Skip to main content

The Biogeochemistry of Iron

  • Chapter
Marine Geochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C., 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. 2. Fe and Mn. Advances in Geophysics, 22: 351–415.

    Google Scholar 

  • Aller, R.C. and DeMaster, D.J., 1984. Estimates of particle flux and reworking at the deep-sea floor using 234Th/238U disequilibrium. Earth and Planetary Science Letters, 67: 308–318.

    Google Scholar 

  • Aller, R.C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philosophical Transactions of the Royal Society of London A, 331: 51–68.

    Google Scholar 

  • Aller, R.C., 1994. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. Journal of Marine Research, 52(2): 259–295.

    Google Scholar 

  • Balzer, W., 1982. On the distribution of iron and manganese at the sediment/water interface: thermodynamic vs. kinetic control. Geochimica Cosmochimica Acta, 46: 1153–1161.

    Google Scholar 

  • Bell, P.E., Mills, A.L. and Herman, J.S., 1987. Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Applied and Environmental Microbiology, 53: 2610–2616.

    Google Scholar 

  • Berger, W.H., Smetacek. V.S. and Wefer, G., 1989. Ocean productivity and paleoproductivity-An overview. In: Berger, W.H., Smetacek, V.S. and Wefer, G. (eds), Productivity of the oceans: present and past. John Wiley and Sons, Chichester, 1–34.

    Google Scholar 

  • Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1–23.

    Google Scholar 

  • Berner, R.A., 1971. Principles of chemical sedimentology. McGraw-Hill, New York., 240 pp.

    Google Scholar 

  • Beyer, M.E., Bond, A.M. and McLaughlin, R.J.W., 1975. Simultaneous polarographic determination of ferrous, ferric and total iron in standard rocks. Analytical Chemistry, 47(3): 479–482.

    Google Scholar 

  • Biber, M.V., Dos Santos Afonso, M. and Stumm, W., 1994. The coordination chemistry of weathering: IV: Inhibitation of the dissolution of oxides minerals. Geochimica Cosmochimica Acta, 58(9): 1999–2010.

    Google Scholar 

  • Bischoff, J.L., 1972. A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20: 217–223.

    Google Scholar 

  • Blank, M., Leinen, M. and Prospero J.M., 1985. Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature, 314: 84–86.

    Google Scholar 

  • Blesa, M.A., Marinovich, H.A., Baumgartner, E.C., and Marota, A.J.G., 1987. Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solution. Inorganic Chemistry, 26: 3713–3717.

    Google Scholar 

  • Böhm, J., 1925. Über Aluminium-und Eisenoxide I. Zeitschrift der Anorganischen Chemie, 149: 203–218.

    Google Scholar 

  • Bonneville, S., Van Cappellen, P., and Behrends, T., 2004. Microbial reduction of iron(III) oxyhydroxides: oxyhydroxides: effects of mineral solubility and availability. Chemical Geology, 212: 255–268.

    Google Scholar 

  • Borer, P.M., Sulzberger, B., Reichard, P., and Kraemer, S.M., 2005. Effect of siderophores on the lightinduced dissolution of colloidal iron(III) (hydr)-oxides. Marine Chemistry, 93: 179–193.

    Google Scholar 

  • Broecker, W.S., Spencer, D.W., Craig, H., 1982. GEOSECS Pacific Expedition: Hydrographic Data. U.S. Goverment Printing Office, Washington, DC, 3: 137 pp.

    Google Scholar 

  • Bruland, K.W., Rue, E.L., Smith, G.J., and DiTullio, G.R., 2005. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry, 93: 81–103.

    Google Scholar 

  • Buresh, R.J. and Moraghan, J.T., 1976. Chemical reduction of nitrate by ferrous iron. Journal of Environmental Quality, 5: 320–325.

    Google Scholar 

  • Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M. and Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54: 149–155.

    Google Scholar 

  • Canfield, D.E., 1988. Sulfate reduction and the diagenesis of iron in anoxic marine sediments. Ph.D. thesis. Yale Univ., 248 pp.

