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Abstract. We consider two step Runge-Kutta-Nystrom methods for the
numerical integration of y” = f(z,y) having periodic or oscillatory so-
lutions. We assume that the frequency w can be estimated in advance.
Using the linear stage representation, we describe how to derive two
step Runge-Kutta-Nystrom methods which integrate trigonometric and
mixed polynomials exactly. The resulting methods depend on the pa-
rameter v = wh, where h is the stepsize.

1 Introduction

We are concerned with the second order initial value problem

y//(t) = f(ta y(t))v y(tO) = Yo, y/(tO) = yé)’ y(t)a f(t’y) € R", (1)

having periodic or oscillatory solutions, which describes many processes in tech-
nical sciences. Examples are given in celestial mechanics, molecular dynamics,
seismology, and so on.

For ODEs of type (1), in which the first derivative does not appear explic-
itly, it is preferable to use a direct numerical method, instead of reducing the
ODEs (1) into a first order system. An interesting and important class of initial
value problems (1) which can arise in practice consists of problems whose solu-
tions are known to be periodic, or to oscillate with a known frequency. Classical
methods require a very small stepsize to track the oscillations and only methods
which take advantage of some previous knowledge about the solution are able
to integrate the system using a reasonable large stepsize. Therefore, efficiency
can be improved by using numerical methods in which a priori information on
the solution (as for instance, a good estimate of the period or of the dominant
frequency) can be embedded.

In the following let us assume that a good estimate of the dominant fre-
quency w is known in advance. The aim is to exploit this extra information and
to modify a given integration method in such a way that the method parameters
are ‘tuned’ to the behavior of the solution. Such an approach has already been
proposed by Gautschi in 1961 [6] for linear multistep methods for first-order
differential equations in which the dominant frequencies w; are a priori known.
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Exploiting this idea, many numerical methods with coefficients depending on the
predicted frequency are available in literature. Paternoster introduced Runge—
Kutta—Nystrom methods based on trigonometric polynomials [10], and methods
resulting exact in phase when the high frequency component is produced by a
linear part [I1]. Coleman et al. considered methods based on mixed collocation
H]. In the class of exponential-fitted methods many methods are available in
literature. Ixaru in [7] focused on the numerical formulae associated with oper-
ations on oscillatory functions. Then many papers followed, we only cite here
some of them [SIT4UTHITH]; see also the references therin.

In this paper we consider two step Runge-Kutta—Nystrom methods for (1)
having periodic or oscillatory solutions, for which a good estimate of the fre-
quency is known in advance. We treat the TSRKN method as a composite linear
multistep scheme, as done in Albrecht’s approach [I2]. Following the approach
of [6/T0/12], we define the trigonometric order of the methods. In section 2 we
recall the conditions to obtain two step Runge-Kutta—Nystrom methods which
integrate algebraic polynomials exactly. In section 3 we give the definition of
trigonometric order of the TSRKN method, and state the conditions to satisfy
for integrating trigonometric polynomials exactly.

2 Two Step Runge-Kutta-Nystrom Methods Based on
Algebraic Polynomials

We consider the two step Runge-Kutta—Nystrom methods (TSRK)
V) =yici Fhejyi_ RN ajsf(zion Fesh, V), j=1,...,m
Y] =i+ hejyl + 2T agof(xi + csh, V), i=1,....m,
Yir1 = (1= 0)y; +0yi1 +h 35 viy,_y +h 30 whyi+
W2 YT (v f(@ima 4 eih, Yi)) + wj f e + ¢h, YY),
Yir = (1 =0)y; +0y;_y +h 37, (v f(xio1 + cjh, Y7 ) + w f( +¢jh, Y7)).

(2)
for the initial value problem (1). 0, v;, wj, v}, w}, ajs, j,8,= 1,...,m are the

coeflicients of the methods, which can be represented by the Butcher array
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The TSRKN method (2), introduced in [13], was derived as an indirect
method from the two step Runge-Kutta method presented in [9]. In compar-
ison with classical one step Runge-Kutta—Nystrém methods, TSRKN methods
need a lower number of stages to rise to a given order of convergence. Indeed,
advancing from z; to z;4+1, we only have to compute Y;, because Y;_; have al-
ready been evaluated in the previous step. Therefore the computational cost of
the method depends on the matrix A, while the vector v adds extra degrees of
freedom.

It is known that the method (2) is zero—stable if [13]

-1<6<1 (4).

