Skip to main content

Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices

  • Chapter
Book cover Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

The purpose of this chapter is to give a general reader an introduction to the Non Equilibrium Greens Function (NEGF) method for first principles modeling of current-voltage characteristics of molecular electronics devices. The molecular device is modeled on the atomic level, and we will use Density Functional Theory (DFT) to describe the electronic structure of the system. We will give a detailed description of all the steps involved in order to calculate the electron current. The steps involved are dividing the system into electrode and scattering region, determining the one-electron DFT Hamiltonian, setting up the NEGF, determining the charge density, and calculating the effective potential. The procedure sets up a set of selfconsistent equations, which result in an effective one-electron Hamiltonian description of the electron motion. From the one-electron Hamiltonian we can determine the electron current using the Landauer-Büttiger approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aviram, M.A. Ratner: Molecular rectifiers, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  2. P. Pernas, A. Martin-Rodero, F. Flores: Electrochemical-potential variations across a constriction, Phys. Rev. B 41, R8553 (1990)

    Article  ADS  Google Scholar 

  3. W. Tian, S. Datta: Aharonov-bohm-type effect in graphene tubules: A landauer approach, Phys. Rev. B 49, 5097 (1994)

    Article  ADS  Google Scholar 

  4. L. Chico, M. Sancho, M. Munoz: Carbon-nanotube-based quantum dot, Phys. Rev. Lett. 81, 1278 (1998)

    Article  ADS  Google Scholar 

  5. A. de Parga, O.S. Hernan, R. Miranda, A.L. Yeyati, A. Martin-Rodero, F. Flores: Electron resonances in sharp tips and their role in tunneling spectroscopy, Phys. Rev. Lett. 80, 357 (1998)

    Article  ADS  Google Scholar 

  6. E.G. Emberley, G. Kirczenow: Electron standing-wave formation in atomic wires, Phys. Rev. B 60, 6028 (1999)

    Article  ADS  Google Scholar 

  7. M. Brandbyge, N. Kobayashi, M. Tsukada: Conduction channels at finite bias in single-atom gold contacts, Phys. Rev. B 60, 17064 (1999)

    Article  ADS  Google Scholar 

  8. H. Mehrez, J. Taylor, H. Guo, J. Wang, C. Roland: Carbon nanotube based magnetic tunnel junctions, Phys. Rev. Lett. 84, 2682 (2000)

    Article  ADS  Google Scholar 

  9. P. Sautet, C. Joachim: Interpretation of stm images: copper-phthalocyanine on copper, Surf. Sci. 271, 387 (1992)

    Article  ADS  Google Scholar 

  10. L.E. Hall, J.R. Reimers, N.S. Hush, K. Silverbrook: Formalism, analytical model, and a priori green's-function-based calculation of th current-voltage characteristics of molecular wires, j. Chem. Phys. 112, 1510 (2000)

    Article  ADS  Google Scholar 

  11. V. Mujica, A.E. Roitberg, M.A. Ratner: Molecular wire conductance: Electrostatic potential spatial profile, J. Phys. Chem. 112, 6834 (2000)

    Article  Google Scholar 

  12. F. Biscarini, C. Bustamante, V.M. Kenkre: Scanning tunneling microscopy, ii calculation of images of atomic and molecular adsorbates, Phys. Rev. B 51, 11089 (1995)

    Article  ADS  Google Scholar 

  13. H. Ness, A. Fisher: Quantum inelastic conductance through molecular wires, Phys. Rev. Lett. 83, 452 (1999)

    Article  ADS  Google Scholar 

  14. N.D. Lang: Resistance of atomic wires, Phys. Rev. B 52, 5335 (1995)

    Article  ADS  Google Scholar 

  15. K. Hirose, M. Tsukada: First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current, Phys. Rev. B 51, 5278 (1995)

    Article  ADS  Google Scholar 

  16. M.B. Nardelli: Electronic transport in extended systems: Application to carbon nanotubes, Phys. Rev. B 60, 7828 (1999)

    Article  ADS  Google Scholar 

  17. M.B. Nardelli, J. Bernholc: Mechanical deformations and coherent transport in carbon nanotubes, Phys. Rev. B 60, R16338 (1999)

    Article  ADS  Google Scholar 

  18. S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica, M.A. Ratner: The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description, J. Phys. Chem. 111, 6997 (1999)

    Article  Google Scholar 

  19. P.A. Derosa, J.M. Seminario: Electron transport through single molecules: Scattering treatment using density functional and green function theories, J. Phys. Chem. B 105, 471 (2001)

    Article  Google Scholar 

  20. J. Palacios, A.J. Perez-Jimenez, E. Louis, J.A. Verges: Fullerene-based molecular nanobridges: A first principles study, Phys. Rev. B 64, 115411 (2001)

    Article  ADS  Google Scholar 

  21. C.C. Wan, J.L. Mozos, G. Taraschi, J. Wang, H. Guo: Appl. Phys. Lett. 71, 419 (1997)

    Article  ADS  Google Scholar 

  22. H.J. Choi, J. Ihm: Ab initio pseudopotential method for the calculation of conductance in quantum wires, Phys. Rev. B 59, 2267 (1999)

    Article  ADS  Google Scholar 

  23. S. Corbel, J. Cerda, P. Sautet: Ab initio calculations of scanning tunneling microscopy images within a scattering formalism, Phys. Rev. B 60, 1989 (1999)

    Article  ADS  Google Scholar 

  24. P.S. Damle, A.W. Ghosh, S. Datta: Unified description of molecular conduction: From molecules to metallic wires, Phys. Rev. B 64, 201–403 (2001)

    Article  Google Scholar 

  25. J. Taylor, H. Guo, J. Wang: Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a c-60 device, Phys. Rev. B 63, 121 104R (2001)

    Google Scholar 

  26. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro: Density functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165 401 (2002)

    Article  Google Scholar 

  27. H. Haug, A.P. Jauho: Quantum kinetics in transport and optics of semiconductors (Springer-Verlag, Berlin, Heidelbergx, 1996)

    Google Scholar 

  28. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press., New York, 1996)

    Google Scholar 

  29. P. Hohenberg, W. Kohn: Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  30. W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  31. W. Kohn, A.D. Becke, R.G. Parr: Density functional theory of electronic structure, J. Phys. Chem. 100, 12974 (1996)

    Article  Google Scholar 

  32. R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989, 1989)

    Google Scholar 

  33. L.I. Schiff: Quantum Mechanics (McGraw-Hill, Singapore, 1968)

    MATH  Google Scholar 

  34. E.G. Emberly, G. Kirczenow: Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts, Phys. Rev. B 58, 10911 (1998)

    Article  ADS  Google Scholar 

  35. J. Taylor: (2000), Ph.D. thesis, McGill University

    Google Scholar 

  36. M. Lopez-Sancho, J. Lopez-Sancho, J. Rubio: Quick iterative scheme for the calculation of transfer matrices: application to mo (100), J. Phys. F 14, 1205 (1984)

    Article  ADS  Google Scholar 

  37. T.N. Todorov, J. Hoekstra, A.P. Sutton: Current-induced forces in atomic-scale conductors, Philos. Mag. B 80, 421 (2000)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  40. The atomistix virtual nanolab is an independent commercial software package that combines the technical achievements in McDCAL and TranSIESTA. For further information see www.atomistix.com.

    Google Scholar 

  41. D. Wold, C. Frisbie: Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting afm tip, J. Am. Chem. Soc. 122, 2970 (2000)

    Article  Google Scholar 

  42. D. Wold, C. Frisbie: Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy, J. Am. Chem. Soc. 123, 5549 (2001)

    Article  Google Scholar 

  43. D. Wold, R. Haag, M. Rampi, C. Frisbie: Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions, J. Phys. Chem. B 106, 2813 (2002)

    Article  Google Scholar 

  44. T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, H. Tokumoto: Electrical conduction of conjugated molecular sams studied by conductive atomic force microscopy, J. Phys. Chem. B 106, 5886 (2002)

    Article  Google Scholar 

  45. X. Cui, X. Zarate, J. Tomfohr, O. Sankey, A. Primak, A. Moore, T. Moore, D. Gust, G. Harris, S. Lindsay: Making electrical contacts to molecular monolayers, Nanotechnology 13, 5 (2002)

    Article  ADS  Google Scholar 

  46. J. Zhao, K. Uosaki: Formation of nanopatterns of a self-assembled monolayer (sam) within a sam of different molecules using a current sensing atomic force microscope, Nano Lett. 2, 137 (2002)

    Article  MATH  ADS  Google Scholar 

  47. J. Beebe, V. Engelkes, L. Miller, C. Frisbie: Contact resistance in metalmolecule-metal junctions based on aliphatic sams: Effects of surface linker and metal work function, J. Am. Chem. Soc. 124, 11 268 (2002)

    Article  Google Scholar 

  48. W. Wang, T. Lee, M. Reed: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68, 35 416 (2003)

    Article  ADS  Google Scholar 

  49. T. Lee, V. Wang, J.F. Klemic, J.J. Zhan, J. Su, M.A. Reed: Comparison of electronic transport characterization methods for alkanethiol self-assembled monolayers, J. Phys. Chem. B 108, 8742 (2004)

    Article  Google Scholar 

  50. C. Kaun, H. Guo: Resistance of alkanethiol molecular wires, Nano Lett. 3, 1521 (2003)

    Article  ADS  Google Scholar 

  51. C. Kaun, B. Larade, H. Guo: Electrical transport through oligophenylene molecules: A first-principles study of the length dependence, Phys. Rev. B 67, 121 411 (2003)

    Article  ADS  Google Scholar 

  52. A. Ulman: An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991)

    Google Scholar 

  53. Gaussian 98, Revision A.7, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

    Google Scholar 

  54. In the calculations, a gold lead is composed of unit cells with 9 Au atoms oriented in the (100) direction repeated to ±∞, see Fig. 7a. For Al, two leads were used: the first has the same cross-section as the Au lead; the second is larger where each unit cell has 50 Al atoms repeated to ±∞ and the end surface of the lead is tempered as shown in Fig. 7b.

    Google Scholar 

  55. The junction distance in the experimental device is unknown. Wold et al. [43] suggested a value of 2.3 Å for Au-S bond and 2.0 Å for H-Au. Sellers et al. (H. Sellers, A. Ulman, Y. Shnidman, and J.E. Filers, J. Am. Chem. Soc. 115, 9389 (1993)) suggested that Au(100)-S distance at hollow site is 2.011 Å. We fixed the distances at 2.1 Å for Au-S and H-Au, close to these suggested equilibrium values. Furthermore, one knows that a pressure under 10 nN only has a tiny effect to conductance and the experimental data we compare were collected at around 1 nN, hence our choice of these junction distances should be reasonable.

    Google Scholar 

  56. V.B. Engelkes, private communication.

    Google Scholar 

  57. X. Cui, A. Primak, X. Zarate, J. Tomfohr, O. Sankey, A. Moore, T. Moore, D. Gust, L. Nagahara, S. Lindsay: Changes in the electronic properties of a molecule when it is wired into a circuit, J. Phys. Chem. B 106, 8609 (2002)

    Article  Google Scholar 

  58. The F-Au distance is fixed to be 2.6 Å, close to the suggested value of 2.7 Å. See, J. Pflaum, G. Bracco, F. Schreiber, R. Colorado Jr., O.E. Shmakova, T.R. Lee, G. Scoles, and A. Kahn, Surf. Sci. 498, 89 (2002).

    Article  ADS  Google Scholar 

  59. These were the junction distances suggested in [43].

    Google Scholar 

  60. R.S. Sorbello: Solid State Physics 51, 163 (1998)

    Google Scholar 

  61. M.D. Ventra, Y.C. Chen, T.N. Todorov: Are current-induced forces conservative?, Phys. Rev. Lett. 92, 176 803 (2004)

    Article  ADS  Google Scholar 

  62. M. Brandbyge, K. Stokbro, J. Taylor, J.L. Mozos, P. Ordejon: First principles calculation of current induced forces in an atomic gold wire, Phys. Rev. B 67, 193–104 (2003)

    Article  Google Scholar 

  63. The force is less than 0.02 nN on all wire atoms.

    Google Scholar 

  64. Terms which take into account incompleteness and non-orthogonality are included in pracsis, see P. Ordejon, E. Artacho, and J.M. Soler, Phys. Rev. B, 53, R10441 (1996).

    Article  ADS  Google Scholar 

  65. R.S. Mulliken: J. Chem. Phys. 23, 1833 and 2343 (1955)

    Article  ADS  Google Scholar 

  66. R. Hoffmann: A chemical and theoretical way to look at bonding on surfaces, Rev. Mod. Phys. 60, 1988 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Stokbro, K., Taylor, J., Brandbyge, M., Guo, H. (2006). Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_5

Download citation

Publish with us

Policies and ethics