
Public Protection of Software

Dept. of Electrical Engineering

Technion - Israel Institute of Technology

Haifa 32000. ISRAEL

Abstract

One of the overwhelming problems that software producers must con-
tend with, is the unauthorized use and distribution of their products.
Copyright laws concerning software are rarely enforc..d, thereby caus-
ing major losses to the software companies. Technical means of pro-
tecting software from illegal duplication are required, but the available
means are imperfect. H’e present. protocols that enables software pro-
tection, without causing overhead in distribution and maintenance. The
protocols may be implemented by a conventional cryptosystern, such
as the DES, or by a public key cryptosystem, such as the RSA Both
krplernentations are proved to satisfy required security criterions.

H.C. Williams (Ed.): Advances in Cryptology - CRYPT0 ’85 , LNCS 218, pp. 158-179, 1986.
0 Springer-Verlag Berlin Heidelberg 1986

159

I. Introduction

Great losses t o software producers are currently incurred due to the ease of

copying most computer programs. I t is common practice for one user to buy a

software product, and without the producer's consent to give or sell it t o other

installations. The economic value of software protection resulted in m a n y pro-

ducts that supplied m e a n s to protect software. I t is shown in [HKU] that many

commercially available means suffer from some of the following deficiencies:

1.

2.

3.

4.

5.

Insufficient protection.

Impaired backup capability (for the innocent user).

Narrow range of applicable systems (i,e., methods that protect only

~ m w a r e) .

Obstacles for distribution and maintenance, of the computers and the

softwee.

Excessive overhead in total costs or in execution time.

This paper describes and proves the security of a software protection

system that does not suffer from the deflciencies indicated. A preliminary version

of PPS (Public Protection of Software) has been presented, with other software

protection methods, in [HK84]. In contrast with the deficiencies outlined above,

PPS provides:

1. Provable, hence reliable, protection.

2. Undisturbed backup capability.

3. Applicable on virtually all systems.

4. Simple. undisturbing protocols for distribution and maintenance.

5. Reasonable overhead in total costs and execution speed.

PPS requires rnoaca t ions to the architecture of the processor. Therefore,

it can only be implemented by CPU manufacturers. In a recent paper [MM].

another software protection method (henceforth referred to as AM) was presented

that requires similar modiAcations t o the intornals of the processor. PPS differs

160

mainly in the protocols used. The PPS protocols require less communication

between the parties, and minimal intervention of the key generating body (denoted

2) and the software producer. For example, commmication between the so€tware

producer and the system integrator before the protection of each product is not

required. This communication is essential in AM. In addition, PPS provides proto-

cols for replacing malfunctioning CPUs and indirect software distribution (via a

dealer). AM does not provide protocols for those functions. A detailed comparison

of PPC and Ah4 may be found in Section 2.1.

PPs is the cornbination of three protocols, two for the distribution of software

and one for replacement of malfunctioning CPUs. PPS may be implemented either

by public key cryptosystems or by conventional cryptosystems. Section 2

discusses the protection supplied by PPS. In Section 3 we describe how PPS may

be implemented by public key cryptosystems (PPS/PK). Section 4 a formal model

for discussing the security of PPS is presented. The security of the public key

cryptosystem implementation is then proved. This implementation is straightfor-

ward, but the conventional cryptosystem implementation (PPS/C) presented in

Section 5 seem to be much more realistic. Section 6 gives the final conclusions.

The protection provided by PPS

PPS attempts t o render unprofitable the effort required to copy protected

software. PPs relies upon mechanisms embedded in the CPU, therefore PPS can-

not prevent the CPU producer from making secret trapdoors in the CPU that will

enable software duplication. PPS requires a key-producing body, which installs the

initial keys in the CPU and enables replacement of failing CPUs. This body may be

the CPU producer, and it is represented by Z or the centel. in this paper. PPs

enables to distribute the keys in such a manner that prevents other bodies from

creating valid keys. If the system's OEM is Z, this feature rnight help to prevent the

creation of "clones" (compatible computers by other OEMs).

Intuitively. pps provides three levels of protection. "he first Level is against

simple piracy attacks. Such attacks use legal procedures and attempt t o duplicate

161

software by some unforeseen manipulation of those procedures. The second level

is against more determined attacks, tha t include the faking of a CPU failure. Due

to obvious reasons, a new CPU. that runs all the software bought for the f a i l i

CPU. should be provided quickly. I t is obvious that if the CPU did not really fail,

and is not returned, the attackers will have two CPUs that run the same software.

H’hile this hazard should be protected against by an appropriate procedure, PPS

ensures that no further gain may be achieved by faking a CPU failure. PPSs third

level of protection is against attackers that physically violate the CPU’s enclosure,

and discover (literally!) the keys held within. This approach is quite extreme, but

it has been argued that such attacks may be attempted by parties that desire to

cause distrust in the center or in the CPU. Only when implemented by a public key

cryptosystem, PPS provides some protection against this attack. After violating

the integrity of the mu, the attackers will only be able to decypher protected code

encrypted for the violated CPU.

A possible modification of PPS is transferring a key (ezecut inn k e y) instead of

the actual program [AM84,HK84]. The program is then transferred and encyphered

by that key. The CPU operates the program using the execution key. The security

analysis of such a modification would not change compared to that of PPS (g‘ wen in

Section 4). As described in the references, this modification might improve greatly

the performance of the CPU.

1.1. P p s p S A l d

1. The influence of PPS on the architecture of the CPU is the same as the

influence detailed in [AM84], and is not discussed here.

2. Both methods provide sufficient protection, undisturbed backup capability,

wide range of applicable systems, and reasonable overhead in total costs and

execution time.

PPS may be hnplernented either by using public-key cryptosystems or by

using conventional cryptosysterns, while AM requires public-key

3.

162

cryptosystems. The implementation of public-key systems is much harder.

PPS does not require communication between the soffware producer and the

customer during the purchase of the software. Rather, an untrusted dealer

may sell the software. with no need for immediate communication with the

software producer (see Section 3.2). This communication is essential in AM,

and may present quite an obstacle in software distribution.

PPS does not require communication between the software producer and the

system integrator before the protection of each product. This communication

is essential in AM and presents another obstacle in software distribution. Also,

the added transmissions may be tapped and altered, and the security is

endangered.

PPS provides a protocol that enables the replacement of a malfunctioning

CPU by untrusted servicemen, without requiring the physic& transfer of a new

CPU from the producer. AM requires the physical transfer of a new CPU.

The motives of a11 the parties involved in the usage of the protection

method (CPU producers, system integrators, software producers, etc.) a r e

similar in both methods. Those motives are discussed in depth in [AM84].

We will not repeat these arguments.

AM allows the system’s OEM (Origmal Equipment Manufacturer) to require a

fee from software producers for each usage of the system to protect software.

By a simple variant to PPS *.he same result may be achieved. We will not dis-

cuss this here.

4.

5.

6.

7.

8.

2. Implementation of PPS with PublicKey Cryptosystem (PPS/PK]

The implementation of PPS requires encrypting functions inside the CPU. The

encryption may be done by a public-key cryptosystem (PKCS), such as [RSA78], or

by ordinary encryption methods, such as [DES77]. In t h i s section we will describe

the implementation by a PKCS, denoted PPS,@K. This implementation is more

straightforward: however. since no implementation of a PKCS seems both secure

163

and quick, the implementation by conventional cryptosystems seem to be more

reasonable. The concept of PKCSs has been first suggested in [DH76], and several

implementations - as well ELS numerous applications - have been published since

then {MB3].

APKCS based on a se t of pairs of functions I<Ei,Di>{ such that

C1. DiEi=E;4=1

C2. Knovring E(M) and E, but not D, does not reveal anything about M.

C3. Knowing D(M) and M does not reveal D.

We use E to denote the encrypting function (or key), and D or E-’ for the

Decj-phering function (or key).

With each computer unit U, associate a pair of keys <Eu,Du>, and with 2 asso-

ciate a pair of keys, <Ez,DzE>. Every computer unit C; contains the following infor-

mation:

1. 4 -The decyphering (secret) key of C,

2. EZ - The encrypting key of Z

3. DzE, - The encrypting key of &, signed by 2.

For mdirect distribution via a software dealer li. another key is required in the

dealer’s computer - Fu(i):
4. F,(i)

with this key. The key is changed between sales.

- The software producer sells his or her software to the dealer

The keys 4, Fu(i), and E,. are kept hidden inside the CPU itse!f. They may

not be accessed by the CPU instructions, except the special instructions that

implement PPS. The signature o€ Z, denoted D,, is even more secret: it is not kept

in the CPU a t alL O n the contrary, & may be used quite easily (and i- Q not a

secret).

