(1− t)b−1 dt

is the incomplete beta function of order (a, b).

By using the previous Lemma and the independence between the involved ran-
dom variables, we can compute FΨ (x) as follows:

Pr [Ψ ≤ ψ] = Pr [W(ψ) < R
]

=

+∞∫
−∞

y∫
−∞

fW(ψ)(x)fR(y) dx dy

=
∫ +∞

−∞
Bn+1−ψ,ψ (FW (y)) fR(y) dy

By definition, we have

E [Ψ ] =
n+1∑
ψ=1

ψ · Pr [Ψ = ψ]

= Pr [Ψ = 1] +
n+1∑
ψ=2

ψ (Pr [Ψ ≤ ψ]− Pr [Ψ ≤ ψ − 1])

= n+ 1−
n∑

ψ=1

Pr [Ψ ≤ ψ]

where

n∑
ψ=1

Pr [Ψ ≤ ψ] =
n∑

ψ=1

∫ +∞

−∞
Bn+1−ψ,ψ (FW (y)) fR(y) dy

=
∫ +∞

−∞
fR(y)

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) dy

It is easy to see that

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) = n
∫ FW (y)

0

n−1∑
i=0

(
n− 1
i

)
ti(1− t)n−1−i dt

= n
∫ FW (y)

0
dt

= nFW (y)
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and we can thus conclude with

E [Ψ ] = n+ 1−
∫ +∞

−∞
fR(y)

n∑
ψ=1

Bn+1−ψ,ψ (FW (y)) dy

= n+ 1− n
∫ +∞

−∞
fR(y)FW (y) dy

= 1 + n
(
1−

∫ +∞

−∞
fR(y)FW (y) dy

)

B Complete Experimental Results

This table gives the experimental results regarding the complexity Ĉ of each run
of the attack for various amounts of plaintext-ciphertext pairs.

Exp N = 243 N = 242.5 N = 242 N = 241 N = 240

1 39.1836 38.4818 45.0307 51.3802 51.0533
2 33.2479 41.6346 43.6383 48.0928 43.1913
3 38.6055 41.8023 43.9622 48.5492 51.6012
4 38.1267 34.6147 41.3351 48.7240 51.2041
5 37.4878 29.0000 36.5157 46.1991 52.3685
6 34.0444 44.2753 46.6834 48.5221 50.1937
7 36.4676 45.5732 44.2949 47.3010 51.2913
8 36.1189 44.7722 41.4091 51.6338 52.1143
9 40.3515 47.0565 48.6184 52.1953 53.1000
10 41.6540 41.8682 45.7429 47.9120 41.9750
11 45.4059 51.2973 51.9932 51.8155 52.1972
12 36.1189 43.6633 46.7256 50.3949 49.2317
13 36.4009 36.1189 43.2183 47.0756 46.7680
14 39.0042 42.6736 44.3057 44.7116 47.3256
15 37.6330 39.8572 47.6536 49.5244 52.6439
16 38.9204 36.6653 41.5447 49.1082 49.9939
17 33.5236 38.8502 43.3128 46.1030 48.6798
18 39.8478 47.4938 52.3671 50.6770 50.3675
19 32.1699 31.8074 40.5093 43.8552 48.4968
20 40.7503 38.3729 40.3734 45.2436 52.3101
21 41.8721 44.9063 45.4147 52.0730 52.8571
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