    Google Scholar 

  • Canfield, D.E., 1989. Reactive iron in marine sediments. Geochimica Cosmochimica Acta, 51: 619–632.

    Google Scholar 

  • Canfield, D.E., Raiswell, R. and Botrell, S., 1992. The reactivity of sedimentary iron minerals towards sulfide. American Journal of Science, 292: 659–683.

    Google Scholar 

  • Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Mackenzie, F.T. and Chou, L. (eds) Interactions of C, N, P and S biogeochemical cycles and global change. NATO ASI Series, 4, Springer, Berlin, Heidelberg, NY, pp. 333–363.

    Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica Cosmochimica Acta, 57: 3867–3883.

    Google Scholar 

  • Canfield, D.E., Jørgensen, B.B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P. and Hall, P.O.J., 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.

    Google Scholar 

  • Canfield, D.E., 1997. The geochemistry of river particles from the continental USA: Major elements. Geochimica Cosmochimica Acta, 61: 3349–3365.

    Google Scholar 

  • Carlson, T.N. and Prospero, J.M., 1972. The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. Journal of Applied Meteorology, 11: 283–297.

    Google Scholar 

  • Carothers, W.W., Adami, L.H. and Rosenbauer, R.J., 1988. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica Cosmochimica Acta, 52: 2445–2450

    Google Scholar 

  • Chavez, F.P. and Barber, R.T., 1987. An estimate of new production in the equatorial Pacific. Deep Sea Research, 34: 1229–1243.

    Google Scholar 

  • Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London, pp. 698.

    Google Scholar 

  • Chou, T.T. and Zhou, L., 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Science Society American Journal, 47: 225–232.

    Google Scholar 

  • Cole, T.G. and Shaw, H.F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18: 239–252.

    Google Scholar 

  • Cole, T.G., 1985. Composition, oxygen isotope geochemistry, and the origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica Cosmochimica Acta, 49: 221–235.

    Google Scholar 

  • Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C. and Pye, K., 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436–438.

    Google Scholar 

  • Cornwell, J.C. and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22: 193–206

    Google Scholar 

  • Crosby, S.A., Glasson, D.R., Cuttler, A.H., Butler, I., Turner, D.R., Whitfield, M. and Millward, G.E., 1983. Surface areas and porosities of Fe(III)-Fe(II)-derived oxyhydroxides. Environmental Science and Technology, 17: 709–713.

    Google Scholar 

  • De Angelis, M., Barkov, N.I., Petrov, V.N., 1987. Aerosol concentrations over the last climatic cycle (160 kyr) from Antarctic ice core. Nature, 325: 318–321.

    Google Scholar 

  • De Baar, H.J.W. and Suess, E., 1993. Ocean carbon cycle and climate change-An introduction to the interdisciplinary union symposium. Global and Planetary Change, 8: VII–XI.

    Google Scholar 

  • Decarreau, A., Bonnin, D., Badauth-Trauth, D., Couty, R. and Kaiser, P., 1987. Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22: 207–223.

    Google Scholar 

  • Donaghay, P.L., 1991. The role of episodic atmospheric nutrient inputs in chemical and biological dynamics of oceanic ecosystems. Oceanography, 4: 62–70.

    Google Scholar 

  • Dos Santos Afonso, M. and Stumm, W. 1992, Reductive dissolution of iron(III)(hydr)oxides by hydrogen sulfide. Langmuir, 8: 1671–1676.

    Google Scholar 

  • Duce, R.A., Liss, P.S., Merill, J.T., Atlas, E.L., Buat-Menard, P., Hicks, B.B., Miller, J.M., Prospero, J.M., Arimoto, T., Church, T.M., Eillis, W., Galloway, J.N., Hansen, L., Jickells, T.M., Knap, A.H., Reinhardt, K.H., Schneider, B., Soudine, A., Tokos, J.J., Tsunogai, S., Wollast, R. and Zhou, M., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles 5: 193–259.

