
Integer Decomposition for Fast Scalar

Multiplication on Elliptic Curves�

Dongryeol Kim and Seongan Lim

KISA (Korea Information Security Agency),
78, Garak-Dong, Songpa-Gu, Seoul 138-803, Korea

{drkim, seongan}@kisa.or.kr

Abstract. Since Miller and Koblitz applied elliptic curves to crypto-
graphic system in 1985[3,6], a lot of researchers have been interested in
this field and various speedup techniques for the scalar multiplication
have been developed. Recently, Gallant et al. published a method that
accelerates the scalar multiplication and is applicable to a larger class of
curves[4]. In the process of their method, they assumed the existence of
a special pair of two short linearly independent vectors. Once a pair of
such vectors exists, their decomposition method improves the efficiency
of the scalar multiplication roughly about 50%. In this paper, we state
and prove a necessary condition for the existence of a pair of desired
vectors and we also present an algorithm to find them.

Keywords. elliptic curve cryptosystem, scalar multiplication, integer decompo-
sition, endomorphism

1 Introduction

Since the introduction of elliptic curve cryptosystem in 1985 by Miller and
Koblitz, independently, cryptographic schemes using elliptic curves get lots of
attention in the field of public key cryptography due to its low bandwidth and
small space storage requirements. The scalar multiplication is the main opera-
tion in public key schemes using elliptic curves and it can be usually done by
successive doubling and addition of points. The doubling and addition of points
need a few inversions and multiplications over the underlying finite field.

Although the key size is small, the required complexity may still be rela-
tively heavy and hence intensive researches have been done to improve its com-
putational efficiency. Many different approaches to improve the computational
efficiency for elliptic curve cryptography have been tried[1,2,3,5,7].

One of the approaches is to analyze the algebraic structure of elliptic curves
and classify a class of special curves with better efficiency in the scalar multi-
plication. The most well-known and commonly used class is Koblitz curve. For
� This work was supported by R&D project 2002-s-073 of KISA

K. Nyberg and H. Heys (Eds.): SAC 2002, LNCS 2595, pp. 13–20, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

14 Dongryeol Kim and Seongan Lim

Koblitz curve, scalar multiplication does not need any point doubling by exploit-
ing a feature of the Frobenious endomorphism[5,8,9,10]. When the underlying
finite field is of characteristic 2, the Frobenious endomorphism can be efficiently
computed since squaring is much faster than multiplication. The idea of us-
ing Frobenious endomorphism can be extended to elliptic curves with arbitrary
characteristic, but the improvement of the efficiency can not be guaranteed.

Recently, a speedup idea of scalar multiplication kP using efficiently com-
putable endomorphism of an elliptic curve E over a prime field Fq has been
proposed by Gallant et al. for a point P ∈ E of prime order n. In their paper,
they introduced an idea using decomposition of k = k1 + λk2 (mod n) where
λ is an integer that satisfies φ(P) = λP and φ is an endomorphism on E. If
the endomorphism is efficiently computable and one can guarantee that each
component k1, k2 in the decomposition is short enough, say both of them are
bounded by

√
n, then their method improves the computational efficiency up to

50 percent to the general method of computing scalar multiplication in elliptic
curves over the prime field.

In order to find such a decomposition of k = k1 +λk2 (mod n) with −√
n <

k1, k2 <
√

n, Gallant et al. introduced a way to use two linearly independent
short vectors v1, v2 in the kernel of the homomorphism f : Z × Z → Zn defined
by f(i, j) = i + jλ (mod n). For the simplicity of the notation, we call a set of
such vectors v1, v2 by a GLV(R. Gallant, R. Lambert and S. Vanstone) generator
that will be defined later. Gallant et al. also suggested a specific way to find a
GLV generator, but the completeness of their method is claimed heuristically
without any proof. In fact, the gaps unproven in their claim are

– One cannot guarantee the existence of a GLV generator.
– One cannot guarantee the success of finding a GLV generator even if there

is a GLV generator.

In this paper, we propose

– A necessary condition for the existence of a GLV generator
– A method of finding a GLV generator when a GLV generator exists.

Our paper is organized as follows. In Section 2, we review briefly how to
speedup the scalar multiplication using a GLV generator proposed by Gallant
et al. ’s in [4]. In Section 3, we present a necessary condition for the existence
of a GLV generator and a new algorithm to find a GLV generator. Finally, we
conclude and discuss some further works in Section 4.

2 Preliminary

Let Fq be a finite field of q elements and E be an elliptic curve defined over Fq

with the point at infinity O. An endomorphism of E is a rational map φ : E → E
with φ(O) = O.

Integer Decomposition for Fast Scalar Multiplication 15

Let P ∈ E be a rational point of a large prime order n. Let φ be an efficiently
computable endomorphism of E and φ acts on the subgroup 〈P 〉 as a multiplica-
tion by λ which is an integer root of the characteristic polynomial of φ modulo
n. Let k be an integer and be selected uniformly at random from the interval
[1, n−1]. We consider a set of two linearly independent vectors in Z×Z that will
be used to speed up the computation of kP and name it a GLV generator. For
given λ, n, Gallant et al. introduced a homomorphism f : Z × Z → Zn defined
by

f(i, j) = i + jλ (mod n). (1)

Here we define a GLV generator.

Definition A set {v1, v2} of two linearly independent vectors v1, v2 in the kernel
of the homomorphism f in (1) is called a GLV generator if each component of
v1, v2 is bounded by

√
n.

2.1 How to Use a GLV Generator to Calculate kP

Now we briefly explain how Gallant et al. used a GLV generator to speed up the
computation of kP . Suppose that {v1, v2} is a GLV generator. Since v1, v2 are
linearly independent over Q × Q, they span Q × Q. Therefore we have

(k, 0) = β1v1 + β2v2,

for some β1, β2 ∈ Q. Let b1, b2 be the nearest integers to β1, β2, respectively.
Finally, set

x = (k1, k2) = (k, 0) − (b1v1 + b2v2)
= (k, 0) − (β1v1 + β2v2) + (β1v1 + β2v2) − (b1v1 + b2v2)
= (β1 − b1)v1 + (β2 − b2)v2.

Then we have f(x) = k (mod n) and ‖x‖ ≤ 1
2 (‖v1‖ + ‖v2‖). Since {v1, v2} is

a GLV generator, each component of v1 and v2 is bounded by
√

n and we have
−√

n < k1, k2 <
√

n. Thus we see that one can always decompose k = k1 + k2λ
(mod n) with −√

n < k1, k2 <
√

n from any GLV generator {v1, v2}. Hence kP
can be calculated by k1P + k2φ(P) using the windowed simultaneous multiple
point multiplication method for P and φ(P) and the efficiency improvement
is roughly 50% to the general scalar multiplication method for the currently
recommended key sizes [4].

2.2 A Method to Find a GLV Generator by Gallant et al.

Gallant et al. suggested an algorithm of finding a GLV generator using extended
Euclidean algorithm. In the procedure of extended Euclidean algorithm for n
and λ, we have a sequence of equations,

sin + tiλ = ri, i = 0, 1, 2, · · · , (2)

16 Dongryeol Kim and Seongan Lim

where s0 = 1, s1 = 0, t0 = 0, t1 = 1, r0 = n, r1 = λ and si, ti, ri have the
following properties,

ri > ri+1 ≥ 0, i ≥ 0,

|si| < |si+1|, i ≥ 1,

|ti| < |ti+1|, i ≥ 0,

ri−1|ti| + ri|ti−1| = n, i ≥ 1.

Let m be the greatest index such that rm ≥ √
n. Set v1 = (rm+1,−tm+1) and take

v2 to be the shorter of (rm,−tm) and (rm+2,−tm+2). From the above properties,
it can be easily checked that each component of v1 is less than

√
n. If each

component of v2 is also bounded by
√

n, then {v1, v2} is a GLV generator. But
Gallant et al. expected heuristically that v2 would be also short without any
proof. In addition, some cases could also occur so that there do not exist two
linearly independent short vectors. Hence the method proposed by Gallant et al.
only suggests a possible way of finding a GLV generator. For instance,

n = 85093,
√

n ≈ 291.707, λ = 33206.

All solutions of the equation f(i, j) = 0, |i| <
√

n, |j| <
√

n are

±(252, 246), ±(210, 205), ±(168, 164), ±(126, 123), ±(84, 82), ±(42, 41), (0, 0).

Note that all of them are generated by one vector (42, 41) over the field Q and
v2 does not exist under the assumption that each component of v2 is bounded
by

√
n.

In the next section, we shall present a necessary condition for the existence
of a GLV generator and propose an algorithm to find the second vector v2 whose
components are bounded by

√
n if it exists and compare with Gallant et al. ’s

algorithm.

3 Algorithm

3.1 A Necessary Condition for the Existence of a GLV Generator

As we’ve seen above, Gallant et al.’s method is not a complete solution of finding
a GLV generator even though their method always gives the first small vector
v1 = (r, t). In this subsection, we state and prove a necessary condition for the
existence of a GLV generator.

Assume that v1 = (r, t) and v2 = (u, v) are two linearly independent integer
vectors in the kernel of f such that −√

n < r, t, u, v <
√

n. Then we have

r + tλ = sn, u + vλ = wn, (3)

for some s, w ∈ Z. By multiplying the first and the second equations in (3) by u
and r, respectively, we get

(tu − rv)λ = (su − rw)n. (4)

Integer Decomposition for Fast Scalar Multiplication 17

Similarly, we have
rv − tu = (sv − tw)n. (5)

Note that |tu− rv| < 2n. If tu − rv = 0, (r, t) and (u, v) are linearly dependent.
Thus tu − rv = −n, n since n divides tu − rv. From (5) we have

sv − tw = −1, 1. (6)

Therefore we conclude that t is relatively prime to s and v is also relatively prime
to w. We shall state and prove the following Lemmas.

Lemma 1 Let n be prime and λ ∈ [1, n − 1]. Assume that v1 = (r, t), v2 =
(u, v) ∈ kerf and −√

n < r, t, u, v <
√

n. If v1, v2 are linearly independent, then
r is relatively prime to t and u is relatively prime to v.

Proof : Since v1, v2 ∈ kerf , we have s, w ∈ Z which satisfy (3). Assume that
the greatest common divisor of r and t is α > 1. Then α becomes a common
divisor of s and t from (3) since n is prime and this contradicts to (6). This
completes the proof.
�

Lemma 1 shows a necessary condition for the existence of a GLV generator.
If (r, t) ∈ kerf , gcd(r, t) �= 1 and |r| <

√
n, |t| <

√
n, then the second vector

v2 = (u, v), |u| <
√

n, |v| <
√

n never exists. In fact, Lemma 1 itself shows that
if gcd(r, t) �= 1, there is no GLV generator that contains the vector (r, t).

Lemma 2 Let n be prime and λ ∈ [1, n − 1]. If there is a vector v = (r, t) in
the kernel of f such that gcd(r, t) �= 1 and −√

n < r, t <
√

n, then there exists
no GLV generator.

Proof : Suppose that {v1, v2} is a GLV generator. It is easy to see that either
{v, v1} or {v, v2} is a GLV generator containing v. This contradicts to Lemma
1. Therefore, there exists no GLV generator from Lemma 1.
�

Suppose that v = (r, t) is in the kernel of f and − 1
2

√
n < r, t < 1

2

√
n. Then

2v = (2r, 2t) is also contained in the kernel of f . Therefore, from Lemma 2, we
know that at least one component of each vector in a GLV generator, say a,
should satisfy either 1

2

√
n < a <

√
n or −√

n < a < − 1
2

√
n.

3.2 A Proposed Algorithm to Find a GLV Generator

Using the method proposed by Gallant et al. described in subsection 2.2, one
can always get the first vector v1 where each component of v1 is bounded by√

n. Now we present an algorithm of finding the second short vector v2 after one
gets the first vector v1 if there is any such v2.

Suppose we have the first vector v1 = (rm+1,−tm+1) in the kernel of f as
in Gallant et al.’s algorithm. We know that |rm+1|, |tm+1| are already less than√

n.

18 Dongryeol Kim and Seongan Lim

Finding v2. Let v2 = (u, v) be the second vector so that {v1, v2} is a GLV
generator. Suppose v1 = (r, t), v2 = (u, v) satisfy the equation (3) for some
s, w ∈ Z. From the equation (6), we know that s is relatively prime to −t. We
apply the extended Euclidean algorithm to find the greatest common divisor of
s and −t. Then the algorithm returns v′ and w′ which satisfy

sv′ − tw′ = 1. (7)

In general, every integer vector (v, w) which satisfies sv − tw = 1 can be repre-
sented by (v′ + αt, w′ + αs), α ∈ Z. Our purpose is to find a suitable α. Set

v = v′ + αt, w = w′ + αs.

Since |v| <
√

n and t = −tm+1 �= 0, we have

− v′

t
−

√
n

t
< α < −v′

t
+

√
n

t
, t > 0, (8)

−v′

t
+

√
n

t
< α < −v′

t
−

√
n

t
, t < 0.

Note that u = wn − vλ and r = rm+1 > 0, then we also have

v′λ − w′n
r

−
√

n

r
< α <

v′λ − w′n
r

+
√

n

r
. (9)

Therefore α has to be an integer in the intersection of (8) and (9). From Lemma
2, in order to seek α for the second vector v2 of a GLV generator, it is sufficient
to test only four integers at most since one of |r|, |t| is greater than 1

2

√
n. Now

we give our algorithm of finding the second vector v2 = (u, v).

Algorithm 1 Find a GLV generator v1 = (r, t), v2 = (u, v), for given n and λ
as above

Input: n, λ
Output: v1, v2

Step 1. Compute v1 = (rm+1,−tm+1) such that sm+1n + tm+1λ = rm+1 and
|rm+1|, |tm+1| <

√
n using the extended Euclidean algorithm to find the

greatest common divisor of n and λ. (Gallant et al.’s algorithm)
Step 2. Check if each components of either (rm,−tm) or (rm+2,−tm+2) is

bounded by
√

n, stop and set the shorter of (rm,−tm) and (rm+2,−tm+2)
as the second vector v2. Otherwise, go to step 3.

Step 3. Find any v′ and w′ such that

sm+1v
′ − tm+1w

′ = 1.

For example, v′ and w′ are obtained from the extended Euclidean algorithm
since sm+1 is relatively prime to −tm+1.

Integer Decomposition for Fast Scalar Multiplication 19

Step 4. Compute

I11 = −v′

t
−

√
n

t
, I12 = −v′

t
+

√
n

t
.

Step 5. Let I1 = [I11, I12], if t > 0, and I1 = [I12, I11] if t < 0.
Step 6. Compute

I21 =
v′λ − w′n

r
−

√
n

r
, I22 =

v′λ − w′n
r

+
√

n

r
.

Step 7. Let I2 = [I21, I22].
Step 8. Find all integers in the intersection of I1 and I2 and define them by α.

Note that the number of α′s is at most 4. If there does not exist any such
integer, stop.

Step 9. Set v2 = (u, v), where

u = w′n − v′λ + αr, v = v′ + αt.

One can easily verify that v2 = (u, v) is in ker f and |u|, |v| <
√

n. Therefore
{v1, v2} is a GLV generator.

3.3 Comparison with the Method of Gallant et al.

To compare our algorithm with Gallant et al.’s algorithm, consider the following
example,

n = 1319399, λ = 344894,
√

n ≈ 1148.65.

We have from the extended Euclidean algorithm,

(rm,−tm) = (1812,−329), (rm+1,−tm+1) = (871, 570),
(rm+2,−tm+2) = (70,−1469).

Therefore the two vectors from Gallant et al. ’s algorithms are v1 = (871, 570)
and v2 = (70,−1469). To proceed our algorithm, let ṽ1 = (r, t) = (871, 570).
We have v′ = −241, w′ = −63 since sm+1 = (rm+1 − tm+1λ)/n = 149 and
−tm+1 = 570. Then

I11 ≈ −1.59237, I12 ≈ 2.43798, I21 ≈ 1.76159, I22 ≈ 4.39914.

The integer intersection of I1 and I2 is {2}. Therefore we have ṽ2 = (−941, 899)
from Step 9. We note that each component of ṽ2 in our algorithm is bounded
by

√
n while the second component of vector v2 from Gallant et al.’s algorithm

exceeds
√

n.
From the above example, we see that Gallant et al.’s algorithm does not give

a GLV generator even if there is a GLV generator. Since our proposed algorithm
checks all the possibility of the existence of a GLV generator with the first vector
v1, we never miss a GLV generator if there is any. Our proposed algorithm needs
only a few more real number arithmetic after one gets the first vector v1.

20 Dongryeol Kim and Seongan Lim

4 Conclusion

We presented an algorithm to facilitate the use of Gallant et al.’s idea to speed up
the scalar multiplication of elliptic curves over a prime field in a more concrete
way. Their method gives the desired efficiency if there is a GLV generator which
we named in this paper. The efficiency improvement of their method is still
good if one can guarantee that each component of the two linearly independent
vectors is bounded by a small constant multiple of

√
n, i.e., c

√
n when c is small.

Analyzing cases with c > 1 is more complicated than the case with c = 1 and
can be an further interesting work.

Acknowledgment

We appreciate the anonymous referees of the SAC 2002 for their comments
and suggestions.

References

1. D. Bailey and C. Paar : ‘Optimal extention fields for fast arithmetic in public-key
algorithms’, Advances in Cryptology-Crypto’98, Lecture Notes in Computer Science,
Vol 1462, 1998, pp.472–485.

2. H. Cohen, A. Miyaji, and T. Ono : ‘Efficient Elliptic Curve Exponentiation using
Mixed Coordinates’, Advances in Cryptology-Asiacrypt’98, Lecture Notes in Com-
puter Science, Vol 1514, 1998, pp.51–65.

3. V. Miller : ‘Use of Elliptic Curves in Cryptography’, Advances in Cryptology-
Crypto’85, Lecture Notes in Computer Science, Vol 263, 1986, pp.417–426.

4. R. Gallant, R. Lambert, and L. Vanstone : ‘Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphism’, Advances in Cryptology-Crypto’2001, Lec-
ture Notes in Computer Science, Vol 2139, 2001, pp.190–201.

5. N. Koblitz : ‘CM-curves with Good Cryptographic Properties’, Advances in
Cryptology-Crypto’91, 1992, 48, pp.279–287.

6. N. Koblitz : ‘Elliptic Curve Cryptosystems’, Mathematics of Computation, 1987, 48,
pp.203–209.

7. C. Lim and P. Lee : ‘More Flexible Exponentiation with Precomputation’, Advances
in Cryptology-Crypto’94, Lecture Notes in Computer Science, Vol 839, 1994, pp.95–
107.

8. J. Solinas : ‘An Improved Algorithm for Arithmetic on a Family of Elliptic Curves’,
Advances in Cryptology-Crypto’97, Lecture Notes in Computer Science, Vol 1294,
1997, pp.357–371.

9. J. Solinas : ‘Efficient Arithmetic on Koblitz Curves’, Design, Codes and Crytogra-
phy, 2000, 19, pp.195–249.

10. V. Müller : ‘Fast Multiplication on Elliptic Curves over small fields of charactersitic
two’, J. of Cryptology, 1998, 11, pp.219–234.

	Introduction
	Preliminary
	How to Use a GLV Generator to Calculate kP
	A Method to Find a GLV Generator by Gallant {it et al. }

	Algorithm
	A Necessary Condition for the Existence of a GLV Generator
	A Proposed Algorithm to Find a GLV Generator
	Comparison with the Method of Gallant {it et al. }

	Conclusion