We treat formulas (2) by extending Albrecht’s technique [12] to the numerical
method we considered, as in [T0JT2]. According to this approach, we regard the
TSRKN method (2) as a composite linear multistep scheme on a not equidistant
grid. 4
Y7 ; and Y7 in (2) are called internal stages; y;+1 and y,,, are the final stages,
which give the approximation of the solution and its derivative of the solution
in the step point z;.

We associate a linear difference operator with each internal stage Y;” of (2),

in the following way:

L;[2(z); h] = 2(x + ¢jh) — 2(x) — hej2' (x) — h? Z(ajsz”(x +csh),  (5)

s=1
for y =1,...,m, While the operator
Llz(x);h] =z2(x+h)— (1 -0)z(z) — 0z(x —h) — h(D L, vi2'(x — h)+

J=1"J
Ymwi () = h? 3000 (v (2 + (¢ — Dh) + wi2" (2 + ¢;h),
is associated with the stage y; 41 in (2). Finally ©
L'[z(z); h] = h2'(x + h) — h(1 — 0)2'(x) — Ohz'(x — h)—
h2 370 (2" (x + (¢ — 1)h) + wj2" (z + c;h)) "

is associated with the final stage y; ; in (2). It follows that
Li[1;h] = Li[z;h] =0, j=1,...,m,

which implies that y(z; + ¢;h) — Y7 = O(h) for h — 0. Moreover

K2

L[1;h)=L'[1;h) =L [z;h] =0, j=1,...,m,
If we annihilate (6) on the function z(x) = x, then from
L[z; h] = 0, it follows that

D (W +uf) =1+ ®)

Jj=1
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which represents the consistency condition already derived in [913] which, to-
gether with (4), ensures that the TSRKN is convergent with order at least one.
If (5) is identically equal to zero when z(z) = 2P, i.e. if £;[zP;h] = 0, then

P
Zajscp 2_73_1) j=1,...,m. (9)

Moreover, if (6) is equal to zero when z(x) = P, i.e. L][xP;h] = 0, then

m , , 1—(—1)8 _1p-1 " ,
;(UJ( = )P +ch§ )= p(p(—l)) _(p—)l ;Uj' (10)

Finally, if we annihilate (7) on the function z(x) = P, then from £'[zP;h] = 0,
it follows that

> W) P72+ wld ) = 1_(](;_1):)0. (11)

j=1
We can now give the following definitions:

Definition 1. An m-stage TSRKN method is said to satisfy the simplifying
conditions Co(p) if its parameters satisfy

k

S k-2 _ % _ _
Zajscs —m, ]—1,...,m7k:—1,...,p.

Definition 2. An m-stage TSRKN method (2) is said to satisfy the simplifying
conditions Ba(p) if its parameters satisfy

Ny L- (=D (D"
_ 1\k—2 k—2y _ _ ’
Z 1) Wi )= k(k—1) k—1 ZUJ’

j=1

—

<.

Definition 3. An m-stage TSRKN method is said to satisfy the simplifying
conditions B}(p) if its parameters satisfy

k=1
(0 i e L (;_1)1) b k=1,

m

vi(e; — D)2+ wle cy D

—
—~

Jj=

Cy(p), B2(p) and Bj(p) allow the reduction of order conditions of trees in the
theory of two step RKN methods, which is under development by the author of
this paper; moreover they also mean that all the quadrature formulas represented
by the TSRKN method have order at least p, similarly as it happens in the theory
of Runge-Kutta methods [3].

The following theorem can be obviously proved by using Albrecht’s theory
[12):
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Theorem 1. If Co(p), Ba(p) and B(p) hold, then the m—stage TSRKN method
(1.2) has order of convergence p.

Proof. Cy(p), B2(p) and Bj(p) imply that all the stages of the method have order
p or, in Albrecht’s terminology, that each stage in (2) has order of consistency p,
so that the method has order of consistency p. In this case the method converges
with order at least p.

It is worth mentioning that the conditions Ca(p), Ba(p) and B4 (p) are only suf-
ficient conditions for the TSRKN method to have order p, but not necessary.
Indeed the final stage must have order of consistency p, which is the condition
B (p), but it is not necessary that also the internal stages have order of con-
sistency p. If all the stages have order of consistency p, then they are exact on
any linear combination of the power set {1,x,22,..., 2P}, and this implies that
the TSRKN method results exact when the solutions of the system of ODEs(1)
are algebraic polynomials. Moreover the simplifying conditions Cs(p), Bz2(p) and
B/ (p) are a constructive help for the derivation of new numerical methods within
the class of TSRKN methods having a high order stage, and will be a useful basis
for characterizing collocation TSRKN methods.

