Skip to main content

Surface Analytical Studies of Oxidation and Collector Adsorption in Sulfide Mineral Flotation

  • Chapter
  • First Online:
Solid—Liquid Interfaces

Abstract

The physical and chemical forms of sulfide mineral surfaces are reviewed. The initial surfaces and oxidation products have been studied by Scanning Auger Microscopy (SAM), X-ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Changes to surface speciation as a function of time, pH, Eh and collector adsorption, related to mineral flotation, have been followed with these techniques. Oxidation products are formed in different processes, namely: metal_de ficient sulfides, polysulfides and sulfur; oxidized fine sulfide particles; colloidal hydroxide particles and flocs; continuous surface layers (e.g. hydroxide, oxyhydroxide, oxide species) of varying depth; sulfate and carbonate species; isolated, patchwise and face-specific oxide, hydroxide and hydroxycarbonate development. The actions of collector molecules (e.g. xanthates, dithiophosphinates) have been identified in several modes, namely: adsorption to specific surface sites; colloidal precipitation from solution; detachment of small sulfide particles from larger particle surfaces; detachment of small oxide/hydroxide particles; removal of adsorbed and amorphous oxidized surface layers; inhibition of oxidation; disaggregation of larger particles; and patchwise or face-specific coverage. The different modes of oxidation and collector action are exemplified using case studies from the literature and recent research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. St. C. Smart: Surface layers in base metal sulfide flotation, Min. Eng. 4, 891–909 (1991)

    Google Scholar 

  2. L. K. Shannon, W. J. Trahar: The role of collector in sulfide ore flotation, in P. Somasundaran (Ed.): Advances in Mineral Processing (Soc. Mining. Eng., Colorado 1986) pp. 408–425

    Google Scholar 

  3. P. E. Richardson: Surface chemistry of sulfide flotation, in D. J. Vaughan, R. A. D. Pattrick (Eds): Mineral Surfaces (Chapman and Hall, New York 1995) pp. 261–302

    Google Scholar 

  4. R. St. C. Smart: Minerals, ceramics and glasses, in J. C. Reviére, S. Myhra (Eds.): Handbook of Surface and Interface Analysis (Dekker, New York 1998) pp. 543–606

    Google Scholar 

  5. M. C. Fuerstenau (Ed.): Flotation, A. M. GaudinMemorial, Vols. 1, 2. (Amer. Inst. Min. Met. Pet. Eng., New York 1976) M.C. Fuerstenau, J. D. Miller, M. C. Kuhn: Chemistry of Flotation (Amer. Inst. Min. Met. Pet. Eng., New York 1985) pp. 28-29

    Google Scholar 

  6. J. Leja: Surface Chemistry of Froth Flotation (Plenum, New York 1982)

    Google Scholar 

  7. P. Somasundaran (Ed.): Advances in Minerals Processing (Soc. Mining Engineers, Colorado 1986)

    Google Scholar 

  8. K. S. E. Forssberg (Ed.): Flotation of Sulfide Minerals (Elsevier, Amsterdam 1986)

    Google Scholar 

  9. J. S. Laskowski, J. Ralston (Eds.): Colloid Chemistry in Mineral Processing, Dev. Min. Process. 12 (Elsevier, Amsterdam 1992)

    Google Scholar 

  10. D. J. Vaughan, R. A. D. Pattrick (Eds): Mineral Surfaces (Chapman and Hall, New York 1995)

    Google Scholar 

  11. P. J. Guy, W. J. Trahar: The effects of oxidation and mineral interaction on sulfide flotation, in E. C. Forssberg (Ed.): Flotation of Sulfide Minerals (Elsevier, Amsterdam 1985) pp. 28–46

    Google Scholar 

  12. J. B. Zachwieja, J. J. McCarron, G. W. Walker, A. N. Buckley: Correlation between the surface composition and collectorless flotation of chalcopyrite, J. Coll. Int. Sci. 132, 462–468 (1989)

