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Abstract. Feature selection has received a lot of attention in the ma-
chine learning community, but mainly under the supervised paradigm. In
this work we study the potential benefits of feature selection in hierarchi-
cal clustering tasks. Particularly we address this problem in the context
of incremental clustering, following the basic ideas of Gennari [8]. By
using a simple implementation, we show that a feature selection scheme
running in parallel with the learning process can improve the clustering
task under the dimensions of accuracy, efficiency in learning, efficiency
in prediction and comprehensibility.

1 Introduction

The performance of inductive learning algorithms heavily depends on the fea-
tures used to describe the training data. As widely reported in the literature,
most algorithms are known to degrade in performance when faced with features
that are not useful for the task at hand. Ideally, one would like to provide the
algorithm only with features containing useful information . However, there are
many applications where experts make arbitrary choices or simply there are
too many features to be processed by hand, so that automatic feature selection
methods are needed.

Feature selection has received a lot of attention in the machine learning
community as reflected in the huge number of works in the area as reviewed for
instance in [1,2]. However, most of these works address the problem of supervised
learning, and we can find only a few works devoted to unsupervised learning.

In this paper we address the particular problem of unsupervised feature se-
lection in incremental hierarchical clustering. Given the nature of this sort of
algorithms, we study a dynamic feature selection method that runs in parallel
with learning. We follow the general guidelines proposed by Gennari [8] who pro-
posed a dynamic feature selection method but only evaluated its merits with few
datasets. We extend the testing procedure by adding some new dimensions to
evaluate the benefits of feature selection and using several UCI datasets typically
used for these purposes in supervised learning. Rather than develop an optimal
method for feature selection, our work aims to explore the potential benefits
of dynamic feature selection in clustering by using a more simple scheme that
Gennari’s but powerful and flexible enough to draw some interesting conclusions.
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2 Supervised and Unsupervised Learning

The most common type of inductive learning problems are supervised classifi-
cation problems. Given a set of labeled training examples the goal is to build
a classification model that is able to correctly classify new, unseen instances.
Evaluation of supervised learning systems is done by measuring the accuracy
of the system. The system is provided with a separate set of instances usually
called the test set, that is used to predict the label of each instance. Accuracy
is estimated from the proportion of correct predictions over the total number of
instances.

Unlike supervised learners, unsupervised algorithms do not have access to la-
beled examples. In unsupervised learning there are no target outputs associated
with the inputs, and systems must resort to internal biases to decide which rela-
tionships should be represented in the output. This makes very difficult to define
a widely accepted method for evaluating unsupervised learners and, particularly,
clustering systems.

A first and widely used method for evaluating clustering systems is to com-
pute predictive accuracy as is done for supervised classifiers. In order to apply
this procedure a dataset with a known class structure must be used. The sys-
tem is provided with a training set with the labels masked out from which a
model is built. After learning, each cluster created by the system is labeled with
the majority value for the class attribute and then the model is used to predict
the label of instances in a test set. The resulting accuracy serves as a measure
of how well the system has discovered the (known) underlying structure in the
dataset. Alternatively, instead of using the system for prediction, after labeling
the clusters, the proportion of incorrectly placed instances is computed as the
accuracy of the system. This method is commonly used in statistics, since most
statistical clustering approaches are not intended to make predictions.

A not so popular but not less interesting evaluation criterion is flexible pre-
diction or pattern completion [6,11].Since in unsupervised learning there is no a
priori target feature, it appears natural to consider that clustering or unsuper-
vised systems in general, may support inference of any unknown feature value.
A performance measure for this task is the average prediction accuracy over all
the features. In order to compute this measure, each feature present in the data
is masked out and the discovered model is used to predict its value from the
information provided for the rest of features as if it was a “label”. The aver-
age of each individual accuracy for all the features is then taken as the overall
predictive accuracy of the system. Note that flexible prediction is a much more
complex task that label prediction, since multiple targets must be predicted from
a single model. As an example, if you consider that a supervised classifier might
be given the concept of “tiger” and then recognize this animal from observed
features, from the viewpoint of flexible prediction, a clustering system should
be able to predict, for example, that the animal is dangerous from the other
observed features without even knowing the concept of “tiger” in advance.

