Skip to main content

Towards Genetic Engineering for Drought Tolerance in Trees

  • Chapter
Tree Transgenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Shinozaki K (1997) Role of MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868.

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78.

    Article  PubMed  CAS  Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Amodeo G, Dorr R, Vallejo A, Stuka M, Parisi M (1999) Radial and axial water transport in the sugar beet storage root. J Exp Bot 50:509–516.

    Article  CAS  Google Scholar 

  • Arisi ACM, Cornic G, Jouanin L, Foyer CH (1998) Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol 117:565–574.

    Article  PubMed  CAS  Google Scholar 

  • Arndt SK, Clifford SC, Wanek W, Jones H-G, Popp M (2001) Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol 21:705–715.

    PubMed  CAS  Google Scholar 

  • Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stresses, vol 4. Topics in current genetics. Springer, Berlin Heidelberg New York, pp 9–38.

    Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic-acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34.

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383.

    Article  CAS  Google Scholar 

  • Blödner C (2005) Einfluss der Kreuzungsumgebung auf die Stressresistenz der Nachkommen von Fichte (Picea abies L. [Karst.] und Arabidopsis thaliana (L.) Heynh, Dissertation, Universität Göttingen.

    Google Scholar 

  • Blödner C, Skroppa T, Johnsen Ø, Polle A (2005) Freezing tolerance in Norway spruce (Picea abies, L.) progenies is physiologically correlated with drought tolerance. J Plant Physiol 162:549–558.

    Article  PubMed  CAS  Google Scholar 

  • Blum A, Munns R, Passioura JB, Turner NC (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051–1053.

    PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341.

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914.

    Article  PubMed  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1998) The lipid bilayer and aquaporins: parallel pathways for water movement into plant cells. Plant Growth Regul 25:89–95.

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Func Plant Biol 30:239–264.

    Article  CAS  Google Scholar 

  • Chen S, Wang S, Hüttermann A, Altman A (2002) Xylem abscisic acid accelerates leaf abscission by modulating polyamine and ethylene synthesis in water-stressed intact poplar. Trees 16:16–22.

    Article  CAS  Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living cells. Plant Physiol 105:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Forestier S, Améglio T (2001) A new validation of the Scholander pressure chamber technique based on stem diameter variations. J Exp Bot 52:1361–1365.

    Article  PubMed  CAS  Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Dgany O, Gonzalez A, Sofer O, Wang W, Zolotnitsky G, Wolf A, Shoham Y, Altman A, Wolf SG, Shoseyov O, Almog O (2004) Structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J Biol Chem 279:51516–51523.

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio JM, Plomion C (2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol 23:169–179.

    PubMed  CAS  Google Scholar 

  • Easterling DR; Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074.

    Article  PubMed  CAS  Google Scholar 

  • El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol 24:729–736.

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal malondialdehyde and related aldehydes. Free Rad Biol Med 11:81–128.

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903.

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20.

    Article  PubMed  CAS  Google Scholar 

  • Grote K, Trzebiatovski P, Kaldenhoff R (1998) RNA levels of plasma membrane aquaporins in Arabidopsis thaliana. Protoplasma 204:139–144.

    Article  CAS  Google Scholar 

  • Guerrier G, Brignolas F, Thierry C; Courtois M, Kahlem G (2000) Organic solutes protect drought-tolerant Populus X euramericana against reactive oxygen species. J Plant Physiol 156:93–99.

    CAS  Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol Plant Mol Biol 33:163–203.

    CAS  Google Scholar 

  • Hilbricht T, Salamini F, Bartels D (2002) CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27–45 gene from the resurrection plant Craterostigma plantagineum Hochst. Plant J 31:293–303.

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281.

    PubMed  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski K, Hammerlindl J, Keller W, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756.

    Article  PubMed  CAS  Google Scholar 

  • Islam MA, Blake T, Kocacinar F, Lada R (2003) Ambiol, spermine, and aminoethoxyvinylglycine prevent water stress and protect membranes in Pinus strobus L under drought. Trees 17:278–284.

    CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoe C, Suederheld M, Rieger M (1997) Salinity and drought tolerance in mannitol-accumulating trans-genic tobacco. Plant Cell Environ 20:609–616.

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17:287–291.

    Article  CAS  Google Scholar 

  • Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839.

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123:111–124.

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Nair A, Bartels D (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J 28:555–567.

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394.

    PubMed  CAS  Google Scholar 

  • Knight H, Knight M (2001) Abiotic stress signalling pathways: specificity and croa talk. Trends Plant Sci 6:262–267.

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560.

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141.

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633.

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, van Montagu M, Verbruggen N (1999) A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci USA 96:5873–5877.

    Article  PubMed  CAS  Google Scholar 

  • Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141.

    Article  Google Scholar 

  • Liu WH, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JFD (2005) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries Tree Physiol 26:1–16.

    Article  Google Scholar 

  • Luan S (1998) Protein phosphatases and signaling cascades in plants. Trends Plant Sci 3:271–275.

    Article  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1171–1181.

    Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193.