    CAS  Google Scholar 

  13. S. Grano, J. Ralston, R. St. C. Smart: Influence of electrochemical environment on the flotation behavior of Mt. Isa copper and lead-zinc ore, Int. J. Min. Proc. 30, 69–97 (1990)

    CAS  Google Scholar 

  14. P. Clarke, D. Fornasiero, J. Ralston, R. St. C. Smart: Min. Eng. 8, 1347 (1995)

    CAS  Google Scholar 

  15. Z. Kristall, S. R. Grano, K. Reynolds, R. St. C. Smart, J. Ralston: An investigation of sphalerite flotation in the Murchison Zinc concentrator, Proc. Fifth Mill Operators’ Conference (Aust. Inst. Min. Metall. Publ. 1994) pp. 171–180

    Google Scholar 

  16. P. Clarke, D. Fornasiero, J. Ralston, R. St. C. Smart: A study of the removal of oxidation products from sulfide mineral surfaces, Mineral. Eng. 8, 1347–1357 (1995)

    CAS  Google Scholar 

  17. J. O’Connor, B. A. Sexton, R. St. C. Smart (Eds): Surface Analysis Methods in Materials Science, Springer Ser. Surf. Sci 23, (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  18. J. Ralston, R. St. C. Smart (Eds.): Interaction of Iron Sulfide Minerals and their Influence on Sulfide Mineral Flotation, Australian Minerals Industry Research Association, Project P260 (AMIRA, Melbourne 1992)

    Google Scholar 

  19. T. J. Napier-Munn (Ed.): The Methods and Benefits of Fine Grinding Ores, Australian Minerals Industry Research Association, Project P336 (AMIRA, Melbourne 1994)

    Google Scholar 

  20. K. G. Stowe, S. L. Chryssoulis, J. Y. Kim: Mapping of composition of mineral surfaces by ToF-SIMS, Min. Eng. 8, 421–430 (1995)

    CAS  Google Scholar 

  21. R. St. C. Smart, W. M. Skinner, A. K. O. Netting, D. Simpson, P. Bandini, C. Greet (Eds.): Protocols for Surface Aanalysis in Minerals Processing, Australian Minerals Industry Research Association (AMIRA, Melbourne 1996)

    Google Scholar 

  22. S. L. Chryssoulis: Mineral surface characterisation by TOF-LIMS and ToFSIMS, AMTELReport no. 21 (UWO, London 1994)

    Google Scholar 

  23. M. F. Hochella Jr.: Mineral surfaces: their characterisation and their chemical, physical and reactive natures, in D. J. Vaughan, R. A. D. Pattrick (Eds.): Mineral Surfaces (Chapman and Hall, New York 1995) pp. 17–60

    Google Scholar 

  24. K. Laajalehto, R. St. C. Smart, J. Ralston, E. Suoninen: STM and XPS investigation of reaction of galena in air, Appl. Surf. Sci. 64, 29–39 (1993)

    CAS  Google Scholar 

  25. B. S. Kim, R. A. Hayes, C. A. Prestidge, J. Ralston, R. St. C. Smart: Scanning tunneling microscopy studies of galena: the mechanisms of oxidation in aqueous solution, Langmuir, 11, 2554–2562 (1995)

    CAS  Google Scholar 

  26. A. N. Buckley, R. Woods: The surface oxidation of pyrite, Appl. Surf. Sci. 27, 347–452 (1987)

    Google Scholar 

  27. A. N. Buckley, I. C. Hamilton, R. Woods: Investigation of the surface oxidation of sulfide minerals by linear potential sweep voltammetry and X-ray photoelectron spectroscopy, in K. S. E. Forssberg (Ed.): Flotation of Sulfide Minerals (Elsevier, Amsterdam 1985) pp. 41–60

    Google Scholar 

  28. A. N. Buckley, R. Woods: X-ray photoelectron spectroscopy of oxidized pyrrhotite surfaces. I. Exposure to air, Appl. Surf. Sci. 2/23, 280–287 (1985)

    Google Scholar 

  29. A. N. Buckley, R. Woods: X-ray photoelectron spectroscopy of oxidized pyrrhotite surfaces. II. Exposure to aqueous solutions, Appl. Surf. Sci. 20, 472–480 (1985)