Of course, other concerns may be particularly interesting in unsupervised
learners, such as the comprehensibility of the results for humans, given that they
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discover completely new knowledge. In some cases users may be interested in the
descriptive aspect of the results rather in their predictive power. Additionally,
for particular applications there can be task-specific constrains. However, these
aspects are usually very difficult to evaluate with numerical measures and often
evaluation is very subjective.

3 Feature Selection in Hierarchical Clustering

At a conceptual level, the feature selection problem is similar for both supervised
and unsupervised learners. Considering feature selection as a heuristic search in
a space of feature subsets, any method, supervised or unsupervised, requires
an starting point in the space, a search strategy, an evaluation function and a
stopping criterion [1]. Under this view, unsupervised feature selection methods
could be designed by adapting existing supervised methods and adding a few
task-specific modifications. However, in practice, the adaptation of the evaluation
function is not straightforward, since all the existing criteria rely on assessing
how well a given feature subset discriminates among a set of predefined classes
that are not available for unsupervised learners. In fact, the problem stems from
a more general issue related to the performance task associated with each type of
learning. As we have mentioned, in supervised learning, the predictive accuracy
over class labels is a widely accepted performance task, so it is relatively easy
to design evaluation functions. On the contrary there is a lack of a generally
accepted performance task for clustering systems. For the rest of the paper we
will focus on the three predictive tasks presented above: accuracy over labels,
flexible prediction and comprehensibility.

Typically, the primary goal of feature selection is intended to make inductive
learning algorithms more robust in the face of irrelevant features. There are a
number of formal definitions of the relevance of features in the literature [9],
although all of them are addressed to supervised tasks. There is no standard
definition of irrelevance for flexible prediction tasks and, in fact, it is not clear
if a system can built a clustering using a reduced feature set and still predict all
the features originally present in the data. Therefore, for the rest of the paper
we will resort to an intuitive notion of relevance, considering that a feature is
relevant if it cannot be removed without loss of prediction accuracy of any kind.

There is an important factor related to the organization of the knowledge
base in hierarchical clusterers. Commonly, hierarchical clusterings are polythetic
classifiers, that is, they divide objects based on their values along multiple fea-
tures. Particularly, they tend to use the full set of features at each node to decide
how to classify a new object. Note that, while in monothetic classifiers such as
decision trees, a redundant feature adds one additional test when classifying a
new observation, in polythetic classifiers it adds a test for each node in the classi-
fication path. Clearly, improving performance may be a motivation for applying
feature selection to clustering tasks, but not the only one. In general, the hier-
archical organization, the polythetic nature of clusterings and the performance
task determine several dimensions for evaluating the particular benefits of fea-
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ture selection in conceptual clustering. Following [14,15] we can summarize these
dimensions as follows:

– Performance. The set of features used in an inductive learning task is a
powerful representational bias that determines the performance of a learn-
ing system. Irrelevant features may be particularly harmful in unsupervised
systems, leading the system to form wrong patterns and having an impact
in prediction that may be especially significant in a multiple inference task.

– Efficiency in the learning task. We have noted that hierarchical clusterings
are polythetic classifiers. Since the decision of how to classify a new object
has to be made along several nodes in the tree, the number of features present
in the data strongly influences the complexity of the clustering process. If we
apply feature selection to reduce this complexity, we should expect to obtain
clusterings with at least similar performance that we would had obtained by
using all the available features.

– Efficiency in the performance task. When using a hierarchical clustering to
classify unobserved objects in order to infer unknown properties, the num-
ber of features has a strong influence in the complexity of the process in
the same manner we have described above. Again, selecting an appropriate
subset of features may reduce this complexity while maintaining the original
performance level.

– Comprehensibility of the results. Clustering systems usually make use of all
the available features at each node of the hierarchy. Reducing the number
of features used in the clustering process allow to provide shorter cluster
descriptions to the user. Short descriptions tend to be more readable and,
hence more comprehensible.

4 Dynamic Feature Selection in Incremental Clustering

Typically, supervised feature selection methods are static in the sense that they
are applied just once before the final induction task is carried out. The set of
features obtained from the selection procedure is then fixed and never changes
during learning. An alternative is to implement feature selection as a procedure
that runs in parallel with learning. This approach allows the feature selection
mechanism to dynamically adapt the set of selected features in the light of the
knowledge gathered during the learning process. The dynamic feature selection
procedure is then triggered at each learning step, that may differ from system
to system. For example, in an incremental system, a learning step may be the
incorporation of a new object, while in a batch agglomerative algorithm it may be
a local merging operation. Interestingly, dynamic methods are the only methods
that do not compromise the incremental operation of clustering systems that
work in this way. Dynamic feature selection schemes may be very sensitive to
wrong initial decisions biasing the system towards bad learning paths. However,
potentially, they are a very attractive alternative since they can improve the
clustering task on all the four dimensions presented in Section 3.
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On the other hand, the hierarchical organization of the knowledge base in
clustering allows to represent relatively complex descriptions of the environment
at several levels of abstraction. By dividing the object space into local regions
of variable generality, hierarchical clusterers provide a more expressive repre-
sentation that flat clusterers. This property suggest that features that could be
relevant at certain parts of the object space, might be useless at other regions.
Thus, local feature selection methods that select different subsets of features for
different nodes in the hierarchy appear particularly interesting, since they can
be applied even when all the features in the data set are necessary for the clus-
tering task. As polythetic classifiers, hierarchical clusterings may obtain great
benefits from a local feature selection scheme even when none of the features in
the original set is definitely removed. Dynamic feature selection naturally sug-
gests to employ a local feature selection scheme, since they take local decisions
at each learning step. It is worth noticing that local feature selection methods
are more expensive than global ones. A local method must perform the same
process that a global one as many times as nodes are in the tree. Moreover, if
the are dynamically applied as well, one must take care of not employing very
expensive procedures.

5 A Simple Dynamic Feature Selection Mechanism

In this section we will propose a simple implementation for a dynamic feature
selection scheme. We implemented this method on the top of the well-known
incremental clustering system Cobweb.

Cobweb is a hierarchical clustering system that constructs a tree from a
sequence of objects. The system follows a strict incremental scheme, that is,
it learns from each object in the sequence without reprocessing previously seen
objects. An object is assumed to be a vector of nominal values Vij along different
features Ai. Cobweb employs probabilistic concept descriptions to represent the
learned knowledge. In this sort of representation, in a cluster Ck, each feature
value has an associated conditional probability P (Ai = Vij | Ck) reflecting the
proportion of objects in Ck with the value Vij along the feature Ai.

The strategy followed by Cobweb is summarized in Table 1. Given an object
and a current hierarchical clustering, the system categorizes the object by sorting
it through the hierarchy from the root node down to the leaves. At each level,
the learning algorithm evaluates the quality of the new clustering resulting from
placing the object in each of the existing clusters, and the quality resulting
from creating a new cluster covering the new object. In addition, the algorithm
considers two more actions that can restructure the hierarchy in order to improve
its quality. Merging attempts to combine the two sibling clusters which were
identified as the two best hosts for the new object; splitting can replace the best
host and promote its children to the next higher level. The option that yields the
high quality score is selected and the procedure is recursed, considering the best
host as the root in the recursive call. The recursion ends when a leaf containing
only the new object is created.
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Table 1. The control strategy of Cobweb

Function Cobweb(object,root)
1) Incorporate object into the root cluster.
2) If root is a leaf then

return expanded leaf with the object.
else choose the best of the following operators:

a) Incorporate the object into the best host
b) Create a new disjunct based on the object
c) Merge the two best hosts
d) Split the best host

3) If a), c) or d) recurse on the chosen host.

In order to choose among the four available operators,Cobweb uses a cluster
quality function called category utility defined for a partition P = {C1, C2, ..., Cn}
of n clusters as∑

k P (Ck)
∑

i

∑
j [P (Ai = Vij | Ck)2 − P (Ai = Vij)2]

n
(1)

This function measures how much a partition P promotes inference and re-
wards clusters Ck that increase the predictability of feature values within Ck.
By using this metric, the system should be biased towards the construction of
clusters allowing accurate predictions along any unobserved features.

As in supervised feature selection, feature selection in clustering can be done
by using the so-called filter or wrapper models [9]. Briefly, filter models are inde-
pendent of the induction algorithm that will use their output and they employ
some metric dependent on intrinsic properties of the data. Typically, they mea-
sure the correlation of each feature with the class label by using distance, in-
formation or dependence measures. Obviously, the absence of class labels makes
infeasible to compute these sort of measures in unsupervised learning and, there-
fore, alternative measures not using class information need to be defined.

On the other hand, in the wrapper model, the feature selection algorithm
works as a wrapper around the induction algorithm. Alternative feature subsets
are evaluated by using the induction algorithm as a black box over the training
data in order to obtain an estimate of future performance. Usually, performance
is estimated by measuring the predictive accuracy over class labels. Note that
unsupervised learners cannot use these methods in the label prediction perfor-
mance task, since they have no access to the labels during learning. Wrappers
can be used for flexible prediction, albeit at the price of a high computational
cost to estimate accuracy over the full feature set.

We propose a filter method of feature selection based on an ordering scheme.
A weight is individually computed for each feature and features are ordered
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Table 2. A method for feature selection based on an ordering scheme

Let A be a set of features
Let τ be the feature selection threshold
Function select features(A,τ )

compute feature weights(A)
max w = max{weight(Ai) | Ai ∈ A}
return {Ai | weight(Ai) ≥ max w × τ}

according to these weights. We define a feature selection threshold τ in the [0,1]
range such that the weight required for a feature to be selected is higher for
higher τ values. Our method uses the maximum computed weight as a baseline
to determine which features are selected as shown in Table 2. Note that, if we
assume relevances to be positive, when τ = 0 there is no feature selection at all,
so reducing the original algorithm to a special case of our approach.

This method can be easily incorporated into Cobweb by slightly modifying
the control strategy showed in Table 1. First, we need to add an additional
step between steps 2 and 3 of the existing algorithm. In this step a call to
the select features function is performed, obtaining a subset of relevant features
to be stored in the current root node. Second, at each classification step, the
computation of the quality function must be modified in such a way that only
the subset of relevant features stored in the current root node is used.

The weighting function we use is the one proposed by Gennari [8] in the con-
text of his Classit system, an extension of Cobweb to deal with numeric fea-
tures. Gennari refers to this measure as salience. He defines the relative salience
of a feature as its contribution to category utility (see equation 1) in a clustering.
More formally, for a given feature Ai, salience is defined as follows:∑

k P (Ck)
∑

j [P (Ai = Vij | Ck)2 − P (Ai = Vij)2]
n

(2)

6 Experiments

In order to evaluate dynamic feature selection, we ran experiments on six datasets
from the UCI repository: cleveland, crx, horse colic, hypothyroid, pima and wis-
consin diagnostic breast cancer. Our aim was to test the potential of feature
selection regarding the dimensions presented in Section 3. As regards to per-
formance, we performed separated experiments for label and flexible prediction.
In order to evaluate the efficiency of the learning and prediction processes, we
computed the average number of feature tests needed to sort the instances in the
training or testing set. This number is calculated by summing the total number
of features involved in evaluating the category utility metric for the different
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clustering choices. For instance, if an observation is being clustered in a root
node with three children and using a subset of n features, we need to perform
3n feature tests to evaluate the CU of incorporating the observation to each of
the siblings. In learning, additional feature tests are needed to evaluate creat-
ing a new cluster, merging and splitting. We think that this way of measuring
efficiency give us a better empirical approximation of the complexity of the clus-
tering process than, for instance, the average of features per node. On the other
hand, we use this later measure as a measure of comprehensibility of the obtained
clusterings, since fewer features per node indicate simpler cluster descriptions.