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1994) Physicochemical and environmental plant physiology. Academic Press, London, p 635.

    Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850.

    Article  PubMed  CAS  Google Scholar 

  • Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovaks I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses Plant J 24:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139(4):1762–1772.

    Article  PubMed  CAS  Google Scholar 

  • Pelah D, Shoseyov O, Altman A (1995) Characterization of BspA, a major boiling-stable, water-stress-responsive protein in aspen (Populus tremula). Tree Physiol 15:673–678.

    PubMed  CAS  Google Scholar 

  • Perks MP, Irvine J, Grace J (2002) Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought. Tree Physiol 22:877–883.

    PubMed  CAS  Google Scholar 

  • Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387.

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130.

    PubMed  CAS  Google Scholar 

  • Polle A (1996a) Mehler reaction: friend or foe in photosynthesis? Bot Acta 109:84–89.

    CAS  Google Scholar 

  • Polle A (1996b) Protection from oxidative stress in trees as affected by elevated CO2 and environmental stress. In: Mooney H, Koch G (eds) Terrestrial ecosystem response to elevated CO2. Physiological ecology series. Academic Press, New York, pp 299–315.

    Google Scholar 

  • Polle A, Schwanz P, Rudolf C (2001) Developmental and seasonal changes of stress responsiveness in beech leaves (Fagus sylvatica, L.). Plant Cell Environ 24:821–829.

    Article  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shahar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:1–17.

    Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716.

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384.

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171.

    Article  PubMed  CAS  Google Scholar 

  • Schaffner AR (1998) Aquaporin function, structure, and expression: Are there more surprises to surface in water relations? Planta 204:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci USA 52:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci 14:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Schwanz P, Polle A (2001) Differential responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO2 concentrations. J Exp Bot 52:133–143.

    Article  PubMed  CAS  Google Scholar 

  • Schwanz P, Picon C, Vivin P, Dreyer E, Guehl JM, Polle A (1996) Responses of the antioxidative systems to drought stress in pendunculate oak and maritime pine as affected by elevated CO2. Plant Physiol 110:393–402.

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression patterns of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199.

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of ABA in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222.

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Wu Y, Voetberg GS, Saab IN and LeNoble ME (1994) Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J Exp Bot 45:1743–1751.

    CAS  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584.

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004a) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351.

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen H (2004b) Root growth maintenance during water deficits: physiology to functional genomics “New directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. Published on CDROM. Avaliable from URL www.cropscience.org.au.

  • Shen B, Jensen RG, Bohnert HJ (1997a) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997b) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:1211–1219.

    Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997a) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum. Plant Physiol 115:1211–1219.

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1997b) Sorbitol-6-phosphate dehydrogenase expression in transgenic tabacco. High amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839.

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223.

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58.

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464.

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Oshumi C, Luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarrays. Plant Physiol 135:1697–1709.

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510.

    Article  PubMed  CAS  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133.

    Article  PubMed  CAS  Google Scholar 

  • Teichmann T, Bolu W, Polle A (2006) Transgenic trees. In: Kües U (ed) Wood production, wood technology and biotechnological impacts. Universitätsverlag Göttingen, in the press.

    Google Scholar 

  • Tyerman S, Bohnert H, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071.

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194.

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Zuker A, Altman A (1998) Forest tree biotechnology: genetic transformation and application to future forests. Trends Biotech 16:439–446.

    Article  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637.

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754.

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620.

    Article  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960.

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:1–10.

    Article  CAS  Google Scholar 

  • Wang WX, Pelah D, Alergand T, Shoseyov O, Altman A (2002) Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol 130: 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance Planta 218:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Katsumi K, Yuji I, Sasaki S (2001) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206.

    Article  Google Scholar 

  • Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133:1702–1716.

    Article  PubMed  CAS  Google Scholar 

  • Wei L (1991) Brief introduction of structure and physical properties of P. euphratica wood (in Chinese). Xinjiang Forestry 5:14.

    Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210.

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Komory T, Myers PM, Kuwata S, Imaseki H (1997) Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant Cell Physiol 38:1226–1231.

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224.

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993a) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993b). The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25.

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Wang Y, Allen R, Holaday AS, Tissue D, Zhang H (2003) Protection of photosynthesis and seed production under water-deficit conditions in transgenic tobacco plans that overexpress Arabidopsis ascorbate peroxidase. Crop Sci 43:1477–1483.

    Article  CAS  Google Scholar 

  • Yin C, Duan B, Wang X, Li C (2004) Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097.

    Article  CAS  Google Scholar 

  • Yoo RH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473.

    Article  CAS  Google Scholar 

  • Zhang X, Zang R, Li C (2004a) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci 166:791–797.

    Article  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu J-K (2004b) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ruan Y, Ho THD, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress responsive genes in Arabidopsis thaliana Bioinformatics 21:3074–3081.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Polle, A., Altman, A., Jiang, X. (2006). Towards Genetic Engineering for Drought Tolerance in Trees. In: Fladung, M., Ewald, D. (eds) Tree Transgenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32199-3_13

Download citation

Publish with us

Policies and ethics