    CAS  Google Scholar 

  30. A. R. Pratt, I. J. Muir, H. W. Nesbitt: X-Ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation, Geochim. Cosmochim. Acta. 58, 827–841 (1994)

    CAS  Google Scholar 

  31. C. F. Jones, S. LeCount, R. St. C. Smart, T. White: Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies, App. Surf. Sci. 55, 65–85 (1992)

    CAS  Google Scholar 

  32. A. N. Buckley, R. Woods: An X-Ray photoelectron spectroscopic study of the oxidation of chalcopyrite, Aust. J. Chem. 37, 2403–2413 (1984)

    CAS  Google Scholar 

  33. A. N. Buckley, R. Woods: An X-ray photoelectron spectroscopic study of the oxidation of galena, Appl. Surf. Sci. 17, 401–414 (1984)

    CAS  Google Scholar 

  34. D. Fornasiero, F. Li, J. Ralston, R. St. C. Smart: Oxidation of galena surfaces, I. X-ray photoelectron spectroscopic and dissolution kinetics studies, J. Coll. Int. Sci. 164, 333–344 (1994)

    CAS  Google Scholar 

  35. S. Richardson, D. J. Vaughan: Surface alteration of pentlandite and spectroscopic evidence for secondary violarite formation, Min. Mag. 53, 213–222 (1989)

    CAS  Google Scholar 

  36. A. N. Buckley, R. Woods: Surface composition of pentlandite under flotation related conditions, Surf. Int. Anal. 17, 675–680 (1991)

    CAS  Google Scholar 

  37. A. N. Buckley: The surface oxidation of cobaltite, Aust. J. Chem. 40, 231–239 (1987)

    CAS  Google Scholar 

  38. A. N. Buckley, R. Woods, H. J. Wouterlood: Surface characterization of natural sphalerites under processing conditions by X-ray photoelectron spectroscopy, in P. E. Richardson, R. Woods (Eds): Proc. Int. Symp. Electrochemistry in Mineral and Metal Processing II (Electrochem. Soc., Pennington 1988) pp. 211–233

    Google Scholar 

  39. A. N. Buckley, R. Woods, H. J. Wouterlood: An XPS investigation of the surface of natural sphalerites under flotation-related conditions, Int. J. Min. Proc. 26, 29–49 (1989)

    CAS  Google Scholar 

  40. A. N. Buckley, H. J. Wouterlood, R. Woods: The surface composition of natural sphalerites under oxidative leaching conditions, Hydrometall. 22, 39–56 (1989)

    CAS  Google Scholar 

  41. J. R. Mycroft, G. M. Bancroft, N. S. McIntyre, J. W. Lorimer, I. R. Hill: Detection of sulfur and polysulfide on electrochemically oxidized pyrite surfaces by XPS and Raman spectroscopy, J. Electroanal. Chem. 292, 139–152 (1990)

    CAS  Google Scholar 

  42. A. G. Schaufuß, H. W. Nesbitt, I. Kartio, K. Laajalehto, G. M. Bancroft, R. Szargan: Reactivity of surface chemical states of fractured pyrite, Surf. Sci. 411, 321–328 (1998)

    Google Scholar 

  43. H. W. Nesbitt, I. J. Muir: XPS study of a pristine pyrite surface reacted with water vapour and air, Geochim. Cosmochim Acta. 58, 4667–4679 (1994)

    CAS  Google Scholar 

  44. G. M. Bancroft, M. M. Hyland: Spectroscopic studies of adsorption/reduction reactions of aqueous metal complexes on sulphide surfaces, in M. F. Hochella, A. F. White (Eds.): Mineral-Water Interface Geochemistry, Rev. Mineral. 23, 511–558 (1990)

    Google Scholar 

  45. N. J. Rinker, H. W. Nesbitt, A. R. Pratt: Marcasite oxidation in low temperature acidic (pH 3.0) solutions: mechanisms and rate laws, Amer. Mineral. 82, 900–912 (1999)

    Google Scholar 

  46. H. W. Nesbitt, I. J. Muir, A. R. Pratt: Oxidation of arsenopyrite by air and air-saturated distilled water, and implications for mechanism of oxidation, Geochim. Cosmochim. Acta 59, 1773–1786 (1995)

    CAS  Google Scholar 

  47. E. Ahlberg, K. S. E. Forssberg, X. Wang (Eds.): The surface oxidation of pyrite in alkaline solution, J. Appl. Electrochem. 20, 1033–1039 (1990)

    Google Scholar 

  48. J. J. McCarron, G. W. Walker, A. N. Buckley: An X-ray photoelectron spectroscopic investigation of chalcopyrite and pyrite surfaces after conditioning in sodium sufie solutions, Int. J. Min. Proc. 30, 1–16 (1990)

    CAS  Google Scholar 

  49. S. W. Knipe, J. R. Mycroft, A. R. Pratt, H. W. Nesbitt, G. M. Bancroft: XPS study of water adsorption on iron sulfide minerals, Geochim. Cosmochim. Acta 59, 1079–1090 (1995)

    CAS  Google Scholar 

  50. J. R.Mycroft, H. W. Nesbitt, A. R. Pratt: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth, Geochim. Cosmochim. Acta 59, 721–733 (1995)

    CAS  Google Scholar 

  51. J. E. Thomas, C. F. Jones, W. M. Skinner, R. St. C. Smart: The role of sulfur species in the inhibition of pyrrhotite dissolution in acid conditions, Geochim. Cosmochim. Acta 62, 1555–1565 (1998)

    CAS  Google Scholar 

  52. G. H. Luttrell, R. H. Yoon: Surface studies of the collectorless flotation of chalcopyrite, Coll. Surf. 4, 271–281 (1984)

    Google Scholar 

  53. Q. Yin, G. H. Kelsall, D. J. Vaughan, K. E. R. England: Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2), Geochim. Cosmochim. Acta. 59, 1091–1100 (1995)

    CAS  Google Scholar 

  54. D. L. Legrand, G. M. Bancroft, H. W. Nesbitt: Surface characterisation of pentlandite (Fe,Ni)9S8 by XPS, Int. J. Mineral. Proc. 51, 217–228 (1997)

    CAS  Google Scholar 

  55. D. L. Legrand, H. W. Nesbitt, G. M. Bancroft: XPS survey of a pristine millerite surface and the effect of air and water oxidation, Amer. Mineral. 83, 1256–1265 (1998)

    CAS  Google Scholar 

  56. I. Kartio, K. Laajalehto, E. Suoninen: Application of electron spectroscopy to characterization of mineral surfaces in flotation studies, Coll. Surf. 93, 149–158 (1994)

    CAS  Google Scholar 

  57. S. Karthe, R. Szargan, E. Suoninen: Oxidation of pyrite surfaces: a photoelectron spectroscopic study, Appl. Surf. Sci., 72, 157–170 (1993)

    CAS  Google Scholar 

  58. I. V. Chernyskova, S. I. Andreev: Spectroscopic study of galena surface oxidation in aqueous solution. I. XPS and ATR/FTIR spectroscopy, Appl. Surf. Sci. 108, 225–236 (1997)

    Google Scholar 

  59. P. Bandini, C. A. Prestidge, J. Ralston, R. St. C. Smart: Min. Eng. 14, 487 (2001)

    CAS  Google Scholar 

  60. G. Wittstock, I. Kartio, D. Hirsch, S. Kunze, R. Szargan: Oxidation of galena in acetate buffer investigated by AFM and photoelectron spectroscopy, Langmuir 12, 5709–5721 (1996)

    CAS  Google Scholar 

  61. S. R. Higgins, R. J. Hamers: Chemical dissolution of the galena (001) surface observed using electrochemical STM, Geochim. Cosmochim. Acta. 60, 3067–3077 (1996)

    CAS  Google Scholar 

  62. C. A. Prestidge, J. Ralston: Contact angle studies of galena particles, J. Colloid Interface Sci. 172, 302–310 (1995)

