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Abstract. The Full Domain Hash (FDH) scheme is a RSA-based signa-
ture scheme in which the message is hashed onto the full domain of the
RSA function. The FDH scheme is provably secure in the random oracle
model, assuming that inverting RSA is hard. In this paper we exhibit a
slightly different proof which provides a tighter security reduction. This
in turn improves the efficiency of the scheme since smaller RSA moduli
can be used for the same level of security. The same method can be used
to obtain a tighter security reduction for Rabin signature scheme, Paillier
signature scheme, and the Gennaro-Halevi-Rabin signature scheme.

1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [3], one
of the most important research topics is the design of practical and provably
secure cryptosystems. A proof of security is usually a computational reduction
from solving a well established problem to breaking the cryptosystem. Well es-
tablished problems include factoring large integers, computing the discrete log-
arithm modulo a prime p, or extracting a root modulo a composite integer. The
RSA cryptosystem [9] is based on this last problem.

A very common practice for signing with RSA is to first hash the message,
add some padding, and then exponentiate it with the decryption exponent. This
“hash and decrypt” paradigm is the basis of numerous standards such as PKCS
#1 v2.0 [10]. In this paradigm, the simplest scheme consists in taking a hash
function, the output size of which is exactly the size of the modulus : this is the
Full Domain Hash scheme (FDH), introduced by Bellare and Rogaway in [1].
The FDH scheme is provably secure in the random oracle model, assuming that
inverting RSA, i.e. extracting a root modulo a composite integer, is hard. The
random oracle methodology was introduced by Bellare and Rogaway in [1] where
they show how to design provably secure signature schemes from any trapdoor
permutation. In the random oracle model, the hash function is seen as an oracle
which produces a random value for each new query.

The seminal work of Bellare and Rogaway in [1] and [2] highlights the impor-
tance, for practical applications of provable security, of taking into account the
tightness of the security reduction. A security reduction is tight when breaking
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the signature scheme leads to solving the well established problem with sufficient
probability, ideally with probability one. In this case, the signature scheme is al-
most as secure as the well established problem. On the contrary, if the reduction
is “loose”, i.e. the above probability is too small, the guarantee on the signature
scheme can be quite weak.

In this paper, we exhibit a better security reduction for the FDH signature
scheme, which gives a tighter security bound. The reduction in [2] bounds the
probability ε of breaking FDH in time t by ε′ · (qhash + qsig) where ε′ is the
probability of inverting RSA in time t′ comparable to t and qhash and qsig are
the number of hash queries and signature queries requested by the forger. The
new reduction bounds the probability ε of breaking FDH by roughly ε′ · qsig

with the same running time t and t′. This is significantly better in practice since
qsig is usually much less than qhash. Full domain hash is thus more secure than
originally foreseen. With a tighter provable security one can safely use a smaller
modulus size, which in turn improves the efficiency of the scheme.

2 Definitions

2.1 Signature Schemes

A digital signature of a message is a bit string dependent on some secret known
only to the signer, and on the content of the message being signed. Signatures
must be verifiable : anyone can check the validity of the signature. The following
definitions are based on [5].

Definition 1 (signature scheme). A signature scheme is defined by the fol-
lowing :
- The key generation algorithm Gen is a probabilistic algorithm which given

1k, outputs a pair of matching public and secret keys, (pk, sk).
- The signing algorithm Sign takes the messageM to be signed and the secret

key sk and returns a signature x = Signsk(M). The signing algorithm may be
probabilistic.
- The verification algorithm V erify takes a message M , a candidate signa-

ture x′ and the public key pk. It returns a bit V erifypk(M,x′), equal to 1 if the
signature is accepted, and 0 otherwise. We require that if x← Signsk(M), then
V erifypk(M,x) = 1.

Signature schemes most often use hash functions. In the following, the hash
function is seen as a random oracle : the output of the hash function h is a
uniformly distributed point in the range of h. Of course, if the same input is
invoked twice, identical outputs are returned.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in an asymptotic setting by
Goldwasser, Micali and Rivest [5]. Here we use the definitions of [1] and [2] which
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take into account the presence of an ideal hash function, and give a concrete se-
curity analysis of digital signatures. Resistance against adaptive chosen-message
attacks is considered : a forger F can dynamically obtain signatures of messages
of its choice and attempts to output a valid forgery. A valid forgery is a mes-
sage/signature pair (M,x) such that V erifypk(M,x) = 1 but the signature of
M was never requested by F .

Definition 2. A forger F is said to (t, qsig, qhash, ε)-break the signature scheme
(Gen, Sign, V erify) if after at most qhash(k) queries to the hash oracle, qsig(k)
signatures queries and t(k) processing time, it outputs a valid forgery with prob-
ability at least ε(k) for all k ∈ N.

Definition 3. A signature scheme (Gen, Sign, V erify) is (t, qsig, qhash, ε)-secu-
re if there is no forger who (t, qsig, qhash, ε)-breaks the scheme.

2.3 The RSA Cryptosystem

The RSA cryptosystem [9] is the most widely used public-key cryptosytem. It
can be used to provide both secrecy and digital signatures.

Definition 4 (The RSA cryptosystem). The RSA cryptosystem is a family
of trapdoor permutations. It is specified by :
- The RSA generator RSA, which on input 1k, randomly selects 2 distinct

k/2-bit primes p and q and computes the modulus N = p · q. It randomly picks
an encryption exponent e ∈ Z

∗
φ(N) and computes the corresponding decryption

exponent d such that e · d = 1 mod φ(N). The generator returns (N, e, d).
- The encryption function f : Z

∗
N → Z

∗
N defined by f(x) = xe mod N .

- The decryption function f−1 : Z
∗
N → Z

∗
N defined by f−1(y) = yd mod N .

2.4 Quantifying the Security of RSA

We follow the definitions of [2]. An inverting algorithm I for RSA gets input
N, e, y and tries to find f−1(y). Its success probability is the probability to
output f−1(y) when N, e, d are obtained by running RSA(1k) and y is set to
f(x) for an x chosen at random in Z

∗
N .

Definition 5. An inverting algorithm I is said to (t, ε)-break RSA if after at
most t(k) processing time its success probability is at least ε(k) for all k ∈ N.

Definition 6. RSA is said to be (t, ε) secure if there is no inverter which (t, ε)-
breaks RSA.
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3 The Full Domain Hash Signature Scheme

3.1 Definition

The Full Domain Hash (GenFDH, SignFDH, V erifyFDH) signature scheme
[1] is defined as follows. The key generation algorithm, on input 1k, runsRSA(1k)
to obtain (N, e, d). It outputs (pk, sk), where pk = (N, e) and sk = (N, d). The
signing and verifying algorithm have oracle access to a hash function HFDH :
{0, 1}∗ → Z

∗
N . Signature generation and verification are as follows :

SignFDHN,d(M)
y ← HFDH(M)
return yd mod N

V erifyFDHN,e(M,x)
y ← xe mod N ; y′ ← HFDH(M)
if y = y′ then return 1 else return 0.

The concrete security analysis of the FDH scheme is provided by the following
theorem [1] :

Theorem 1. Suppose RSA is (t′, ε′)-secure. Then the Full Domain Hash sig-
nature scheme is (t, ε)-secure where t = t′ − (qhash + qsig + 1) · O(k3) and
ε = (qhash + qsig) · ε′.

As stated in [2], the disadvantage of this result is that ε′ could be much
smaller than ε. For example, if we assume like in [2] that the forger is allowed
to request qsig = 230 signatures and computes hashes on qhash = 260 messages,
even if the RSA inversion probability is as low as 2−61, then all we obtain is that
the forging probability is at most 1/2, which is not satisfactory. To obtain an
acceptable level of security, we must use a larger modulus, which will affect the
efficiency of the scheme.

To obtain a better security bound, Bellare and Rogaway designed a new
scheme, the probabilistic signature scheme (PSS), which achieves a tight security
reduction : the probability of forging a signature is almost equally low as inverting
RSA (ε � ε′). Instead, we show in the next section that a better security bound
can be obtained for the original FDH scheme.

3.2 The New Security Reduction

We exhibit a different reduction which gives a better security bound for FDH.
Namely, we prove the following theorem :

Theorem 2. Suppose RSA is (t′, ε′)-secure. Then the Full Domain Hash sig-
nature scheme is (t, ε)-secure where

t = t′ − (qhash + qsig + 1) · O(k3)
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ε =
1

(1− 1
qsig+1 )qsig+1

· qsig · ε′

For large qsig,
ε � exp(1) · qsig · ε′

Proof. Let F be a forger that (t, qsig, qhash, ε)-breaks FDH. We assume that F
never repeats a hash query or a signature query. We build an inverter I which
(t′, ε′)-breaks RSA.

The inverter I receives as input (N, e, y) where (N, e) is the public key and
y is chosen at random in ZZ∗

N . The inverter I tries to find x = f−1(y) where f is
the RSA function defined by N, e. The inverter I starts running F for this public
key. Forger F makes hash oracle queries and signing queries. I will answer hash
oracle queries and signing queries itself. We assume for simplicity that when F
requests a signature of the message M , it has already made the corresponding
hash query on M . If not, I goes ahead and makes the hash query itself. I uses
a counter i, initially set to zero.

When F makes a hash oracle query for M , the inverter I increments i, sets
Mi = M and picks a random ri in ZZ∗

N . I then returns hi = re
i mod N with

probability p and hi = y · re
i mod N with probability 1 − p. Here p is a fixed

probability which will be determined later.
When F makes a signing query for M , it has already requested the hash of

M , so M = Mi for some i. If hi = re
i mod N then I returns ri as the signature.

Otherwise the process stops and the inverter has failed.
Eventually, F halts and outputs a forgery (M,x). We assume that F has

requested the hash of M before. If not, I goes ahead and makes the hash query
itself, so that in any case M = Mi for some i. Then if hi = y · re

i mod N we have
x = hd

i = yd · ri mod N and I outputs yd = x/ri mod N as the inverse for y.
Otherwise the process stops and the inverter has failed.

The probability that I answers to all signature queries is at least pqsig . Then
I outputs the inverse of y for f with probability 1 − p. So with probability at
least α(p) = pqsig · (1− p), I outputs the inverse of y for f . The function α(p) is
maximal for pmax = 1− 1/(qsig + 1) and

α(pmax) =
1

qsig

(
1− 1

qsig + 1

)qsig+1

Consequently we obtain :

ε(k) =
1

(1− 1
qsig+1 )qsig+1

· qsig · ε′(k)

and for large qsig, ε(k) � exp(1) · qsig · ε′(k).
The running time of I is the running time of F added to the time needed to

compute the hi values. This is essentially one RSA computation, which is cubic
time (or better). This gives the formula for t.

��
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3.3 Discussion

In many security proofs in the random oracle model (including [2]), the inverter
has to “guess” which hash query will be used by the adversary to produce its
forgery, resulting in a factor of qhash in the success probability. This paper shows
that a better method is to include the challenge y in the answer of many hash
queries so that the forgery is useful to the inverter with greater probability. This
observation also applies to the Rabin signature scheme [8], the Paillier signature
scheme [7] and also the Gennaro-Halevi-Rabin signature scheme [4], for which
the qhash factor in the random oracle security proof can also be reduced to qsig.

4 Conclusion

We have improved the security reduction of the FDH signature scheme in the
random oracle model. The quality of the new reduction is independent from
the number of hash calls performed by the forger, and depends only on the
number of signatures queries. This is of practical significance since in real-world
applications, the number of hash calls is only limited by the computational
power of the forger, whereas the number of signature queries can be deliberately
limited : the signer can refuse to sign more tha n 220 or 230 messages. However,
the reduction is still not tight and there remains a sizable gap between the exact
security of FDH and the exact security of PSS.
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