3 Two Step Runge-Kutta-Nystrom Methods Based on
Trigonometric Polynomials

Now, we can consider TSRKN methods which integrate ODEs (1) having pe-
riodic or oscillatory solutions, which can be expressed through trigonometric
polynomials.

Let us suppose that a good approximation of the dominant frequency w is
known in advance, and that (4) and (8) hold, so that the method is convergent
with order at least one.

Following Gautschi [6] and [T0[12], we state now the definition of trigono-
metric order.

Definition 4. The two step RKN method

c(v)

>

()

v(v)

(v)
v'(v)

w

w'(v)

1s said to be of trigonometric order g, relative to the frequency w, if the associated
linear difference operators (5)—(7) satisfy
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L;[1; k] = L[1;h] = L'[1;h] = 0, ji=1,...,m;
Lilcosrwz; h] = L[sintwa; k] =0, i=1,...,m, r=1,...,q
L[cosrwx; h] = L[sinrwz; h] = 0, r=1,...,¢;
L'[cos rwz; h] = L'[sinrwz; h] = 0, r=1,...,q,

with v = wh.

It is already known that methods with trigonometric order q have algebraic order
2q (see [6U10] for the definition of algebraic order) and therefore have order of
convergence 2q.

It is easy to verify that a TSRKN method has trigonometric order ¢, accord-
ing to Definition 4, if its parameters satisfy the following systems:

m 1 — cos(rc;v
ST ajscos(resy) = %
Alq) = u )jzl,...,s
m _ c; sin(re;v
Yot ajssin(resy) = ﬁ — #
> iy (v cos(r (¢j — 1)v) +wj cos(re;v)) =
(1 = cos(rv))(1 —6) n Z;nﬂ v} sin(rv)

r2y2 2%

VWo(q) =

>y (vsin(r (¢ — 1)v) +w;sin(re;v)) =

—sin(rv)(1 + 6) n Z;nzl vj cos(rv) + Z;n:1 w;
r2p2 rv
m Si 1+6

ijl(v;- cos(r(c; — 1)v) + w); cos(re;v) = %
V'W'6(q) =

Z;n:l(v;- sin(r(c; — 1)v) 4+ wjsin(re;r) = (- 9)(17“; cos(rv)

forr=1,...,q.

The following theorem states some constructive conditions to derive TSRKN
methods giving exact solution (within the roundoff) error when the solution of
ODE:s (1) is a mixed polynomial which oscillates with frequency w.

Theorem 2. If the coefficients of the TSRKN method satisfy the conditions
Ca(p), B2(p), B4(p) and A(q), VWO(q), V'W'0(q), then the TSRKN method inte-
grates any linear combination of {1,x, 22, ... aP, coswz,sinwx, cos 2w, sin 2wz,
..., €08 qwz, sin quz} exactly.

The construction of the methods requires the solutions of the linear systems
Cy(p), Ba(p), B4(p) and A(q), VW0(q), V'W'6(q), which is underdetermined. Tt
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is possible to solve the uncoupled linear systems after fixing some free param-
eters. Through symbolic computation it is possible to determine the analytical
expressions of the remaining parameters of the method; for a high number of
stages the involved systems have to be solved numerically.

4 Conclusions

Numerical methods for (1) having frequency—dependent parameters are quite
widely used methods [4J5l6/8/10J11I14/15/16], when a good approximation of the
frequency w to be fitted is a priori available. In this paper we design the approach
to be used in the derivation of two step Runge-Kutta—Nystrém methods in the
case that only one frequency is fitted, but the development of TSRKN methods
in which more frequencies are fitted can be considered as well. The linear stability
analysis of these methods has not be considered in this paper, and has to follow
the lines drawn in [5l/8/4].

Recently some authors [I6] addressed the problem of how choosing the op-
timal value of the frequency to predict, and this new perspective enlarges the
sphere of application of methods with v—dependent parameters, where v is given
by the product of the fitted frequency and the stepsize.

The coefficients of methods which are frequency—dependent involve combi-
nations of trigonometric functions.

It is known that a common feature of this type of methods is that heavy can-
celations occur during the evaluation of the coefficients from their closed form,
which becomes increasingly severe as v tends to 0. Therefore, in the application,
the expansions of the coefficients in powers of v, generated for example by Maple
or Mathematica, is strongly recommended.
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