    CAS  Google Scholar 

  63. A. N. Buckley: The application of X-ray photoelectron spectroscopy to flotation research, Surf. A. 93, 159–172 (1994)

    CAS  Google Scholar 

  64. G. W. Heyes, W. J. Trahar: The flotation of pyrite and pyrrhotite in the absence of conventional collectors, in P. E. Richardson, S. Srinivasan, R. C. Woods (Eds): Proc. Int. Symp. Electrochemistry in Metals Processing (Electrochem. Soc., Pennington 1984) pp. 219–232

    Google Scholar 

  65. S. Kelebek, G. W. Smith: Collectorless flotation of galena and chalcopyrite: correlation between flotation rate and the amount of extracted sulfur, Min. Metall. Process. 6, 123–129 (1989)

    CAS  Google Scholar 

  66. A. N. Buckley, K. W. Riley: The self-induced floatability of sulfide minerals: examination of recent evidence for elemental sulfur as being the hydrophobic entity, Surf. Interf. Anal. 17, 655–659 (1991)

    CAS  Google Scholar 

  67. G. W. Walker, P. E. Richardson, A. N. Buckley: Workshop on the flotation related surface chemistry of sulfide minerals, Int. J. Miner. Process. 25, 153–158 (1989)

    CAS  Google Scholar 

  68. N. P. Finkelstein: The activation of sulfide minerals for flotation: a review, Int. J. Mineral. Proc. 52, 81–120 (1997)

    CAS  Google Scholar 

  69. A. R. Gerson, A. G. Lange, K. E. Prince, R. St. C. Smart: The mechanism of copper activation of sphalerite, Appl. Surf. Sci. 137, 207–223 (1999)

    CAS  Google Scholar 

  70. C. A. Prestidge, W. M. Skinner, J. Ralston, R. St. C. Smart: Copper (II) activation and cyanide deactivation of zinc sulfide under mildly alkaline conditions, Appl. Surf. Sci. 108, 333–344 (1997)

    CAS  Google Scholar 

  71. I. J. Kartio, C. I. Basilio, R. H. Yoon: An XPS study of sphalerite activation by copper, Langmuir 14, 5274–5278 (1998)

    CAS  Google Scholar 

  72. W. M. Skinner, C. A. Prestidge, R. St. C. Smart: Irradiation effects during XPS studies of Cu(II) activation of zinc sulfide, Surf. Interf. Anal. 24, 620–626 (1996)

    CAS  Google Scholar 

  73. A. G. Lange, W. M. Skinner, R. St. C. Smart: Fine:coarse particle interactions and aggregation in sphalerite flotation, Mineral. Eng. 10, 681–693 (1997)

    CAS  Google Scholar 

  74. T. V. Subrahmanyan, C. A. Prestidge, J. Ralston: Constant angle and surface analysis studies of sphalerite particles, Mineral. Eng. 9, 727–741 (1996)

    Google Scholar 

  75. R. St. C. Smart,W. M. Skinner, A. R. Gerson: XPS of sulfide mineral surfaces: metal-deficient polysulfides, defects and elemental sulfur, Surf. Interf. Anal. 28, 101 (1999)

    CAS  Google Scholar 

  76. C. Greet, R. St. C. Smart: The effect of size separation by cyclosizing and sedimentation/ decantation on mineral surfaces, Miner. Eng. 10, 995–1011 (1995)

    Google Scholar 

  77. C. A. Prestidge, W. Skinner, J. Ralston, R. St. C. Smart: The interaction of iron (III) species with galena surfaces, Coll. Surf. A 105, 325–339 (1995)

    CAS  Google Scholar 

  78. G. D. Senior, W. J. Trahar: The influence of metal hydroxide and collector on the flotation of chalcopyrite, Int. J. Min. Proc. 33, 321–341 (1992)

    Google Scholar 

  79. J. Mielcarzski, E. Minni: Adsorption of diethyldithiophosphate on cuprous sulfide, Surf. Int. Anal. 6(5) 222–234 (1984)

    Google Scholar 

  80. P. Clarke: The interaction of metal ions and their hydrolysis products with sulfide mineral surfaces, Ph.D. thesis, University of South Australia, Adelaide (1995)

    Google Scholar 

  81. P. Eadington: Study of the oxidation layers on surfaces of chalcopyrite by use of Auger electron spectroscopy, Trans. Inst. Min. Metall. 77, C186–189 (1968)

    Google Scholar 

  82. D. Brion: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, ZnS et PbS à l’air et dans l’eau, Appl. Surf. Sci. 5, 133–152 (1980)

    CAS  Google Scholar 

  83. S. Evans, E. Raftery: Electron spectroscopic studies of galena and its oxidation by microwave-generated oxygen species and by air, J. Chem. Soc. Faraday Trans. 78, 3545–3560 (1982)

    CAS  Google Scholar 

  84. D. Fornasiero, J. Ralston: Iron hydroxide complexes and their influence on the interaction between ethyl xanthate and pyrite, J. Coll. Int. Sci. 151(1) 225–235 (1992)

    CAS  Google Scholar 

  85. C. M. Eggleston, M. F. Hochella Jr.: Scanning tunneling microscopy of sulfide surfaces, Geochim. Cosmochim. Acta. 54, 1511–1517 (1990)

    CAS  Google Scholar 

  86. C. M. Eggleston, M. F. Hochella Jr.: Scanning tunneling microscopy of galena (100) surface oxidation and sorption of aqueous gold, Science 254, 983–986 (1991)

    CAS  Google Scholar 

  87. C. M. Eggleston, M. F. Hochella Jr.: Tunneling spectroscopy applied to PbS(001) surfaces: fresh surfaces, oxidation and sorption of aqueous Au, Amer. Mineral. 78, 877–883 (1992)

    Google Scholar 

  88. B. S. Kim, R. A. Hayes, C. A. Prestidge, J. Ralston, R. St. C. Smart: Scanning tunneling microscopy studies of galena: the mechanism of oxidation in air, Appl. Surf. Sci. 78, 385–397 (1994)

    CAS  Google Scholar 

  89. Y. H. Hsieh, C. P. Huang: The dissolution of PbS in dilute aqueous solutions, J. Coll. Interf. Sci. 131, 537–549 (1989)

    CAS  Google Scholar 

  90. R. K. Clifford, K. C. Purdy, J. D. Miller: Characterisation of sulfide mineral surfaces in froth flotation systems using electron spectroscopy for chemical analysis, Amer. Inst. Chem. Eng. Symp. Ser. 71, 138–147 (1975)

    CAS  Google Scholar 

  91. K. L. Purdy, R. K. Clifford: ESCA characterisation of flotation products from a lead-zinc-copper concentrator on the new lead belt of southeast Missouri, Proc. Amer. Inst. Min. Met. Pet. Eng., (New York 1975) pp. 30

    Google Scholar 

  92. J. Mielczarski, F. Werfel, E. Suoninen: XPS studies of interaction of xanthate with copper surfaces, App. Surf. Sci. 17, 160–174 (1983)

    CAS  Google Scholar 

  93. K.-S. Johansson, J. Juhanoja, K. Laajalehto, E. Suoninen, J. Mielcarzski: XPS studies of xanthate adsorption on metals and sulfides, Surf. Int. Anal. 9, 501–505 (1986)

    CAS  Google Scholar 

  94. K. C. Pillai, V. Y. Young, J. O.M. Bockris: XPS studies of xanthate adsorption on galena surfaces, Appl. Surf. Sci. 16, 322–334 (1983)

    CAS  Google Scholar 

  95. R. Szargan, S. Karthe, E. Suoninen: XPS studies of xanthate adsorption on pyrite, Appl. Surf. Sci. 55, 227–232 (1992)

    CAS  Google Scholar 

  96. E. Suoninen, K. Laajalehto: Structure of thiol collector layers on sulfide surfaces, Proc. XVIII Int. Min. Proc. Congr. (Sydney, Aust.) (Aust. Inst. Min. Met, Melbourne 1993) pp. 625–629 (1993)

    Google Scholar 

  97. A. N. Buckley, R. Woods: Adsorption of ethyl xanthate on freshly exposed galena surfaces, Coll. Surf. 53, 33–45 (1991)

    CAS  Google Scholar 

  98. P. W. Page, L. B. Hazell: X-Ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (K AX) adsorption on precipitated PbS related to galena flotation, Int. J. Min. Proc. 25, 87–100 (1989)

    CAS  Google Scholar 

  99. J. M. Cases, M. Kongolo, P. de Donato, L. Michot, R. Erre: Interaction between finely ground galena and pyrite with potassium amylxanthate in relation to flotation, 1. Influence of alkaline grinding, Int. J. Min. Proc. 28, 313–337 (1990)

    CAS  Google Scholar 

  100. J. M. Cases, M. Kongolo, P. de Donato, L. Michot, R. Erre: Interaction between finely ground galena and pyrite with potassium amylxanthate in relation to flotation, 2. Influence of grinding media at natural pH, Int. J. Min. Proc. 30, 35–68 (1990)

    CAS  Google Scholar 

  101. M. Kongolo, J. M. Cases, P. de Donato, L. Michot, R. Erre: Interaction of finely ground galena and potassium amylxanthate in relation to flotation, 3. Influence of acid and neutral grinding, Int. J. Min. Proc. 30, 195–215 (1990)

    CAS  Google Scholar 

  102. V. Bozkurt, Z. Xu, J. A. Finch: Pentlandite/pyrrhotite interaction and xanthate adsorption, Int. J. Mineral. Proc. 52, 203–214 (1998)

    CAS  Google Scholar 

  103. S. L. Chryssoulis, K. G. Stowe, F. Reich: Characterisation of composition of mineral surfaces by laser-probe microanalysis, Trans. Inst. Min. Met. C. 101, C1–C6 (1992)

    CAS  Google Scholar 

  104. S. L. Chryssoulis, J. Kim, K. G. Stowe: LIMS study of variables affecting sphalerite flotation, Proc. 26th Canad. Min. Proc. Conf. (Ottawa 1994)

    Google Scholar 

  105. S. Chryssoulis, K. Stowe, E. Niehuis, H. G. Cramer, C. Bendel, J. Kim: Detection of collectors on mineral grains by ToF-SIMS, Trans. Inst. Min. Met., 8 C 141 (1995)

    Google Scholar 

  106. J. S. Brinen, F. Reich: Static SIMS imaging of the adsorption of Diisobutyl dithiophosphinate on galena surfaces, Surf. Interface Anal. 18, 448–452 (1992)

    CAS  Google Scholar 

  107. J. S. Brinen, S. Greenhouse, D. R. Nagaraj, J. Lee: SIMS and SIMS imaging studies of adsorbed dialkyl dithiophosphinates on PbS crystal surfaces, Int. J. Min. Proc. 38, 93–109 (1993)

    CAS  Google Scholar 

  108. P. Plescia: Study of galena/potassium ethyl xanthate system by X-ray diffractometry and scanning electron microscopy, App. Surf. Sci. 72, 249–257 (1993)

    CAS  Google Scholar 

  109. J. Ralston: The chemistry of galena flotation: principles and practice, Min. Eng. 7, 715–735 (1994)

    CAS  Google Scholar 

  110. C. I. Basilio, I. J. Kartio, R.-H. Yoon: Lead activation of sphalerite during galena flotation, Mineral. Eng. 9, 869–879 (1996)

    CAS  Google Scholar 

  111. A. F. Taggart: Flotation, in Handbook of Mineral Dressing (Wiley, New York 1945) Sect. 12

    Google Scholar 

  112. A. F. Taggart, G. R. M. del Guidici, D. A. Ziehl: The case for chemical theory of flotation, Trans. AIME 112, 348–381 (1934)