Table 3. Accuracy in label prediction, average number of tests in learning and
prediction, features per node and number of nodes for several datasets and τ
values

Dataset τ Accuracy Tests learning Tests pred Feat./node Nodes
n/a 74.73 (5.05) 1619.94 (42.94) 720.40 (45.02) 13.00 (0.00) 107.60 (2.91)
0.1 75.27 (5.06) 1161.23 (96.60) 450.81 (59.67) 5.58 (0.09) 126.30 (2.26)
0.2 76.04 (4.60) 928.64 (117.88) 363.80 (45.76) 5.22 (0.17) 129.30 (4.08)

cleve 0.3 75.93 (3.17) 712.32 (55.35) 246.75 (24.73) 4.90 (0.12) 134.30 (2.71)
0.4 74.18 (3.08) 531.78 (40.33) 190.97 (14.89) 4.53 (0.14) 135.60 (5.58)
0.5 73.19 (3.56) 396.53 (18.12) 130.61 (7.05) 3.99 (0.20) 141.80 (2.74)
n/a 80.24 (2.89) 2226.49 (59.25) 950.22 (35.62) 15.00 (0.00) 255.30 (5.96)
0.1 78.74 (4.57) 1070.76 (66.12) 388.48 (31.81) 4.56 (0.08) 297.80 (7.44)
0.2 79.86 (2.93) 852.89 (62.22) 286.32 (23.67) 4.20 (0.13) 302.60 (6.92)

crx 0.3 80.87 (3.35) 653.60 (33.76) 211.09 (15.19) 3.91 (0.15) 307.10 (4.77)
0.4 78.89 (3.28) 486.00 (25.49) 156.69 (8.43) 3.69 (0.10) 314.00 (5.58)
0.5 78.41 (2.75) 392.04 (23.29) 121.83 (8.00) 3.35 (0.08) 327.40 (5.13)
n/a 74.23 (4.60) 3108.48 (79.31) 1371.85 (126.94) 22.00 (0.00) 124.30 (3.71)
0.1 72.52 (2.66) 2011.35 (78.56) 797.53 (54.58) 9.18 (0.23) 149.40 (1.96)
0.2 75.95 (3.85) 1548.66 (102.93) 602.92 (49.33) 8.52 (0.26) 150.60 (3.34)

horse 0.3 75.68 (3.89) 1151.87 (45.39) 420.08 (33.19) 7.95 (0.16) 158.40 (3.98)
0.4 72.16 (3.05) 882.24 (86.90) 304.25 (24.66) 7.33 (0.17) 161.30 (3.33)
0.5 72.61 (3.30) 612.11 (31.35) 200.78 (17.39) 6.54 (0.21) 170.50 (2.99)
n/a 97.65 (0.48) 8448.86 (248.21) 3952.57 (234.33) 25.00 (0.00) 1825.50 (13.95)
0.1 97.65 (0.34) 3867.14 (229.60) 2024.41 (243.95) 18.46 (0.18) 1912.00 (14.45)
0.2 97.54 (0.43) 3769.29 (311.04) 2035.68 (327.15) 18.33 (0.24) 1928.40 (14.03)

hypo 0.3 97.61 (0.44) 3467.92 (220.02) 1873.79 (338.49) 18.13 (0.25) 1954.10 (11.51)
0.4 97.47 (0.46) 3407.59 (250.65) 1868.41 (321.50) 17.89 (0.21) 1979.80 (10.67)
0.5 97.46 (0.44) 3183.58 (343.08) 1643.02 (348.78) 17.60 (0.23) 2011.50 (8.66)
n/a 65.11 (2.62) 1135.25 (21.92) 470.92 (15.74) 8.00 (0.00) 321.80 (7.32)
0.1 64.94 (2.70) 723.84 (51.84) 256.16 (24.38) 3.61 (0.08) 347.70 (5.85)
0.2 66.06 (2.94) 571.35 (45.10) 195.13 (19.45) 3.35 (0.08) 358.80 (5.49)

pima 0.3 64.85 (3.26) 448.13 (22.87) 150.23 (10.38) 3.24 (0.07) 365.70 (6.93)
0.4 66.32 (2.10) 365.34 (30.23) 117.43 (8.09) 3.10 (0.10) 372.10 (6.28)
0.5 65.93 (3.40) 274.59 (16.04) 89.56 (4.89) 2.93 (0.07) 384.40 (7.90)
n/a 91.93 (1.55) 4287.82 (79.96) 1881.39 (70.54) 30.00 (0.00) 198.00 (6.73)
0.1 91.93 (1.80) 2839.01 (196.73) 1123.98 (62.42) 12.67 (0.11) 235.10 (4.18)
0.2 92.57 (1.20) 2249.09 (70.47) 864.46 (57.95) 11.68 (0.30) 240.30 (5.50)

wdbc 0.3 91.17 (2.69) 1858.66 (95.20) 663.93 (75.65) 10.97 (0.29) 247.70 (4.52)
0.4 90.99 (2.34) 1362.12 (93.71) 472.08 (36.45) 9.95 (0.25) 256.00 (5.33)
0.5 90.99 (1.66) 1013.66 (40.44) 335.47 (21.03) 8.91 (0.23) 266.70 (8.25)

In all the experiments, we used a 70% of the instances for training and a
30% for testing. All the results shown are averages over 20 independent runs
using random splits. For each dataset, several values of the τ parameter were
used to gain some insight into the effect of different degrees of selection on the
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performance of the system. The system never had access to the labels neither in
label nor flexible prediction, although in the later case they were used for eval-
uation purposes. In the case of flexible prediction, accuracy is always computed
as the overall accuracy over all the original features in the data, regardless of
the features removed during the feature selection process. Since the CU measure
is only applicable to nominal features, all numeric features were discretized.

Table 3 shows the results for the label prediction performance task. At a
glance, we can observe that in all datasets accuracy can be maintained or im-
proved while reducing the number of features per node used to an average of
the 40% of the original number of features. As expected, this reduction implies
an improvement in the efficiency of the system in both learning and predic-
tion. In average, dynamic feature selection provides an efficiency improvement
of about the 50% in learning and prediction. Note that the feature selection
scheme produces changes in the structure of the hierarchies created by increas-
ing the number of inner nodes. This increment reduces partially the efficiency
gains obtained with the removal of features, since the complexity of sorting an
instance depends on the depth of the hierarchy as well.

As a conclusion, we can say that dynamic feature selection can provide ben-
efits in the clustering task along the four proposed dimensions for evaluation
as regards the label prediction task. Our results for this task as regards effi-
ciency agree with the results of Gennari[8]. The potential for creating accurate
clusterings for this task is also shown in [13], although using a more classical pre-
processing approach. As we have noted, obtaining such results with a dynamic
incremental scheme is quite impressive given the greedy nature of the method.

Table 4 shows the results for the flexible prediction task. Again, the feature
selection scheme is able of creating simpler clusterings without hurting accuracy.
These results are even more remarkable than the previous ones, given the mul-
tiple inference task now required for the clusterings. Efficiency in prediction is
improved in a similar amount that for label prediction. Obviously, the improve-
ments in the efficiency in learning and in the number of features per node remain
the same, since the learning task is identical for both performance tasks.

Therefore, we can conclude also that dynamic feature selection is able to
improve the clustering task along the four evaluation dimensions as regards
flexible prediction. We have obtained similar results by using a postprocessing
approach [15]. Although such an approach is less prone to bad decisions while
simplifying the hierarchy, it cannot improve the efficiency of learning as dynamic
feature selection does.

7 Related Work

The idea of focusing on particular features in incremental unsupervised learning
can be traced back to early influential work by Kolodner [10] on Cyrus and
Lebowitz [12] on Unimem. As we have pointed out, Gennari [8] proposed a more
general and principled mechanism that inspired this work. Fisher et al [5] adapted
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Table 4. Accuracy in flexible prediction, average number of test in learning and
prediction, features per node and number of nodes for several datasets and τ
values

Dataset τ Accuracy Tests learning Avg. tests pred Feat./node Nodes
n/a 48.78 (1.93) 1619.94 (42.94) 8631.64 (502.74) 13.00 (0.00) 107.60 (2.91)
0.1 49.10 (2.44) 1161.23 (96.60) 5417.78 (719.98) 5.58 (0.09) 126.30 (2.26)
0.2 49.04 (1.65) 928.64 (117.88) 4342.31 (515.53) 5.22 (0.17) 129.30 (4.08)

cleve 0.3 48.83 (1.64) 712.32 (55.35) 3019.06 (295.23) 4.90 (0.12) 134.30 (2.71)
0.4 48.86 (1.87) 531.78 (40.33) 2400.76 (171.30) 4.53 (0.14) 135.60 (5.58)
0.5 50.23 (2.52) 396.53 (18.12) 1750.43 (84.59) 3.99 (0.20) 141.80 (2.74)
0.6 49.88 (1.12) 312.49 (33.26) 1440.42 (86.37) 3.72 (0.15) 145.60 (5.21)
n/a 60.72 (1.23) 2226.49 (59.25) 13302.06 (491.47) 15.00 (0.00) 255.30 (5.96)
0.1 60.74 (1.28) 1070.76 (66.12) 5427.68 (442.28) 4.56 (0.08) 297.80 (7.44)
0.2 61.25 (0.88) 852.89 (62.22) 4028.86 (307.44) 4.20 (0.13) 302.60 (6.92)

crx 0.3 61.17 (1.20) 653.60 (33.76) 3059.85 (202.27) 3.91 (0.15) 307.10 (4.77)
0.4 60.99 (1.27) 486.00 (25.49) 2353.99 (81.73) 3.69 (0.10) 314.00 (5.58)
0.5 60.80 (0.92) 392.04 (23.29) 1930.33 (85.65) 3.35 (0.08) 327.40 (5.13)
n/a 59.17 (1.05) 3108.48 (79.31) 28738.65 (2643.82) 22.00 (0.00) 124.30 (3.71)
0.1 59.94 (1.21) 2011.35 (78.56) 16762.54 (1159.86) 9.18 (0.23) 149.40 (1.96)
0.2 59.30 (1.85) 1548.66 (102.93) 12618.22 (983.83) 8.52 (0.26) 150.60 (3.34)

horse 0.3 58.89 (0.93) 1151.87 (45.39) 8865.25 (646.47) 7.95 (0.16) 158.40 (3.98)
0.4 58.12 (1.17) 882.24 (86.90) 6562.92 (516.68) 7.33 (0.17) 161.30 (3.33)
0.5 58.10 (0.97) 612.11 (31.35) 4473.22 (320.96) 6.54 (0.21) 170.50 (2.99)
n/a 83.05 (1.05) 8448.86 (248.21) 87296.71 (5996.60) 25.00 (0.00) 1825.50 (13.95)
0.1 84.71 (0.51) 3867.14 (229.60) 45223.19 (5571.86) 18.46 (0.18) 1912.00 (14.45)
0.2 85.12 (0.83) 3769.29 (311.04) 46351.35 (7007.69) 18.33 (0.24) 1928.40 (14.03)

hypo 0.3 84.44 (0.90) 3467.92 (220.02) 41475.52 (7199.13) 18.13 (0.25) 1954.10 (11.51)
0.4 84.59 (0.67) 3407.59 (250.65) 41225.04 (6659.03) 17.89 (0.21) 1979.80 (10.67)
0.5 83.69 (1.08) 3183.58 (343.08) 36539.31 (7635.42) 17.60 (0.23) 2011.50 (8.66)
n/a 45.61 (1.27) 1135.25 (21.92) 3299.04 (104.96) 8.00 (0.00) 321.80 (7.32)
0.1 45.37 (1.35) 723.84 (51.84) 1801.95 (160.45) 3.61 (0.08) 347.70 (5.85)
0.2 45.82 (1.46) 571.35 (45.10) 1379.61 (126.57) 3.35 (0.08) 358.80 (5.49)

pima 0.3 45.85 (1.33) 448.13 (22.87) 1107.40 (81.37) 3.24 (0.07) 365.70 (6.93)
0.4 45.98 (0.99) 365.34 (30.23) 935.74 (39.89) 3.10 (0.10) 372.10 (6.28)
0.5 46.20 (1.35) 274.59 (16.04) 794.64 (22.02) 2.93 (0.07) 384.40 (7.90)
0.6 46.34 (1.32) 232.07 (13.29) 733.15 (24.28) 2.79 (0.06) 393.70 (7.60)
0.7 46.38 (1.28) 191.36 (6.65) 707.61 (24.26) 2.56 (0.09) 398.60 (8.98)
n/a 62.34 (1.57) 4287.82 (79.96) 54604.95 (2023.58) 30.00 (0.00) 198.00 (6.73)
0.1 62.96 (0.99) 2839.01 (196.73) 32584.53 (1781.38) 12.67 (0.11) 235.10 (4.18)
0.2 62.89 (0.64) 2249.09 (70.47) 25051.45 (1661.10) 11.68 (0.30) 240.30 (5.50)

wdbc 0.3 62.41 (0.92) 1858.66 (95.20) 19308.05 (2229.57) 10.97 (0.29) 247.70 (4.52)
0.4 61.90 (1.04) 1362.12 (93.71) 13703.37 (1061.79) 9.95 (0.25) 256.00 (5.33)
0.5 61.43 (1.49) 1013.66 (40.44) 9833.95 (582.14) 8.91 (0.23) 266.70 (8.25)

Gennari’s procedure to a diagnosis task, where the intent was to minimize the
number of probes necessary to diagnose a fault.

As in supervised learning, preprocessing approaches are more common as
in [3], [4] or [13]. However, neither of these works have been extensively evaluated
along all the dimensions proposed here. As regard the flexible prediction task,
the only existing work is [16] with a weak evaluation and our own work in
preprocessing and postprocessing methods [14,15]. Although the later works used
different data sets to those that were used in this paper, at first sight, dynamic
feature selection appears to be a good alternative to these methods.

8 Concluding Remarks

Feature selection methods have shown successful in supervised approaches and
we have shown that they could be also useful in incremental hierarchical cluster-
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ing despite the difficulties posed by unsupervised settings. Besides the traditional
aim of increasing accuracy, we have proposed other dimensions for evaluating this
benefits mainly concerned with efficiency and comprehensibility. In addition, hi-
erarchical clusterings suggest a local feature selection scheme for each node in
the hierarchy. Moreover, given that unsupervised systems support inference on
more than one single dimension, we have shown the benefits of feature selec-
tion in both classical label prediction and flexible prediction, the later involving
prediction of all the features in the data.

To maintain the incremental nature of the system we have applied a dynamic
feature selection scheme that runs parallel to the clustering process instead of
being a preprocessing step, as typically done in supervised learning. Results
show that this mechanism can improve efficiency in learning, efficiency in pre-
diction and comprehensibility while maintaining or improving performance in
prediction.

All of these results have been obtained with a simple and rough implemen-
tation that can be clearly improved, although it has served well for the purpose
of this study. Surely, a smarter feature selection method can be designed, ideally
without having to set any thresholds. Gennari’s original method is one possible
alternative to test. Additionally, since the salience measure is derived from the
objective function used in clustering (CU in this case), it would be interesting
to test alternative objective functions to CU to see if they are better candidates
not only for evaluating clusters but for evaluating features as well.

Finally, Fisher’s work [7] suggests further implications about the relationship
between feature selection and using feature frontiers for prediction. If a feature
can be predicted accurately at a certain node without descending deeper into
the hierarchy, this feature is not informative to discriminate between descendant
nodes. We have noted the importance of the structure of the hierarchy only at a
cursory level, but future work should explore this issue by including additional
dimensions for cost assessment such as the branching factor or the depth of the
hierarchies.
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