The cryptographic utilities required for PPS are only trapdoor functions.

Actually. we only require Du&=l fvr every computer U, and E,D,=l.

164

The cryptosystem may be commutative, i.e. EaEb=EbEa. Several PKCSs have

this property, including [RSA78], and some protocols are not secure with cornmut-

ing cryptosystems. If other properties a r e known for the cryptosystem. malysis as

in Section 4 should be done.

2.1. Direct software distribution protocol (ws/PK)

The protocol that a user I: with computer & should follow in order to buy

PPS/PK protected software from its producer P is the direct distribution protocol

outlined below. Note that information should pass only once from the user t o the

producer and vice versa. The notation used for a user U sending a message M to

his computer & or to another party B is : (U,N,C,) or (U . M , B) respectively.

D1.

D2.

(U,D, E,,P) - The user U sends to P the encrypbon key E, signed by Z.

(P.(DzE,,PGM),C,) - The producer P enters the encryption key of the

customer's computer signed by Z and the pmgram to be distributed, PGM,

into his computer.

(q,[EzDzE,]PGM,Pj - The encryption procedure Es is known t o all corn-

puters, but hidden from the users.

(P,E;PGM, U) - The user receives the software package.

(U,E,PGM,C,) - Loading the program.

(L,,U(D,E,PGM), U) -The computer & (but not U) knows 0,. While execut-

ing, the code PGM is hidden inside the processor. The operation (run) of

software P by a computer is O(P).

D3.

D4.

D5.

D6.

It is assumed that knowing O(PGM) does not enlighten the intruder about

PGM.

2.2. Indirect softrare distribution protocol (PPS/PK)

usually software is not sold directly from the producer to the customer, but

rather it is sold via a thud party, the software dealer. Even telephone connection

with the producer should, in these cases, be avoided. The direct software

165

distribution protocol, described in Section 3.2, is not suitable here, since the pro-

ducer may rarely rely on the honesty of all the dealers. PPS provides a special pro-

tocol for indirect softviwe distribution. This protocol recpires one extra key hid-

den inside the dealers' CPU. The extra key is changing in each execution of the

protocol. This temporal key, Fu(i), (of a dealer U) is assumed to be the key of a

conventional cryptosystem (although it could be implemented with a PKCS as well).

The protocol is divided into two phases. In the first phase. the dealer L buys token

programs from the producer. The tokens are converted to useful programs by the

dealer's computer, C', ir, the second phase. Each token produces no more than one

useful program, encyphered with the key of some buyer's computer. The initial key

Fc(0) is known only to the software producer. For example, h (0) may be initiated

in C' by the producer before the computer C' is given to the dealer.

The distribution protocol is outlined below. The f i s t phase I 1 is done for each

tokea i to be used. Note that information shmld pass only once in each direction.

11.

12.

13.

14.

15.

16.

17.

(P,F~(i)[PG~,F,(i+l)].~) - The producer P gives the dealer L a token i.

This is the first phase of the protocol, and it may be done independently of

the other phases.

(u ,Dz%,L) - The user U sends his key to the dealer.

(L,(F~(i)[PG~~,FL(i+l)], D z E u) , C ~) - The computer CL now contains key Dt
that corresponds to token i.

(c',&PGM,LC) - In the same time, C, changes from key F L (i) to the new key

&(i+1). The new key that is given in the token!

(L,.&PGM,U) - From this step on, the protocol is the same as the direct

distribution protocol. The user receives the soRware package.

(L'.E,f'GlA,C,) - Loading the program.

(~ , O (& E E , P G M) , U) - The computer (but not U) knnm D,. While execut-

ing, the code PGM is hidden inside the processor. Several Fl(i) mechan-

isms may be implemented in the same processor. Also, processors dedi-

cated to users need not have F'l (i) at all.

166

2.9 The replacement gotocol (PPS/PK).

If the cpu of a user malfunctions, a new CPU must be provided. An essentii l

property of the new CPU is being completely compatible: every software run on

the old CPU should also run on the new one. To enable the new CPU to run PPS/PK

protected software, it must have the same keys as the old one. A similar

requirement ensues from upgrades to the CPU, when CPU replacement is required.

The new mu must be made available as soon as possible. It should be possi-

ble for several service centers t o make available a CPU to replace any malfunc-

tioning cpu in their territory. Obviously one cannot permit such service centers t o

produce CpUs and determine their keys at will. We present a solution in which

deceptions are likely to be discovered or prevented, and even if deception is com-

mitted by the selvice center, no more than one illegal CPU will be obtained. Those

results are formally proved in Section 4.3.

The solution we suggest to this problem requires the remote help of Z. HOW-

eyer. this help is cnly remote (by communication), and does not require physical

interaction with z, a s in [.4M64]. The protection will not fail even if the communica-

tion is tapped or altered.

Every CPU replacement will require Z's intervention. After the CPU has been

replaced, z must verify that a replacement has in fact taken place (for example, by

receiving the malfunctioning CPU and verify it's identity). The service center s
uses the remote help of Z t o convert a spare computer (with keys E, and D,)

into a replacement for G. After the successful completion of the protocol, c,
will have keys I!?, and 0,. The replacement protocol is outlined below.

R1. (~ J , f l , . S) -User U requires replacement CPU from S.

R2. (~ , (~ z & , & E s) , Z) - The Serviceperson asks Z for a transformation key that

will change the key of the spare CPU C, from EE,Df to .!?,,,D,,.

R3. (z.E,(&:re;olace),S) - By the creation tables, 2 finds for E, the

corresponding 0,. Then Z encrypts 0, - concatenated with a predefined

string - by E,. and sends it to S.

167

R4. (S .E , (D ,vp lace) ,C ,) - Installation of new key i n C;. The key 0, will be

installed only if i t is concatenated with the correct string. The pub!ic key

D,& is installed too.

The CPUs may be replaced. The replaced CPU ought to be returned t o

and its number verified.

R5.

3. A Formal Analysis of €"S/PK

The presentation of any nontrivial security protocol or system would not be

complete without a formal representation of the assumptions and formal proof of

security. Therefore, we prove that, under acceptable assumptions, PPS/PK is

secure. This is done using the Transaction System Model [HP85]. We proceed by

describing the essence of the model and the correspondence between the model

and PPS/PK. The model as described below is a simplified version of the transac-

tion model for systems in which the timing is irrelevant to the security. Merritt

[MB3] also presented a formal model for analyzing the security of protocols.

The formalization of cryptographic protocols enables a precise inspection of

the arguments OF security. In the case of PPS, the reader is encouraged to inspect

if the forma! model k truly derived from the assumptions and protocols, and if the

proofs of the security of the model are valid.

3.1. The essence of the Transaction Yodel.

A 7 ' k m . s ~ ~ ~ n a s t e r n (Ts) is a partial algebra, defined by a domain and a set

of relations on that domain. The domain of a TS is considered as the set of all

the possible states of some information system A state is d e h e d by a se t of vari-

ables. One of the variables is the se t of all the messages transmitted s o far. The set

of messages transmitted is known to the attackers, since they have complete con-

trol over the communication lines. A state S is a set of values of all the variables.

The relations on the domain represent the possible inferences available for the

attacker. The relations are grouped into meaningful sets, called 7 k u n s a c f i o ~ .

168

Each transaction is a set of ordered pairs of states. A

lfansaction System TS=(T.S) is defined by a set of transactions T on a set of

states S .

The definition o€ a TS does not yet ensure that the 'IS represents the real world

correctly. A TS would be carrect if all the possible inferences for the attacker

from a given state, and no impossible inferences, may be obtained by executions of

transactions from that state. For example, inferences include the innocent activi-

ties of other participants, usage of properities of functions used, etc.

A pair of states {S,,S,+l) of a TS is an ordered pair, with S, termed T d and

Sc+l termed H e a d . if S,,, is the result of applying some transaction of TS on S,. A

sequence of states So.S1, ... is a h i s t o q , starting from So, il for a~ ir~,(S,,S,+l) is

an ordered pair. The length of a history is the number of states in the sequence. A

state S, is i l e a c h a b l e from state SO if there exists a history H of length i+ 1 which

starts a t SO and ends at S,. and no shorter history exists from SO to S,. If there

exists an i such that state S, is i-reachable from state So. then S, is t eachable

from So. If a state & is not reachable from state Sj, we say that S, is harmless for

Sk. A set of states is reachable if any of the states in the set is reachable. Simi-

larly, we define the harmless property for a set of states.

We state without proof some elementary and intuitive results. The proofs are

simple, and are given in [Hp85].

Lemma 4.1 proves the transitivity of the reachability property.

LEMMA 3.1. If u state S, is i-reuchable f r o m So, then evesy s t a t e S,. j -

reachable fMm St, i s (j'+i-l)-reachable P a m So.

Theorem 4.1 proves that the results obtained will hold for more restricted

cryptosystems. for example - without commutativity between cryptographic

operators.

TIEOREM 3.2. .kt S be a set of s t d e s harmless for a set of states in TS,

thenin euery TS's.t. Transactions(TS)sRansactions(TS), state SGhnnnLess

fm 0, '

169

82 . PPS/PKasaTS.

The protocols detailed in Section 3 for PPS/PX execution correspond t o the

following TS called PPS/PK, under the assumptions listed below:

A

B.

C.

D.

E.

F.

Information hidden inside a processor cannot be read.

Resurrecting the software by observing the ports outside the CPU is infeasi-

ble.

The cryptosystems used are secure. The security requirements have been

detailed in Section 3.

The producer verifies fault!essly the identity of the user that sent the

payment, and always delivers the software. The payment could have been

implemented in the protocol, but i t seemed unnecessary.

No information leaks from Z {except by the replacement protocol).

AU the keys are cryptographically independent - no key may be obtained

by known manipulations of other keys. The notion of cryptographic

independence is formally d e h e d in [HPBS].

For proving the safety of PPS/PK we need consider only one producer of

software, P. All the attackers may, however, use the protocol as if they a re pro-

ducers For the analysis, assume that all the users are attackers (since the attack-

ers can impose as honest users). The variables of PPS/PK are: X is the total

expenses of the attackers, for every user u, K, is the decyphering key of his corn-

puter &. Initially Iz, contains 0,. During a CPU exchange, a K key of a spare

computer is changed to the D key of the failing computer. For every dealer L ,

has the same rule as the K key for the the temporal key Fl(i). The set M of all the

messages transmitted so f a r , which corresponds to the information held by the

attackers.

The only source of information in PPS is the defined transactions. Therefore if

PPS is in any given state, then that state is reachable from some initial state in

which no messages were sent. The transactions of PPS,t’PK for computers C, and

C; are listed in Table 1. In the table, P denotes a program to be sold by some

1 70

software producer €or the s u m of money - cost (by TlZ, T13 and T14). An applica-

tion of operator a on string b is denoted a@). We omitted the brackets where

there was no danger of confusion.

The model is a worst case analysis of the system Therefore, data and keys

are interchangeable (a key may be used as data and vide versa). Also, knowing the

key of a cryptofunction is equivalent t o knowing that cryptofunction. Therefore any

string or key may be 'applied' to any string or key. This application may be done

implicitly in some of the transactions, or directly by the attacker (by T7). When a

transaction is explicitly used in one of the protocols, we note the step in the proto-

col. For example, "9 is used in D 5 (step D 5 of the distribubon protocol).

The transactions basically represent the capabilities of the attackers. If an

attacker manages to use some transaction with proper input, the table shows the

output and the change in the system. The results o€ a transaction a r e added mes-

sages ("output") or a change for the variables X. Q or K h the table, before any

transaction is used, assume &=D, and &=F,(i).

Some of the transactions will not be available in certain implementations. For

example, the transactions that present the commutativity of the PKCS will not be

present with a non-commuting PKCS. But, from Theorem 4.1 the security proper-

ties that were proved, hold as well without those transactions. Transaction "18,

physically violating the CPU integrity, would not be considered part of PPS/PK. The

'I3 that includes all the transactions, including T18, denoted as PPS/PKV. would be

referred to only in the last theorem.

Notes: see the description of PPS and verify that all the steps in the protocols

are performed by those transactions. We do not merent ia te between operators

and strings. When a string should be used as an operator, we use it as a key for the

cryptographic opera tor.

A special kind of attack may be performed by an attacker which is also servi-

ceperson. Such an attacker might accepts replacement for a CPU from Z without

returning the original CPU. This attack causes expanses to the attacker (including

171

risk); those expense are by denoted R. Theorem 4.6 shows that after using T17.

there is no way to get more then two CPUs that use the same key (that originally

belonged only to one of them). This ensures also that if the CPU have been replaced

properly. the attackers will have only one CPU with the old key, and therefore with

no gain.

Another extreme attack is physically violating the enclosure of the mu, to

find the keys hidden within (T18). The expense of this attack is denoted by V.

Theorem 4.8 shows that when PPS is implemented by PXCS, even if T18 is used, the

attacker must still use T12 with E,(E,), where u is the identity of the attacker's

computer, t o obtain the uncyphered program P. This result enables enforcement of

auditing means against such attacks.

b3. Roofs of PPs/PK setxuity.

The next lemma shows that no attacker can forge the signature of z. The ds-

cussion in this section refers always to PPS/PK, except where stated otherwise.

LEMMA 3.3. If S=(M,X,K) .is reachable from So=(null,Xo,Ko), where D,cr€M,

tiLen there exists c o m p u t e r C, and b mch t?mt u=& b .

R o o t . Only "10 produces a message that includes 0,. therefore && must

have been manipulated to produce D,a. To remove E, only "9 or T1 can be used.

But the only result of T9 is operated by 0 and there is no transaction that removes

0. The use of T1 t o remove E,, requires an input strzng that includes 0, but not

&. Bilt no transaction prcctuces such a string. Therefore DIo cannot be produced

unless a=E,b .-

Theorem 4.4 shows that the attacker cannot reproduce the decyphered code

P. given the encrypted program by T12 or T13. The producer's computer uses &

on the input string 2 sent by the user, to produce the encryption for the program

P. This is given by [E , z] P for any string z. Reproducing the encrypted program

implies P E M .

172

Proof. By contradiction, assume W is reachable from S p . Since S1 is harmless

for W, then m,=[Ezz]P has been used to reach W. The only transaction, when Du is

unreachable, that removes E, is T10. where z=D=&. Therefore i t remains to show

that SS=(Y~UE,,P,X.K) is harmless for IS. However, there is no transaction that

removes E, when Du is unreachable. Thus, both W, and Wb are unreachable, since

both require the removal of E,, and 0,. 8

We have shown the original code cannot be obtained. Now we prove that the

code cannot be 'adjusted' to another computer, i.e. no manipulation to the

encrypted code produces code encrypted by a key of a difierent CPU. The idea of

the theorem is that if an attacker can't get a program without paying, then he

can't get two programs without paying twice the price of the program.

'PIEOREM 3.5. If S G ~ (M , Y . K) 1 cost j is a hm7n~ess state f o r s o m e set of

states U, defined b e l o w , t h e n C t is also harmless f o r U,. Where:

Lr,=f(M.X,K) I (x < c o s t) & (E u P € M) & (K , =o, fndl) j mrd U 2 = t (M . X . K) I
((X<rr;in(Z*cosf , R f) & (E , P , E , P € M) & (j #i)(K,=D,#nUu)(q =Dw#nZLu)j

R o o f . If f & P € M I . TI2 or T13 must have been used. By Theorem 4.4. P is

not in M. If T13 have been used to reach E,PEM from S. then T14 must have been

used before since it is the only transaction that produces 4,(i)[P,Fu(t+1)]. But if

T14 occurred, it must have been in a history reachable from S, since Y<cos t . In

order to prove that is not reachable from S, we notice that T12 and T14 cannot

be used twice. Also. from the arguments above, T13 cannot be used again. There-

fore E,P cannot be produced by T1Z or T13. and since no transaction that

removes E, it remains to show that no two computers can have the same key.

That is for every two computers i.j where i#j, K,=Kj=D,;tnulL. In order Lo get. a

second key transactions T17 or T16 must be used. Since X<R in Uz. only T16 can

be used, but the application of T16 change K,,, to nulL

173

If the decyphered code is unreachable, as we showed in Theorem 4.4, and we

cannot encrypt the code for another CPU. according to Theorem 4.5. there still

remains an alternative: to generate several computers with the same keys. Then

the attacker shall have to pay only for one copy, and actually obtain several copies.

This attack cannot be prevented completely, since we must permit. replace-

ment of CPUs (see Section 3.3). Indeed the same problem exists in the other

software protection methods, and the solutions available are usually rather unsa-

tisfactory [HKB4].

I t is now proved that all the CPUs with the same keys, except one, should be

returned to Z. Therefore the effect of these attacks is minimal. Given two com-

puters with different keys, T17 must be used in order to make the keys of both

computers equal and meaningful. Meaningful keys are keys that decypher pro-

g r a m distributed by T12 or T13.

THEom 3.6. Let S ~ = (h f o , X ~ , K o) be a s ta le such t h d H0=# rmd X p O and di

the keys are cqptographicdly independent. 7hen S Q harmless. J n r

U = l (H , X , K) I (j #i)& =Kj =a -'#null)% (D, a €Id)&X<R 1.

B o o f . Since X e in U, T17 cannot be used. The only transaction that

changes keys is T15; but in order to use it, T16 must be employed. But if T16 has

been used to produce E,,(Dw;Tepluce), where Ki=D, and Kj=D,,, before T16. then

Kj=nulZ after T16, and since T15 may be used only for G , S is still harmless for u.
8

W e state somewhat unformally and without proof the following theorem, which

h d s the expenses of the attacker for obtaining n computers with identical keys.

WREM 3.7. If S is hmm[ess for U = { (M . X . K) I (x < R) & (c # ~) (K , = ~ # ~ ~) ~

then it is harmless for R = [(M , X . K) 1 (X<R*Log2(q))&(11 1 = q) & ((i , j € I) = >

(Ic ,=K, # n u) >] .

The next result is, perhaps, of minor importance . We prove that even if "18

is used, and all the keys in a CPU are revealed, the attackers cannot forge the s i p -

nature of 2. Thus the attackers still have to order software by sending the correct

174

public key. This result holds only when PPS is implemented using PKCS. We denote

PPS/PKV to be PPS/PK with the addition of T18. Let Y be the price for violating the

inntegrity of the CPU.

THEOREM 3.8. In PPS/PKv; i f S is h d e s s for

U,=I(M,X,K)~(~~,QE~~)&(X<~~~ thenit is h d e s s f o r U , = ~ (M , X , K) I (D , ~ ~ E M) ~ .
ProoJ. There is no transaction ,including T18, that performs 0, on a given

string.

4. PPS Implemented w i t h Conventional Crgptosystem.

Implementing PPS by PKCS is quite natural, but also quite difficult. No chip

available performs a PKCS, and the security of PKCS is still in doubt.. Conventional

cryptosystems are more mature. Several methods have been implemented in

integrated circuits and are considered quile secure. Most known is [DES77].

The implementation of PPS by a conventional cryptosystem is based on emu-

lating the required properties of PKCS by adding redundant information. Two

features of PXCS are used in PPS:

1)

2)

Signatures - used to ensure that keys are not invented.

Secrecy - the program is encrypted by the distributor, yet he cannot decy-

pher programs encrypted by other distributors.

4.1. €"SIC.

When using conventional cryptosystems, the signatures implemented with

Each processor C, con- PKCS before, are now implemented by the processors.

tains three hidden keys:

1) K. -The key of Z .

2) Ku -Computer's key

3) F,(i) - Temporal key for indirect software distribution

175

The emulation is performed by implementing E,, Ds with conventional keys

end the protocols are given in the following sections. Section 5.5 contains the

corresponding transactions, which forms a TS denoted by PPS/C.

We assume the cryptosystems are secure , i.e. an attacker cannot determine

m from K,(m). without knowing &. I t is also impossible to find & from m and

&(rn). Most cryptosystems are presumed to be secure in this manner. Note that

we permit the encryption t o be commutative, i.e. &&(a)=&&(a).

4.2. Direct software distribution protocol (PPSIC).

The following is the protocol for direct distribution of software, from producer

P to the user u. The words k e y , F o g and replme are predefined strings used in

the protocol. I t is implicit that, whenever possible, honest participants in the pro-

tocot check for those strings in the input.

D1.

D2.

D3.

D4.

D5.

h.

4.3

(U,K,(K,;key),P) -The user sends key & signed and bidden by K,.

(P,&(KU:key).PGM),C;,) - The producer enters both users’ key and pro-

gram into his computer ...
(& , & (P G M : ~ g) , P) -The encrypted program is given to the producer.

(P&(PGM;prOg). U) - The producer transfers the encrypted program to

the user.

(v,&(PGM;~og),f&) - The user gives his computer the encrypted pro-

gram.

(G,o(PGH). V) - Th computer executes the program.

tndirect software distribution protocol (PPS/d). . .

The following is the protocol for indirect distribution of software, from pro-

ducer p to a user U via a dealer L.

11. (P,F,~i)[PG~.F,(i+1)],L) - Producer P sells token i t o dealer L . This

step may be done (for several tokens) before the other steps of the

12.

13.

14.

15.

16.

17.

176

protocol.

(u.K, (&;key) ,L) - User U sends his public key to the dealer.

(L,(K,(iZ,:key) .F,(i) [P~,Fu((+l)]) ,~) -The dealer uses token i.

(C,,&(PGdl;prog),L) - The encrypted program-is given t o the dealer. In

the same time. C, changes from F,(i) to Fy(i+l).

(L , K (P G M ; p r o g) . V) - From this step - same as direct distribution.

(U , & (P G M : T O ~) , G) - The user enters the program into his computer.

(~,o(PGM). u) -The computer executes the program.

4.4. CpU replacement protocol (PPS/C)

The following protocol in PPS/C is for the replacement of a users' CPU. The

with C'. by the help of Z. serviceperson s replaces

R1.

RZ.

R3.

(U.K,(K,;key).S) - User u sends his key to S.

(S,(K,(&;key).K,(K,;key)),Z) -The serviceperson sends both keys to z.

(Z,&(K,;replace),S) - Note that Z, in PPS/C, does not have t o keep track

of the keys.

(S , & (K u ; r e p l a c e) , ~) - New keys installation.

TbP Cpus are replaced. The replaced CPU ought to be returned to Z.

R4.

R5.

4.5. PPS/C as aTS

The transactions of PPS/C are listed in Table 2 for computers Q, and (;u. The

variables of PPS/C are: X is the total expenses of the attackers, for every user u,

& is the key of his computer C,,. For every dealer L , Q is the temporal key Fi(*).

The set M of all the messages transmitted so far, which corresponds to the informa-

tion held by the attackers.

Theorems 4.3-4.e may be proved for PPS/C, but since they are simple and

similar t o the proofs for PPS/PK, we will not give them here.

177

5. Conclusion

The problem of software piracy causes considerable losses to software pro-

ducers. The scheme presented - PPs - provides proved, reliable protection, and

convenient protocols for distribution o€ software and replacement of CPUs. PPS
requires implementation of cryptographic capabilities - public key or conventional

key - inside the CPU. This is a challenge for all CPU manufacturers !

We believe that by using suitable protection methods software piracy could be

rendered obsolete. Such a step will be to the benefit of all the parties involved

(well, almost ...).

6. Acknowledgments

We thank Mr. Gadi Xarmi for his proofreading.

7. References:

[AM@] D.J. Albert and S.P. Morse, “Combating Software Piracy by Encryption

and Key Management”, Cbrnpuier April 1984

[DES77] National Bureau of Standard, “Data Encryption Standard“, Federal Jnfor-

m.afion Processing Stmdnd Publicaiion 46, January 1977

[DH76] W, Difbe and M. Hellman. “New Directions in Cryptography”, IEEE nun-

suctions OR InJwmafion Theory, Val. IT-ZZ, 1976

[HKW] A Herzberg and G. Karrni, “On Software Protection” R o c . F w r t h JUT,

J-&em. IsTlrel April 1994

[HP85] k Herzberg and S. Pinter, “The Transaction System Model and Security

Engineering”, in preparution

[MB3] M.J. Merritt, “Cryptographic Protocols”, G I T - I ~ - 8 3 / 0 6 . d o c t d disser-

fdfion, l?te Georgia I n s f i f e of Technaligy, 1983.

[RSA78] RL Rivest, k Shamir and L. Adleman, “A Method for Obtaining Digital sk-
natures and PKCs”, C o r n . ACM, Vol 21, No. 2(Feb. 1973).

178

I

L

, T# Input output Change Steps
7

T1 DUEu a a - D 3

TZ EuDua a - -

- - T3 EuD,a &.&a

T4 E, E, a E,,, E, u -- -
,

-- - "5 I DUDwa I D,&b

T6 D, E, a 1 EwDua - -
-- - "7 a,b a(b)

TB a O(a>

' T I 0 1 - ' 4EU

- -
T9 &= O(a> - D 5 , R

D l 1
I

T11 Dzu,b a(b) I D2,D3

T12 Dzu a(P> X=X+cost D2,D3

T13 D, cz,Fu(i)[P,F' (i+ l)] a(P) Q,,=F'(i+l) 13.14

-

T14 - Fu(z)[P,F,(2+1)] X=X+cost I1

T15 E,(a;reprace} -- & = a 24

- I T! 7 Dz Eu , 0, &, E,, (D,;replaca) 1 X=X+R I

T16 D,E,,D, E, I E,(D,;replzce) &,=null R4, R5

x=x+v - T18 - DU*EZBB

179