    Google Scholar 

  • Ehrenreich, A. and Widdel, F., 1994, Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60: 4517–4526.

    Google Scholar 

  • Ellwood, B.B., Chrzanowski, T.H., Hrouda, F., Long, G.J. and Buhl, M.L., 1988. Siderite formation in anoxic deep-sea sediments: A synergetic bacterially controlled process with important implications in paleomagnetism. Geology, 16: 980–982

    Google Scholar 

  • Ferdelman, T.G., 1980. The distribution of sulfur, iron, manganese, copper, and uranium in a salt marsh sediment core as determined by a sequential extraction method. Masters thesis, University Delaware.

    Google Scholar 

  • Figuères, G., Martin, J.M. and Meybeck, M., 1978. Iron behaviour in the Zaire estuary. Netherlands Journal of Sea Research, 12(3/4): 329–337.

    Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D. and Hartman, B., 1979. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis. Geochimica Cosmochimica Acta, 43: 1075–1090.

    Google Scholar 

  • Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R. and DeVries, T., 1982. The marine phosphorus cycle. American Journal of Science, 282: 474–511.

    Google Scholar 

  • GESAMP (Group of Experts on the Scientific Aspects of Marine Pollution), 1987. Land/sea boundary flux of contaminants: Contributions from rivers. GESAMP Rep. Stud., 32: 172 pp.

    Google Scholar 

  • Gingele, F., 1992. Zur klimaabhängigen Bildung biogener und terrigener Sedimente und ihre Veränderung durch die Frühdiagenese im zentralen und östlichen Südatlantik (in German). Berichte, 26, Fachbereich Geowissenschaften, Universität Bremen, 202 pp.

    Google Scholar 

  • Goldberg, S. and Sposito, G., 1984. A chemical model of phosphate adsorption by soils. I. Reference oxide minerals. Soil Scienc Society American Journal, 48: 772–778.

    Google Scholar 

  • Haese, R.R., Wallmann, K., Kretzmann, U., Müller, P.J. and Schulz, H.D., 1997. Iron species determination to investigate the early diagenetic reactivity in marine sediments. Geochimica Cosmochimica Acta, 61(1): 63–72.

    Google Scholar 

  • Haese, R.R., Petermann, P., Dittert, L. and Schulz, H.D., 1998. The early diagenesis of iron in pelagic sediments-a multidisciplinary approach. Earth and Planetary Science Letters, 157: 233–248.

    Google Scholar 

  • Haese, R.R., Schramm, J., Rutgers van der Loeff, M.M. and Schulz, H.D., 2000. A comparative study of iron and manganese diagenesis in continental slope and deep sea basin sediments off Uruguay (SW Atlantic). International Journal of Earth Sciences, 88: 619–629.

    Google Scholar 

  • Haese, R.R., 2002. Macrobenthic activity and its effects on biogeochemical reactions and fluxes, In: Wefer, G., Billet, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M. and vanWeering, T.C.E. (eds), Ocean margin systems, Springer-Verlag, Heidelberg-Berlin, 219–234.

    Google Scholar 

  • Harder, H., 1976. Nontronite synthesis at low temperatures. Chemical Geology, 18: 169–180

    Google Scholar 

  • Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26: 65–72.

    Google Scholar 

  • Hart, T.J., 1934. On the phytoplankton of the southwest Atlantic and the Bellinghausen Sea, 1929–31. Discovery Reports VIII.

    Google Scholar 

  • Hein, J.R., Yeh, H.-W. and Alexander, E., 1979. Origin of iron rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays and Clay Mineralogy, 27: 185–194.

    Google Scholar 

  • Hunter, K.A., 1983. On the estuarine mixing of dissolved substances in relation to colloid stability and surface properties. Geochimica Cosmochimica Acta, 47: 467–473.

    Google Scholar 

  • Hüttel, M., Ziebis, W., Forster, S. and Luther, G.W. III, 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica Cosmochimica Acta, 62: 613–631.

    Google Scholar 

  • Hyacinthe, C., and Van Cappellen, P., 2004. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry, 91: 227–251.

    Google Scholar 

  • Jensen, H.S., Mortensen, B.P., Andersen, F.Ø., Rasmussen, E. and Jensen, A., 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography, 40: 908–917.

    Google Scholar 

  • Johnson, K.S., Coale, K.H., Elrod, V.A. and Tindale, N.W., 1994. Iron photochemistry in seawater from the equatorial Pacific. Marine Chemistry, 46: 319–334.

    Google Scholar 

  • Johnson, K.S., Gordon, R.M. and Coale, K.H., 1997. What controls dissolved iron concentrations in the world ocean? Marine Chemistry, 57: 137–161.

    Google Scholar 

  • Johnson, C.M., Beard, B.L., Roden, E.E., Newman, D.K., and Nealson, K.H., 2004. Isotopic constraints on biogeochemical cycling of Fe. In: Geochemistry of non-traditional stable isotopes, Eds: Johnson, C.M., Beard, B.L., and Albarède, F., Reviews in Mineralogy & Geochemistry, 55: 359–408.

    Google Scholar 

  • Jørgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Marine Biology, 41: 7–17.

    Google Scholar 

  • Kester, D.R. and Pytkowicz, R.M., 1967. Determination of apparent dissociation constants of phosphoric acid in sea water. Limnology and Oceanography, 12: 243–252.

    Google Scholar 

  • Kostka, J.E. and Luther, G.W. III, 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica Cosmochimica Acta, 58: 1701–1710.

    Google Scholar 

  • Kostka, J.E. and Nealson, K.H., 1995. Dissolution and reduction of magnetite by bacteria. Environmental Science and Technology, 29: 2535–2540.

    Google Scholar 

  • Kostka, J.E., Stucki, J.W., Nealson, K.H. and Wu, J., 1996. Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens Strain MR-1. Clays and Clay Minerals, 44: 522–529.

    Google Scholar 

  • König, I., Drodt, M., Suess, E., Trautwein, A.X., 1997. Iron reduction through the tan-green color transition in deep-sea sediments. Geochimica Cosmochimica Acta, 61: 1679–1683

    Google Scholar 

  • Krauskopf, K.B., 1956. Factors controlling the concentration of thirteen trace metals in seawater. Geochimica Cosmochimica Acta, 12: 331–334.

    Google Scholar 

  • Krom, M.D., Berner, R.A., 1980. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography, 25: 797–806.

    Google Scholar 

  • Kuma, K., Nishioka, J., Matsunaga, K., 1994. Controls of iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnology and Oceanography, 41: 396–407.

    Google Scholar 

  • Lear, P.R. and Stucki, J.W., 1989. Effects of iron oxidation state on the specific surface area of nontronite. Clays and Clay Minerals, 37: 547–552.

    Google Scholar 

  • Leventhal, J. and Taylor, C., 1990. Comparison of methods to determine the degree of pyritisation. Geochimica Cosmochimica Acta, 54: 2621–2625.

    Google Scholar 

  • Lord, C.J. III., 1980. The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph.D. thesis, University Delaware, 177 pp.

    Google Scholar 

  • Lovley, D.R., 1987. Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiology Journal, 5: 375–399.

    Google Scholar 

  • Lovley, D.R. and Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: Organic carbon oxidition coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 54: 1472–1480

    Google Scholar 

  • Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews 55: 259–287.

    Google Scholar 

  • Lovley, D.R., 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiological Reviews, 20: 305–313.

    Google Scholar 

  • Lovley, D.R., Coates, J.D., Saffarini, D. and Lonergan, D.J., 1997. Diversity of dissimilatory Fe(III)-reducing bacteria. In: Winkelman, G. and Carrano, C.J. (eds) Iron and Related Transition Metals in Microbial Metabolism, Harwood Academic Publishers, Switzerland, pp. 187–215.

    Google Scholar 

  • Lyle, M., 1983, The brown-green color transition in marine sediments: A marker of the Fe(III)-Fe(II) redox boundary. Limnology and Oceanography, 28: 1026–1033.

    Google Scholar 

  • Mackenzie, F.T. and Garrels, R.M., 1966, Chemical mass balance between rivers and oceans. American Journal of Science, 264: 507–525.

    Google Scholar 

  • Martin, J.H., Gordon, R.M., Fitzwater, S.E., Broenkow, W.W., 1989. VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Research, 36: 649–680.

    Google Scholar 

  • Martin, J.H., 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5: 1–13.

    Google Scholar 

  • Martin, J.H., Gordon, R.M. and Fitzwater, S.E., 1991. The case for iron. In: Chisholm, S.W. and Morel, F.M.M. (eds). What controls phytoplankton production in nutrient-rich areas of the open sea?, ASLO Symposium, Lake San Marcos, California, Feb. 22–24, 1991, Allen Press, Lawrence.

    Google Scholar 

  • Martin, J.H., Coale, K.H., Johnson, K.S. and Fitzwater, S.E., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123–129.

    Google Scholar 

  • Mayer, L.M., Jorgensen, J., Schnitker, D., 1991. Enhencement of diatom frustule dissolution by iron oxides. Marine Geology, 99: 263–266.

    Google Scholar 

  • McAllister, C.D., Parsons, T.R. and Strickland, J.D.H., 1960. Primary productivity and fertility at station “P” in the north-east Pacific Ocean. Journal du Conseil, 25: 240–259.

    Google Scholar 

  • McMurtry, G.M., Chung-Ho, W. and Hsueh-Wen, Y., 1983. Chemical and isotopic investigation into the origin of clay minerals from the Galapagos hydrothermal mound field. Geochimica Cosmochimica Acta, 47: 291–300.

    Google Scholar 

  • Mehra, O.P. and Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. Proceedings of the National Conference on Clays and Clay Mineralogy, 7: 317–327.

    Google Scholar 

  • Michalopoulos, P. and Aller, R.C., 1995. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic cycles. Science, 270: 614–617.

    Google Scholar 

  • Millero, F.J., Sotolongo, S. and Izaguirre, M., 1987. The oxidation kinetic of Fe(II) in seawater. Geochimica Cosmochimica Acta, 51: 793–801.

    Google Scholar 

  • Morris, R.V., Lauer, H.V. Jr., Lawson, C.A., Gibson, E.K. Jr., Nace, G.A. and Stewart C., 1985. Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH). Journal of Geophysical Research, 90: 3126–3144.

    Google Scholar 

  • Mortimer, R.J.G., Coleman, M.L., 1997. Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochimica Cosmochimica Acta, 61: 1705–1711.

    Google Scholar 

  • Munch, J.C. and Ottow, J.C.G., 1980. Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Journal of Soil Science, 129: 15–21.

    Google Scholar 

  • Munch, J.C. and Ottow, J.C.G., 1982. Einfluß von Zellkontakt und Eisen(III)oxidform auf die bakterielle Eisenreduktion. Zeitschrift der Pflanzenernährung und Bodenkunde, 145: 66–77.

    Google Scholar 

  • Murray, R.W. and Leinen, M., 1993, Chemical transport to the seafloor of the equatorial Pacific across a latitudinal transect at 135†W: Tracking sedimentary major, minor, and rare earth element fluxes at the equator and the inner tropical convergence zone. Geochimica Cosmochimica Acta, 57: 4141–4163.

    Google Scholar 

  • Myers, C.R. and Nealson, K.H., 1988a. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240: 1319–1321.

    Google Scholar 

  • Myers, C.R. and Nealson, K.H., 1988b. Micorbial reduction of manganese oxides: Interactions with iron and sulfur. Geochimica Cosmochimica Acta, 52: 2727–2732.

    Google Scholar 

  • Nittrouer, C.A., DeMaster, D.J., McKee, B.A., Cutshall, N.H., Larsen, I.L., 1983/1984. The effect of sediment mixing on Pb-210 accumulation rates for the Washington continental shelf. Marine Geology, 54: 201–221.

    Google Scholar 

  • Norrish, K., Taylor, R.M., 1961. The isomorphous replacement of iron by aluminium in soil goethites. Journal of Soil Sciences, 12: 294–306.

    Google Scholar 

  • Ottley, C.J., Davison, W., Edmunds, W.M., 1997. Chemical catalysis of nitrate reduction by iron(II). Geochimica Cosmochimica Acta, 61: 1819–1828.

    Google Scholar 

  • Ottow, J.C.G., 1969. Der Einfluss von Nitrat, Chlorat, Sulfat, Eisenoxidform und Wachstumsbedingungen auf das Ausmass der bakteriellen Eisenreduktion. Zeitschrift der Pflanzenernährung und Bodenkunde, 124: 238–253.

    Google Scholar 

  • Peiffer, S., Dos Santos Afonso, M., Wehrli, B. and Gächter, R., 1992. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Environmental Science and Technology, 26: 2408–2412.

    Google Scholar 

  • Pena, F. and Torrent, J., 1984. Relationships between phosphate sorption and iron oxides in alfisols from a river terrace sequence of Mediterranean Spain. Geoderma, 33: 283–296.

    Google Scholar 

  • Postma, D., 1982, Pyrite and siderite formation in brackish and freshwater swamp sediments. American Journal of Science, 282: 1151–1183.

    Google Scholar 

  • Postma, D., 1985. Concentration of Mn and separation from Fe in sediments. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10†C. Geochimica Cosmochimica Acta, 49: 1023–1033.

    Google Scholar 

  • Postma, D., Jakobsen, R., 1996, Redox zonation: Equilibrium constraints on the Fe(II)/SO4-reduction interface. Geochimica Cosmochimica Acta, 60: 3169–3175.

    Google Scholar 

  • Poulton, S.W. and Raiswell, R., 2002, The lowtemperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302: 774–805.

    Google Scholar 

  • Poulton, S.W., Krom, M.D., and Raiswell, R., 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica Cosmochimica Acta, 68: 3703–3715.

    Google Scholar 

  • Prospero, J.M., 1981. Eolian transport to the world ocean. In: Emiliani, C. (ed), The sea, 7, Wiley, New York, pp. 801–874.

    Google Scholar 

  • Prospero, J.M., Glaccum, R.A. and Nees, R.T., 1981. Atmospheric transport of soil dust from Africa to South America. Nature, 289: 570–572.

    Google Scholar 

  • Pyzik, A.J. and Sommer, S.E., 1981, Sedimentary iron monosulfides: kinetics and mechanisms of formation. Geochimica Cosmochimica Acta, 45: 687–698.

    Google Scholar 

  • Raiswell, R., Buckley, F., Berner, R.A. and Anderson, T.F., 1988. Degree of pyritisation as a paleoenvironmental indicator of bottom water oxygenation. Journal of Sedimentary Petrology, 58: 812–819.

    Google Scholar 

  • Raiswell, R., Canfield, D.E. and Berner, R.A., 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111: 101–110.

    Google Scholar 

  • Raiswell, R. and Canfield, D.E., 1996. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochimica Cosmochimica Acta, 60: 2777–2787.

    Google Scholar 

  • Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Geringa, L.J.A., Timmermans, K.R., Wolterbeek, H.Th., and de Baar, H.J.W., 2005. The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Marine Chemistry, 93: 119–129.

    Google Scholar 

  • Roden, E.E. and Zachara, J.M., 1996. Microbial reduction of crystalline iron(III) oxides: Influence of oxides surface area and potential for cell growth. Environmental Science and Technology, 30: 1618–1628.

    Google Scholar 

  • Roden, E.E., and Wetzel, R.G., 2002. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnology Oceanography, 47: 198–211.

    Google Scholar 

  • Roth, C.B. and Tullock, R.J., 1972. Deprotonation of nontronite resulting from chemical reduction of structural ferric iron. Proceedings of the International Clay Conference, Madrid, 89–98.

    Google Scholar 

  • Rozenson, I. and Heller-Kallai, L., 1976a. Reduction and oxidation of Fe3+ in dioctahedral smectites-1: Reduction with hydrazine and dithionite. Clays and Clay Minerals, 24: 271–282

    Google Scholar 

  • Rozenson, I. and Heller-Kallai, L., 1976b. Reduction and oxidation of Fe3+ in dioctahedral smectites-2: Reduction with sodium sulphide solutions. Clays and Clay Minerals, 24: 283–288.

    Google Scholar 

  • Rue, E.L. and Bruland, K.W., 1995. Complexation of Fe(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/ adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50: 117–138.

    Google Scholar 

  • Ruttenberg, K.C., 1992. Development of a sequential extraction method for different forms of phosphorous in marine sediments. Limnology and Oceanography, 37: 1460–1482.

    Google Scholar 

  • Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift zur Pflanzenernährung und Bodenkunde, 195: 194–202.

    Google Scholar 

  • Schwertmann, U. Fitzpatrick, R.W., Taylor, R.M. and Lewis, D.G., 1979. The influence of aluminium on iron oxides. Part II. Preparation and properties of Al substituted hematites. Clays and Clay Minerals, 11: 189–200.

    Google Scholar 

  • Schwertmann, U. and Murad, E., 1983. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31: 277–284.

    Google Scholar 

  • Schwertmann, U. and Taylor, R.M., 1989. Iron oxides. In: Dinauer, R.C. (ed), Minerals in soil environments, Soil Science Society of America Book Series, 1, Madison, WI, pp. 379–438.

    Google Scholar 

  • Schwertmann, U. and Cornell, R.M., 1991. Iron oxides in the laboratory. VCH Verlagsgesellschaft mbH, Weinheim, 137 pp.

    Google Scholar 

  • Singer, A., Stoffers, P., Heller-Kallai, L. and Szafranek, D., 1984. Nontronite in a deep-sea ore from the south Pacific. Clays and Clay Minerals, 32: 375–383

    Google Scholar 

  • Slomp, C.P., Van der Gaast, S.J., Van Raaphorst, W., 1996a. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry, 52: 55–73.

    Google Scholar 

  • Slomp, C.P., Epping, E.H.G., Helder, W. and Van Raaphorst, W., 1996b, A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research, 54: 1179–1205.

    Google Scholar 

  • Sørensen, J. and Thorling, L., 1991, Stimulation by lepidocrocite (γ-FeOOH) of Fe(II)-dependent nitrite reduction. Geochimica Cosmochimica Acta, 55: 1289–1294.

    Google Scholar 

  • Stookey, L.L., 1970, Ferrozine-A new spectrophotometric reagent for iron. Analytical Chemistry, 42: 779–781.

    Google Scholar 

  • Stucki, J.W., 1981, The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: II. A photochemical method. Soil Science Society of America Journal, 45: 638–641.

    Google Scholar 

  • Stumm, W. and Morgan, J.J., 1996. Aquatic chemistry, 3rd edition, Wiley & Sons, London, 1022 pp.

    Google Scholar 

  • Straub, K.L., Benz, M., Schinck, B., Widdel, F., 1996, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62: 1458–1460.

    Google Scholar 

  • Sulzberger, B., Suter, D., Siffert, C., Banwart, S., Stumm, W., 1989. Dissolution of Fe(III) hydroxides in natural waters: Laboratory assessment on the kinetics controlled by surface coordination. Marine Chemistry, 28: 127–144.

    Google Scholar 

  • Sundby, B., Silverberg, N., 1985. Manganese fluxes in the benthic boundary layer. Limnology and Oceanography, 30: 372–381.

    Google Scholar 

  • Sundby, B., Anderson, L.G., Hall, P.O.J., Iverfeldt, Å, Rutgers van der Loeff, M., Westerlund, S.F.G., 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron, and phosphate at the sediment-water interface. Geochimica Cosmochimica Acta, 50: 1281–1288.

    Google Scholar 

  • Sundby, B., Gobeil, C., Silcerberg, N., Mucci, A., 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 37: 1129–1145.

    Google Scholar 

  • Thamdrup, B., Glud, R.N. and Hansen, J.W., 1994. Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochimica Cosmochimica Acta, 58: 2563–2570.

    Google Scholar 

  • Thamdrup, B. and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41: 1629–1650.

    Google Scholar 

  • Torrent, J., Barrón, V. and Schwertmann, U., 1992, Fast and slow phosphate sorption by goethite-rich natural materials. Clays and Clay Mineralogy, 40: 14–21.

    Google Scholar 

  • Trick, C.G., Andersen, R.J., Gillam, A. and Harrison, P.J., 1983. Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum. Science, 219: 306–308.

    Google Scholar 

  • Trick, C.G., 1989. Hydroxomate-siderophore production and utilization by marine eubacteria. Current Microbiology, 18: 375–378.

    Google Scholar 

  • Uematsu, M., Duce, R.A., Prospero, J.M., Chen, L., Merrill, J.T., McDonald, R.L., 1983. Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research, 88: 5343–5352.

    Google Scholar 

  • Van der Zee, C., Roberts, D.R., Rancourt, D.G., Slomp, C.P., 2003. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 31: 993–996.

    Google Scholar 

  • Van der Zee, C., Slomp, C.P., Rancourt, D.G., De Lange, G.J. and van Raaphorst, W., 2005. A Mössbauer spectroscopic study of the iron redox transition eastern Mediterranean sediments. Geochimica Cosmochimica Acta, 69: 441–453.

    Google Scholar 

  • Wallmann, K., Hennies, K., König, I., Petersen, W. Knauth, H.-D., 1993. A new procedure for determination of ‘reactive’ ferric iron and ferrous iron minerals in sediments. Limnology and Oceanography, 38: 1803–1812.

    Google Scholar 

  • Wang, Y. and Van Capellen, P., 1996. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal sediments. Geochimica Cosmochimica Acta, 60: 2993–3014.

    Google Scholar 

  • Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica Cosmochimica Acta, 59: 1217–1232.

    Google Scholar 

  • Wehrli, B., Friedel, G. and Manceau, A., 1995. Reaction rates and products of manganese oxidation at the sediment-water interface. In: Huang, C.P., O’Melia, C.R. and Morgan, J.J. (eds), Aquatic chemistry: Interfacial and interspecies processes, ACS Advances in Chemistry, 244, pp. 111–134.

    Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, Assmus, B. and Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362: 834–835.

    Google Scholar 

  • Wu, J. and Luther, G.W. III, 1995. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by competitive ligand equilibration method and kinetic approach. Marine Chemistry, 50: 159–177.

    Google Scholar 

  • Yeh, H.-W. and Savin, S.M., 1977. Mechanism of burial metamorphism of argillaceaous sediments: 3. Oisotope evidence. Bulletin of the Geological Society of America, 88: 1321–1330.

    Google Scholar 

  • Zhuang, G., Duce, R.A. and Kester, D.A., 1990. dissolution of atmospheric iron in surface seawater of the open ocean. Journal of Geophysical Research, 59: 16,207–16,216.

    Google Scholar 

  • Zhuang, G. and Duce, R.A., 1993. The adsorption of dissolved iron on marine aerosol particles in surface waters of the open ocean. Deep Sea Research 40: 1413–1429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haese, R.R. (2006). The Biogeochemistry of Iron. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32144-6_7

Download citation

Publish with us

Policies and ethics