    CAS  Google Scholar 

  113. K. van der Stelt, W. Skinner, S. Grano: A study of the interaction of di-cresyl, dithiophosphate with galena and pyrite using micro flotation, z potential measurements and X-ray photoelectron spectroscopy, Ian Wark Research Institute Report (1993)

    Google Scholar 

  114. C. A. Prestidge, J. Ralston: Contact angle studies of ethyl xanthate coated galena particles, J. Colloid Interface Sci. 184, 512 (1996)

    CAS  Google Scholar 

  115. J. Mielcarzski: In situ ATR-IR spectroscopic study of xanthate adsorption on marcasite, Coll. Surf. 17, 251–271 (1986)

    Google Scholar 

  116. L. J. Warren: Shear flocculation. in J. Laskowski, J. Ralston (Eds.): Colloid Chemistry in Mineral Processing (Elsevier, Amsterdam 1992) pp. 309–330

    Google Scholar 

  117. G. Jameson, J. Ralston (Eds.): Investigation of High Energy Conditioning as a Pretreatment for Fine Particle Flotation, Australian Minerals Industry Research Association, Project P397 (AMIRA, Melbourne 1995)

    Google Scholar 

  118. I. N. Plaskin, S. P. Zaitseva, G. A. Myasnikova, L. P. Starchik, V. I. Turnikova, G. N. Khazinskiya, R. S. Shaefeyev: Trans. Inst. Min. Met. 67, 1–24 (1957)

    Google Scholar 

  119. J. A. Frew, R. St. C. Smart, E. V. Manlapig: Effects of fine grinding on flotation performance: generic statements, Proc. Fifth Mill Operators’ Conference (Aust. Inst. Min. Metall, Carlton 1994) pp. 245–250

    Google Scholar 

  120. J. A. Frew, K. J. Davey, R. M. Glen, R. St. C. Smart: Effects of fine grinding on flotation performance: Zinc regrind at Cominco Alaska’s Red Dog Mine, Proc. Fifth Mill Operators’ Conference (Aust. Inst. Min. Metall., Carlton 1994) pp. 287–288

    Google Scholar 

  121. R. St. C. Smart, B. Judd: Improved Lasta filter and copper reflotation performance through surface analysis surveys at WMC’s Olympic Dam Operation, Proc. Fifth Mill Operators’ Conference (Aust. Inst. Min. Metall., Carlton 1994) pp. 1–4

    Google Scholar 

  122. S. R. Grano, D. W. Lauder, N. W. Johnson, S. Sobieraj, R. St. C. Smart, J. Ralston: Surface analysis as a tool for problem solving: a case study of the Hilton concentrator at Mt. Isa Mines Ltd., Proc. Symp. Polymetallic Sulfides Iberian Pyrite Belt (Evora, Portugal), (Portug. Min. Ind. Assoc., Lisbon 1993), Sect. 3–13, pp. 1–15

    Google Scholar 

  123. S. R. Grano, P. L. Wong, W. Skinner, N. W. Johnson, J. Ralston: Detection and control of calcium sulfate precipitation in the Hilton concentrator of Mt. Isa Mines, Ltd., Australia: Proc. XIX Int. J. Min. Proc. Congress 3, Ch 29 171–179 (1996)

    Google Scholar 

  124. J. E. Thomas, R. St. C. Smart, W. M. Skinner: Kinetic factors for oxidative and non-oxidative dissolution of iron sulfides, Min. Eng. 13 1149 (2000)

    CAS  Google Scholar 

  125. J. Mielcarzski: XPS study of ethyl xanthate adsorption on oxidized surface of cuprous sulfide, J. Coll. Int. Sci. 120, 201–209 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smart, R.S.C., Amarantidis, J., Skinner, W.M., Prestidge, C.A., La Vanier, L., Grano, S.R. (2003). Surface Analytical Studies of Oxidation and Collector Adsorption in Sulfide Mineral Flotation. In: Wandelt, K., Thurgate, S. (eds) Solid—Liquid Interfaces. Topics in Applied Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44817-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44817-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42583-0

  • Online ISBN: 978-3-540-44817-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics