Skip to main content

Low-Lying Electronic States and Photophysical Properties of Organometallic Pd(II) and Pt(II) Compounds. Modern Research Trends Presented in Detailed Case Studies

  • Chapter
  • First Online:
Transition Metal and Rare Earth Compounds

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 214))

Abstract

Two homologous organometallic compounds, Pd(2-thpy)2 and Pt(2-thpy)2 (with 2-thpy-=2-(2-thienyl)-pyridinate, structure formulae in Fig. 1), are chosen for case studies of photophysical properties of the lowest excited states. The triplets of these two representative compounds are marked by differences of nearly two orders of magnitude in metal/MLCT (metalto-ligand charge transfer) character. Determination of detailed photophysical properties of both compounds is possible, since highly resolved spectra are obtained when the compounds are dissolved in an n-octane matrix (Shpol’skii matrix), when the measurements are carried out at low temperature (typically at T = 1.3 K), and when modern techniques of laser spectroscopy are applied. In addition, methods of time-resolution and of microwave double-resonance, such as optically detected magnetic resonance (ODMR), microwave recovery, and phosphorescence microwave-double resonance (PMDR) are used. In particular, it is shown that with increasing metal character of the triplet, that is when Pd(2-thpy)2 is compared to Pt(2-thpy)2, many properties change characteristically and in part by orders of magnitude. For example, the following properties will be addressed: Transition probabilities, emission decay times, zero-field splittings (zfs), processes of spin-lattice relaxation (slr), intersystem crossing rates, intrastate relaxation rates, excited state binding properties as compared to those of the electronic ground state, anharmonicity effects, metal-mediated ligand-ligand coupling or spatial extensions of the excited state wavefunctions. Moreover, we focus on spin-selectivity in the vibrational satellite structures of the emission spectra as identified by the complementary methods of time-resolved emission and PMDR spectroscopy. We also discuss radiative deactivation processes, such as spin-vibronic Herzberg-Teller and Frank-Condon activities. Further, we specify sub-picosecond relaxation paths on the basis of micro-second time resolution by applying for the first time the method of time-resolved excitation spectroscopy to transition metal complexes. It is further demonstrated that the size of zero-field splitting of the triplet state can be used as an ordering parameter, that reflects the metal participation in the lowest triplet. Thus, one can relate Pd(2-thpy)2 and Pt(2-thpy)2 to a larger number of other compounds, such as [Rh(bpy)3]3+, [Pt(bpy)2]2+, Pt(qol)2, [Pt(mnt)2]2-, [Ru(bpy)3]2+, [Os(phen)3]2+, [Os(bpy)3]2+, etc. (compare Fig. 1 and Table 11) and one obtains a series that demonstrates chemical tunability of photophysical properties. — For several specific subjects, we present the basic background information in order to make the paper more easily readable, also for non-specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Conolly JS (ed) (1981) Photochemical Conversion and Storage of Solar Energy. Academic Press, New York

    Google Scholar 

  2. Harriman A, West MA (ed) (1982) Photogeneration of Hydrogen. Academic Pess, London

    Google Scholar 

  3. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85

    Article  CAS  Google Scholar 

  4. Kalyanasundaram K (1992) Photochemistry of Polypyridine and Porphyrin Complexes. Academic Press, London

    Google Scholar 

  5. Calzaferri G (ed) (1994) Proceedings of the 10th International Conference on Photochemical Transformation and Storage of Solar Energy. Vol 38 of Solar Energy Materials and Solar Cells, Interlaken

    Google Scholar 

  6. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382

    Article  CAS  Google Scholar 

  8. Heimer TA, Bignozzi CA, Meyer GJ (1993) J Phys Chem 97:11987

    Article  CAS  Google Scholar 

  9. Leitner W (1995) Angew Chem 107:2391

    Article  Google Scholar 

  10. Maede TJ, Kayyem JF (1995) Angew Chem 107:358

    Article  Google Scholar 

  11. Terpetschnik E, Szmacinski H, Malak H, Lakowicz JR (1995) Biophys 68:342

    Article  Google Scholar 

  12. Kosch U, Klimant I, Werner T, Wolfbeis OS (1998) Anal Chem 70:3892

    Article  CAS  Google Scholar 

  13. Holmlin RE, Barton JK (1995) Inorg Chem 34:7

    Article  CAS  Google Scholar 

  14. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4

    Article  CAS  Google Scholar 

  15. Wilson GJ, Sasse WHF, Mau AW-H (1996) Chem Phys Lett 250:583

    Article  CAS  Google Scholar 

  16. Tyson DS, Castellano FN (1999) Inorg Chem 38:4382

    Article  CAS  Google Scholar 

  17. Breu J, Kratzer C, Yersin H (2000) J Am Chem Soc 122:2548

    Article  CAS  Google Scholar 

  18. Yersin H, Huber P, Wiedenhofer H (1994) Coord Chem Rev 132:35

    Article  CAS  Google Scholar 

  19. Humbs W, Yersin H (1996) Inorg Chem 35:2220

    Article  CAS  Google Scholar 

  20. Yersin H, Strasser J (1997) J Luminescence 72–74:462

    Article  Google Scholar 

  21. Yersin H, Humbs W, Strasser J (1997) Coord Chem Rev 159:325

    Article  CAS  Google Scholar 

  22. Yersin H, Humbs W, Strasser J (1997) In: Electronic and Vibronic Spectra of Transition Metal Complexes. Vol II. Yersin H (ed) Vol 191 of Topics in Current Chemistry. Springer, Berlin p 153

    Chapter  Google Scholar 

  23. Yersin H, Humbs W (1999) Inorg Chem 38:5820

    Article  CAS  Google Scholar 

  24. Yersin H, Strasser J (2000) Coord Chem Rev 208:331

    Article  CAS  Google Scholar 

  25. Yersin H, Braun D (1991) Chem Phys Lett 179:85

    Article  CAS  Google Scholar 

  26. Vogler A, Kunkely H (2001) In: Transition Metal and Rare Earth Compounds. Excited States, Transitions, Interactions. Yersin H (ed) Topics in Current Chemistry. Vol. 213 Springer, Berlin, p 143–182

    Google Scholar 

  27. Crosby GA, Elfring WH jr (1976) J Phys Chem 97:2206

    Article  Google Scholar 

  28. Nishizawa M, Suzuki TM, Sprouse S, Watts RJ, Ford PC (1984) Inorg Chem 23:1837

    Article  CAS  Google Scholar 

  29. Komada Y, Yamauchi S, Hirota N (1986) J Phys Chem 90:6425

    Article  CAS  Google Scholar 

  30. Westra J, Glasbeek M (1990) Chem Phys Lett 166:535

    Article  CAS  Google Scholar 

  31. Westra J, Glasbeek M (1991) Chem Phys Lett 180:41

    Article  CAS  Google Scholar 

  32. Kamyshny AL, Suisalu AP, Aslanov LA (1992) Coord Chem Rev 117:1

    Article  Google Scholar 

  33. Humbs W, Strasser J, Yersin H (1997) J Luminescence 72–74:677

    Article  Google Scholar 

  34. Humbs W, Yersin H (1997) Inorg Chim Acta 265:139

    Article  CAS  Google Scholar 

  35. Orgel LE (1961) J Chem Soc 3683

    Google Scholar 

  36. a) Crosby GA (1975) Acc Chem Res 8:231 b) Baker DC, Hipps KW, Crosby GA (1978) Chem Phys Lett 53:333

    Article  CAS  Google Scholar 

  37. Felix F, Ferguson J, Güdel HU, Ludi A (1980) J Am Chem Soc 102:4096

    Article  CAS  Google Scholar 

  38. Elfring WH jr, Crosby GA (1981) J Am Chem Soc 103:2683

    Article  CAS  Google Scholar 

  39. Ceulemans A, Vanquickenborne LG (1981) J Am Chem Soc 103:2238

    Article  CAS  Google Scholar 

  40. Kober EM, Meyer TJ (1982) Inorg Chem 21:3967

    Article  CAS  Google Scholar 

  41. Meyer TJ (1986) Pure and Appl Chem 58:1193

    Article  CAS  Google Scholar 

  42. Krause RA (1987) Structure and Bonding (Berlin) 67:2

    Google Scholar 

  43. Krausz E (1988) Comments Inorg Chem 7:139

    Article  CAS  Google Scholar 

  44. Meyer TJ (1989) Acc Chem Res 22:163

    Article  CAS  Google Scholar 

  45. Yersin H, Braun D, Hensler G, Gallhuber E (1989) In: Vibronic Processes in Inorganic Chemistry. Flint CD (ed) Vol 288 Series C Nato ASI, Mathematical and Physical Sciences. Kluwer Acad Publishers, Dordrecht p 195

    Google Scholar 

  46. Belser P (1990) Chemica 44:226

    CAS  Google Scholar 

  47. Huber P, Yersin H (1993) J Phys Chem 97:12705

    Article  CAS  Google Scholar 

  48. Braun D, Huber P, Wudy J, Schmidt J, Yersin H (1994) J Phys Chem 98:8044

    Article  CAS  Google Scholar 

  49. Roundhill DM (1994) Photochemistry and Photophysics of Metal Complexes. Plenum Press, New York p 165

    Google Scholar 

  50. Riesen H, Krausz E (1995) Comments Inorg Chem 18:27

    Article  CAS  Google Scholar 

  51. Maestri M, Sandrini D, Balzani V, Chassot L, Jolliet P, von Zelewsky A (1985) Chem Phys Lett 122:375

    Article  CAS  Google Scholar 

  52. Balzani V, Maestri M, Melandri A, Sandrini D, Chassot L, Cornioley-Deuschel C, Jolliet P, Maeder U, von Zelewsky A (1987) In: Photochemistry and Photophysics of Coordination Compounds. Yersin H, Vogler A (ed) Springer, Berlin Heidelberg New York, p 71

    Google Scholar 

  53. Sandrini D, Maestri M, Ciano M, Balzani V, Lueoend R, Deuschel-Cornioley C, Chassot L, von Zelewsky A (1988) Gazzetta Chimica Italiana 118:661

    CAS  Google Scholar 

  54. Maestri M, Sandrini D, Balzani V, von Zelewsky A, Jolliet P (1988) Helvetica Chimica Acta 71: 134

    Article  CAS  Google Scholar 

  55. Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Adv Photochem 17:1

    Article  CAS  Google Scholar 

  56. Yersin H, Schützenmeier S, Wiedenhofer H, von Zelewsky A (1993) J Phys Chem 97:13496

    Article  CAS  Google Scholar 

  57. Becker-Donges D, Yersin H, von Zelewsky A (1995) Chem Phys Lett 235:490

    Article  Google Scholar 

  58. Schmidt J, Wiedenhofer H, von Zelewsky A, Yersin H (1995) J Phys Chem 99:226

    Article  CAS  Google Scholar 

  59. Wiedenhofer H, Schützenmeier S, von Zelewsky A, Yersin H (1995) J Phys Chem 99:13385

    Article  CAS  Google Scholar 

  60. Schmidt J, Strasser J, Yersin H (1997) Inorg Chem 36:3957

    Article  CAS  Google Scholar 

  61. Glasbeek M, Sitters R, van Veldhoven E, von Zelewsky A, Humbs W, Yersin H (1998) Inorg Chem 37:5159

    Article  CAS  Google Scholar 

  62. Strasser J, Donges D, Humbs W, Kulikova MV, Balashev KP, Yersin H (1998) J Luminescence 76–77:611

    Article  Google Scholar 

  63. Yersin H, Trümbach D, Wiedenhofer H (1999) Inorg Chem 38:1411

    Article  CAS  Google Scholar 

  64. Homeier HHH, Strasser J, Yersin H (2000) Chem Phys Lett 316:280

    Article  CAS  Google Scholar 

  65. Strasser J, Homeier HHH, Yersin H (2000) Chem Phys 255:301

    Article  CAS  Google Scholar 

  66. Pierloot K, Ceulemans A, Merchán M, Serrano-Andrés L (2000) J Phys Chem A 104:4374

    Article  CAS  Google Scholar 

  67. Vogler A, Kunkely H (1981) Inorg Chim Acta 54:L273

    Article  CAS  Google Scholar 

  68. Ballardini R, Indelli MT, Varani G, Bignozzi CA, Scandola F (1978) Inorg Chim Acta 31:L423

    Article  CAS  Google Scholar 

  69. Scandola F, Ballardini R, Indelli MT (1982) In: Photochemical and Photoelectrochemical and Photobiological Processes, Solar Energy R. and D. Eur Com Ser D, Hall DO (ed) Kluwer, Dordrecht, The Netherlands p 66

    Google Scholar 

  70. Borgarello E, Pelizzetti E, Ballardini R, Scandola F (1984) Nouv J Chim 8:567

    CAS  Google Scholar 

  71. Ballardini R, Varani G, Indelli MT, Scandola F (1986) Inorg Chem 25:3858

    Article  CAS  Google Scholar 

  72. Donges D, Nagle JK, Yersin H (1997) Inorg Chem 36:3040

    Article  CAS  Google Scholar 

  73. Donges D, Nagle JK, Yersin H (1997) J Luminescence 72–74:658

    Article  Google Scholar 

  74. Donges D (1997) PhD thesis, Universität Regensburg

    Google Scholar 

  75. Yersin H, Donges D, Nagle JK, Sitters R, Glasbeek M (2000) Inorg Chem 39:770

    Article  CAS  Google Scholar 

  76. Nurmukhametow RN (1969) Russian Chem Rev. 38:180

    Article  Google Scholar 

  77. Lamotte M, Merle AM, Joussot-Dubien J, Dupuy F (1975) Chem Phys Lett 35:410

    Article  CAS  Google Scholar 

  78. Pitts WM, Merle AM, El-Sayed MA (1979) Chem Phys 36:437

    Article  CAS  Google Scholar 

  79. Murao T, Azumi T (1979) J. Chem. Phys 70:4460

    Article  CAS  Google Scholar 

  80. Shpol’skii EV (1960) Sov Phys Usp (engl translation) 3:372

    Article  Google Scholar 

  81. Canters GW, van der Waals JH (1978) In: The Porphyrins, Vol III. Dolphin D (ed) Acad Press, New York p 531

    Google Scholar 

  82. Jansen G, Noort M, van Dijk N, van der Waals JH (1980) Mol Phys 39:865

    Article  CAS  Google Scholar 

  83. Huang T-H, Rieckhoff KE, Voigt E-M (1979) Chem Phys 36:423

    Article  CAS  Google Scholar 

  84. Chen W-H, Rieckhoff KR, Voigt E-M (1986) Chem Phys 102:193

    Article  CAS  Google Scholar 

  85. a) Mathisen H, Norman N, Pedersen BF (1967) Acta Chem Scand 21:127. b) Norman N, Mathisen H (1972) Acta Chem Scand 26:3913

    Article  CAS  Google Scholar 

  86. a) Nakhimovsky LA, Lamotte M, Joussot-Dubien J (1989) Physical Sciences Data 40, Handbook of Low Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons. Elsevier, Amsterdam b) Boese R, Weiss H-C, Bläser D (1999) Angew Chem Int Ed 38:988 (German edition 111:1042)

    Google Scholar 

  87. Imbusch GF, Kopelman R (1981) In: Laser Spectroscopy of Solids. Yen WM, Selzer PM (ed) Topic in Applied Physics. Springer, Berlin 49:1

    Google Scholar 

  88. Jolliet P, Gianini M, von Zelewsky A, Bernardinelli G, Stoeckli-Evans H (1996) Inorg Chem 35:4883

    Article  CAS  Google Scholar 

  89. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  90. Glasbeek M (2001) In: Transition Metal and Rare Earth Compounds. Excited States, Transitions, Interactions. Yersin H (ed) Topics in Current Chemistry. Vol. 213 Springer, Berlin, p 95–42

    Google Scholar 

  91. Konzelmann U, Klipper D, Schwoerer M (1975) Z Naturforsch 30a:754

    CAS  Google Scholar 

  92. Flint CD, Matthews AD (1976) J Chem Soc Faraday. Transactions II. 72:579

    Article  CAS  Google Scholar 

  93. Zilian A, Güdel HU (1992) Inorg Chem 31:830

    Article  CAS  Google Scholar 

  94. Nakamoto K (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience Publ, New York

    Google Scholar 

  95. Wiedenhofer H (1994) PhD thesis, Universität Regensburg

    Google Scholar 

  96. Denning RG (1989) In: Vibronic Processes in Inorganic Chemistry. Flint CD (ed) Kluwer, Dordrecht, p111

    Google Scholar 

  97. Wilson RB, Solomon EI (1980) J Am Chem Soc 102:4085

    Article  CAS  Google Scholar 

  98. Brunold TC, Güdel HU (1999) In: Inorganic Electronic Structure and Spectroscopy. Solomon EI, Lever ABP (ed) Wiley, Vol 1, p 259

    Google Scholar 

  99. Henderson B, Imbusch GF (1989) Optical Spectroscopy of Inorganic Solids. Carendon, Oxford, UK

    Google Scholar 

  100. Solomon EI (1984) Comments Inorg Chem 3:225

    CAS  Google Scholar 

  101. Yersin H, Otto H, Zink JI, Gliemann G (1980) J Am Chem Soc 102:951

    Article  CAS  Google Scholar 

  102. Banwell CN (1972) Fundamentals of Molecular Spectroscopy. McGraw-Hill. London (UK), p 73

    Google Scholar 

  103. Demtröder W (1991) Laser-Spektroskopie. Springer, Berlin, p 42ff

    Google Scholar 

  104. Dick B, Nickel B (1986) Chem Phys 110:131

    Article  CAS  Google Scholar 

  105. Azumi T, O’Donnell CM, McGlynn SP (1966) J Chem Phys 45:2735

    Article  CAS  Google Scholar 

  106. El-Sayed MA (1971) Acc Chem Res 4:23

    Article  CAS  Google Scholar 

  107. Tinti DS, El-Sayed MA (1971) J Chem Phys 54:2529

    Article  CAS  Google Scholar 

  108. Yamauchi S, Azumi T (1973) Chem Phys Lett 21:603

    Article  CAS  Google Scholar 

  109. Hall LH, El-Sayed MA (1975) Chem Phys 8:272

    Article  CAS  Google Scholar 

  110. Yamauchi S, Azumi T (1977) J Chem Phys 67:7

    Article  CAS  Google Scholar 

  111. Azumi T, Miki H (1997) In: Electronic and Vibronic Spectra of Transition Metal Complexes, Vol. II Yersin H (ed) Topics in Current Chemistry 191. Springer, Berlin, p. 1

    Chapter  Google Scholar 

  112. El-Sayed MA (1974) In: Excited States, Vol I. Lim EC (ed) Academic Press, New York, p 35

    Google Scholar 

  113. Waller I (1932) Z f Physik 79:370

    Article  Google Scholar 

  114. de Kronig RL (1939) Physica 6:33

    Article  Google Scholar 

  115. van Vleck JH (1940) Phys Rev 57:426

    Article  Google Scholar 

  116. Scott PL, Jeffries CD (1962) Phys Rev 127:32

    Article  CAS  Google Scholar 

  117. Manenkov AA, Orbach R (1966) Spin-Lattice-Relaxation in Ionic Solids. Haper & Row, New York

    Google Scholar 

  118. Abragam A, Bleaney B (1970) Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxford

    Google Scholar 

  119. Walker MB (1968) Can J Phys 46:1347

    CAS  Google Scholar 

  120. Walker MB (1967) Phys Rev Lett 162:199

    CAS  Google Scholar 

  121. Orbach R, Blume M (1962) Phys Rev Lett 8:478

    Article  Google Scholar 

  122. Andreev VA, Prilutskii YI (1993) Phys Solid State 35:1624

    Google Scholar 

  123. Andreev VA, Prilutskii YI (1992) Sov Phys Solid State (engl translation) 34:1178

    Google Scholar 

  124. Albrecht AC (1963) J Chem Phys 38:354

    Article  CAS  Google Scholar 

  125. Fischer G (1984) Vibronic Coupling. Academic Press, London (UK)

    Google Scholar 

  126. Flint CD (ed) (1989) Vibronic Processes in Inorganic Chemistry. NATO ASI Series C, Vol. 288. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  127. Hochstrasser RM (1966) Molecular Aspects of Symmetry. Benjamin Inc WA, New York Amsterdam

    Google Scholar 

  128. Mataga N, Kubota T (1970) Molecular Interactions and Electronic Spectra. Marcel Dekker Inc., New York

    Google Scholar 

  129. Braun D, Hensler G, Gallhuber E, Yersin H (1991) J Phys Chem 95:1067

    Article  CAS  Google Scholar 

  130. Clarke RH (ed) (1982) Triplet State ODMR Spectroscopy. Wiley, New York

    Google Scholar 

  131. Tinti DS, El-Sayed MA, Maki AH, Harris CB (1969) Chem Phys Lett 3:343

    Article  CAS  Google Scholar 

  132. Schweitzer D, Hausser KH, Vogler H, Diederich F, Staab HA (1982) Mol Physics 46:1141

    Article  CAS  Google Scholar 

  133. Okabe N, Ikeyama T, Azumi T (1990) Chem Phys Lett 165:24

    Article  CAS  Google Scholar 

  134. Yersin H, Gallhuber E, Hensler G, Schweitzer D (1989) Chem Phys Lett 161:315

    Article  CAS  Google Scholar 

  135. Ikeda S, Yamamoto S, Nozaki K, Ikeyama I, Azumi T, Burt JA, Crosby GA (1991) J Phys Chem 95:8538

    Article  CAS  Google Scholar 

  136. Giesbergen CPM, Terletski C, Frei G, Güdel HU, Glasbeek M (1993) Chem Phys Lett 213:597

    Article  CAS  Google Scholar 

  137. Giesbergen CPM, Glasbeek M (1993) J Phys Chem 97:9942

    Article  CAS  Google Scholar 

  138. Miki H, Shimada M, Azumi T, Brozik JA, Crosby GA (1993) J Phys Chem 97:11175

    Article  CAS  Google Scholar 

  139. Miki H, Azumi T (1994) J Phys Chem 98:6059

    Article  CAS  Google Scholar 

  140. Kimachi S, Satomi R, Miki H, Maeda K, Azumi T, Onishi M (1997) J Phys Chem A 101:345

    Article  CAS  Google Scholar 

  141. Bartell LS, Higginbotham HK (1965) J Chem Phys 42:851

    Article  CAS  Google Scholar 

  142. Ewbank JD, Kirsch G, Schäfer L (1976) J Mol Structure 31:39

    Article  CAS  Google Scholar 

  143. Humbs W (1997) PhD thesis, Universität Regensburg

    Google Scholar 

  144. Menzel ER, Rieckhoff KE, Voigt EM (1973) J Chem Phys 58:5726

    Article  CAS  Google Scholar 

  145. Chassot L, von Zelewsky A (1987) Inorg Chem 26:2814

    Article  CAS  Google Scholar 

  146. Vijayakumar M, Gopinathan MS (1996) J Molecular Structure (Theochem) 361:15

    Article  CAS  Google Scholar 

  147. McClure DS (1959) S olid State Phys 9:399

    Article  CAS  Google Scholar 

  148. Strasser J (1999) PhD thesis, Universität Regensburg

    Google Scholar 

  149. Lifshitz E, Kaplan A, Ehrenfreund E, Meissner D (1999) Chem Phys Lett 300:626

    Article  CAS  Google Scholar 

  150. Bray KL (2001) In: Transition Metal and Rare Earth Compounds. Excited States, Transitions, Interactions. Yersin H (ed) Topics in Current Chemistry. Vol. 213 Springer, Berlin, p 1–94

    Google Scholar 

  151. Breu J, Range K-J, von Zelewsky A, Yersin H (1997) Acta Crystallogr C53:562

    CAS  Google Scholar 

  152. Koehler TR (1980) J Chem Phys 72:3389

    Article  CAS  Google Scholar 

  153. Salthouse JA, Ware MJ (1972) Point group character tables and related data. Cambridge University Press, London (UK)

    Google Scholar 

  154. Ballhausen CJ (1979) Molecular Electronic Structures of Transition Metal Complexes. McGrawHill, New York

    Google Scholar 

  155. Yersin H, Braun D (1991) Coord Chem Rev 111:39

    Article  CAS  Google Scholar 

  156. Harrigan RW, Crosby GA (1973) J Chem Phys 59:3468

    Article  CAS  Google Scholar 

  157. Yersin H, Otto H, Gliemann G (1974) Theoret Chim Acta (Berlin) 33:63

    Article  CAS  Google Scholar 

  158. Green JR, Scheie CE (1967) J Phys Chem Solids 28:383

    Article  CAS  Google Scholar 

  159. Hellwege KH (1976) Einführung in die Festkörperphysik. Springer, Berlin

    Google Scholar 

  160. Holstein T (1959) Annals of Phys 8:325 and 343

    Article  CAS  Google Scholar 

  161. Emin D (1976) In: Linear and Nonlinear Electron Transport in Solids. Devreese JT, van Doren VE (ed). Plenum Press, New York, p 409

    Google Scholar 

  162. Toyozawa Y (1983) In: Organic Molecular Aggregates. Reinecker P, Haken H, Wolf HC (ed) Springer Series in Solid State Sciences 49:90

    Google Scholar 

  163. Rössler U, Pertzsch B, Yersin H (1981) J Luminescence 24/25:437

    Article  Google Scholar 

  164. Rössler U, Yersin H (1982) Phys Rev B26:3187

    Google Scholar 

  165. Gliemann G, Yersin H (1985) Structure and Bonding 62:87

    Article  CAS  Google Scholar 

  166. Poizat O, Sourisseau C (1984) J Phys Chem 88:3007

    Article  CAS  Google Scholar 

  167. Maruszewski K, Bajdor K, Strommen DP, Kincaid JR (1995) J Phys Chem 99:6286

    Article  CAS  Google Scholar 

  168. Strommen DP, Mallick PK, Danzer GD, Lumpkin RS, Kincaid JR (1990) J Phys Chem 94:1357

    Article  CAS  Google Scholar 

  169. Yersin H, Huber P, Braun D (1990) J Phys Chem 94:3560

    Article  CAS  Google Scholar 

  170. Herzberg G (1945) Molecular Spectra and Molecular Structure. Van Nostrant Reinhold, New York Vol II p 282, Vol III (1966) p 181

    Google Scholar 

  171. Watman-Grajcar (1969) J Chim Phys 66:1023

    Google Scholar 

  172. King GW, So SP (1971) J Mol Spectry 37:543

    Article  CAS  Google Scholar 

  173. Lipert RJ, Colson SD (1989) J Phys Chem 93:135

    Article  CAS  Google Scholar 

  174. Yanagida S, Hasegawa Y, Murakoshi K, Wada Y, Nakashima N, Yamanaka T (1998) Coord Chem Rev 171:461

    CAS  Google Scholar 

  175. Johnson PM, Ziegler L (1972) J Chem Phys 56:2169

    Article  CAS  Google Scholar 

  176. Ochs FW, Prasad PN, Kopelman R (1974) Chem Phys 6:253

    Article  CAS  Google Scholar 

  177. Khalil OS, Hankin SW, Goodman L (1977) Chem Phys Lett 52:187

    Article  CAS  Google Scholar 

  178. Callomon JH, Dunn TM, Mills IM (1966) Phil Trans Roy Soc (London) A259:499

    Article  Google Scholar 

  179. McCarthy PK, Blanchard GJ (1996) J Phys Chem 100:14592

    Article  CAS  Google Scholar 

  180. Weidlein J, Müller U, Dehnicke K (1982) Schwingungsspektroskopie. Georg Thieme Verlag, Stuttgart, p 52

    Google Scholar 

  181. Nakamoto K (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley J, New York, p 197

    Google Scholar 

  182. Mohan N, Cyvin SJ, Müller A (1976) Coord Chem Rev 21:221

    Article  CAS  Google Scholar 

  183. Gastilovich EA (1991) Sov Phys Usp (engl Transl) 34:592

    Article  Google Scholar 

  184. Gallhuber E, Hensler G, Yersin H (1987) J Am Chem Soc 109:4818

    Article  CAS  Google Scholar 

  185. Yersin H, Huber P, Gietl G, Trümbach D (1992) Chem Phys Lett 199:1

    Article  CAS  Google Scholar 

  186. Humbs W, Glasbeek M, Sitters R, Yersin H submitted

    Google Scholar 

  187. Güntner W, Gliemann G (1990) J Phys Chem 94:618

    Article  Google Scholar 

  188. Eichenseer M (1999) Diplomarbeit, Universität Regensburg

    Google Scholar 

  189. Backert H, Yersin H, von Zelewsky A (1999) 13th Intern Symp on Photochem and Photophys of Coordination Compounds. Book of Abstracts, Lipari. p 90

    Google Scholar 

  190. Strasser J (1995) Diplomarbeit, Universität Regensburg

    Google Scholar 

  191. Backert H (1996) Diplomarbeit, Universität Regensburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yersin, H., Donges, D. (2001). Low-Lying Electronic States and Photophysical Properties of Organometallic Pd(II) and Pt(II) Compounds. Modern Research Trends Presented in Detailed Case Studies. In: Yersin, H. (eds) Transition Metal and Rare Earth Compounds. Topics in Current Chemistry, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44474-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44474-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67976-9

  • Online ISBN: 978-3-540-44474-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics