Skip to main content

Six Unimolecular Rectifiers and What Lies Ahead

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

Six unimolecular rectifiers are discussed: γ-hexadecylquinolinium tricyanoquinodimethanide, 1, and two thioacetyl derivatives of 1, namely (Z)- α-cyano-β-[N-tetradecylthioacetylquinolin-4-ylium)-4-styryl-dicyanomethanide, 2, and (Z)-α-cyano-β-[N-hexadecylthioacetylquinolin-4-ylium)-4-styryl-dicyanomethanide, 3, and three other rectifiers of very different structure: 2,6-di[dibutylaminophenylvinyl]- 1-butylpyridinium iodide, 4, dimethylanilino-aza[C60]-fullerene, 5, and fullerene-bis-[4-diphenylamino-4”-(N-ethyl-N-2” ’-ethyl)amino-1,4-diphenyl-1,3-butadiene] malonate, 6. Monolayers of these molecules exhibit asymmetric electrical conductivity between Au or Al electrodes. We also suggest approaches towards one-molecule electronic devices, useful for the ultimate reduction in circuit sizes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Metzger, Prospects for Truly Unimolecular Devices. NATO AST Series B248, 659–666 (1991).

    Google Scholar 

  2. R. P. Feynman, There is Plenty of Room at the Bottom. In Miniaturization, Gilbert, H. D., Ed. (Reinhold, New York, 1961) p. 282.

    Google Scholar 

  3. A. Aviram and M. A. Ratner, Molecular Rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  ADS  Google Scholar 

  4. G. E. Moore, Cramming More Components onto Integrated Circuits. Electronics 38(8), 114–117 (10 April 1965).

    Google Scholar 

  5. International Technology Roadmap for Semiconductors, 2001:http://public. itrs.net/Files/2001ITRS/Home.htm

    Google Scholar 

  6. J. Jortner, A. Nitzan, and M. A. Ratner, Foundations of Molecular Electronics–Charge Transport in Molecular Conduction Junctions. This Volume, Chap. 1.

    Google Scholar 

  7. M. R. Wegewijs, M. H. Hettler, J. König, A. Thielmann, C. Romeike, and K. Nowack, Single-Electron Tunneling in Small Molecules. This Volume, Chap. 7.

    Google Scholar 

  8. W. Wang, T. Lee, and M. A. Reed, Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers. This Volume, Chap. 10.

    Google Scholar 

  9. J. Tomfohr, G. Ramachandran, O. F. Sankey, and S. M. Lindsay, Making Contacts in Single Molecules: Are We There Yet? This Volume, Chap. 11.

    Google Scholar 

  10. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones II, D. L. Allara, J. M. Tour, and P. S. Weiss, Are Single Molecular Wires Conducting? Science 271, 1705–1707 (1996).

    Article  ADS  Google Scholar 

  11. H. Taube, Electron Transfer between Metal Complexes -A Retrospective View (Nobel Lecture). Angew. Chem. Intl. Ed. Engl. 23, 329–339 (1984).

    Article  Google Scholar 

  12. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a Molecular Junction. Science 278, 252–253 (1997).

    Article  Google Scholar 

  13. J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. von Löhneysen, Driving Current through Single Organic Molecules. Phys Rev. Lett. 88, 176804 (2002).

    Article  ADS  Google Scholar 

  14. J. Reichert, H. B. Weber, M. Mayor and H. von Löhneysen, Low-Temperature Conductance Measurements on Single Molecules. Appl. Phys. Lett. 82, 4137–4139 (2003).

    Article  ADS  Google Scholar 

  15. R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  MathSciNet  Google Scholar 

  16. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  17. Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, Jr., A. M. Rawlett, D. L. Allara, J. M. Tour, and P. S. Weiss, Conductance Switching in Single Molecules Through Conformational Changes. Science 292, 2303–2307 (2001).

    Article  Google Scholar 

  18. B. C. Haynie, A. V. Walker, T. B. Tighe, D. L. Allara, and N. Winograd, Adventures in Molecular Electronics: How to Attach Wires to Molecules. Appl. Surf. Sci. 203-204, 433–436 (2003).

    Article  ADS  Google Scholar 

  19. A. V. Walker, T. B. Tighe, O. M. Cabarcos, M. D. Reinard, B. C. Haynie, S. Uppili, N. Winograd, and D. L. Allara, The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers. J. Am. Chem. Soc. 126, 3954–3963 (2004).

    Article  Google Scholar 

  20. W. Wang, T. Lee, and M. A. Reed, Mechanism of Electron Conduction in Self-Assembled Alkanethiol Monolayer Devices. Phys. Rev. B68, #035416 (2003).

    ADS  Google Scholar 

  21. W. Wang, T. Lee, I. Kretschmar, and M. A. Reed, Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer. Nano Lett. 4, 643–646 (2004).

    Article  ADS  Google Scholar 

  22. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Carbon Nanotube Quantum Resistors. Science 280, 1744–1746 (1999).

    Article  ADS  Google Scholar 

  23. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Individual Single-Wall Carbon Nanotubes as Quantum Wires. Nature 386, 474–477 (1997).

    Article  ADS  Google Scholar 

  24. V. Derycke, R., Martel, J. Appenzeller, and Ph. Avouris, Carbon Nanotube Inter- and Intrmolecular Logic Gates. Nano Lett. 1, 453–456 (2001).

    Article  ADS  Google Scholar 

  25. C. P. Collier, G. Mattersteig, E. W. Wong, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, A [2] Catenane Based Solid-State Electronically Reconfigurable Switch. Science 289, 1172–1175 (2000).

    Article  ADS  Google Scholar 

  26. D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    Article  ADS  Google Scholar 

  27. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R., Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Coulomb Blockade and the Kondo Effect in Single-Atom Transistors. Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  28. S. Kubaktin, A. Danilov, M. Hjort, J. Cornil, J.-L.Brédas, N. Stuhr-Hansen, P. Hedegård, and T. BjØrnholm, Single-Electron Transistor of a Single Organic Molecule with Access to Several Redox States. Nature 425, 698–701 (2003).

    Article  ADS  Google Scholar 

  29. Y. Selzer. M. A. Cabassi, T. S. Mayer, D. L. Allara, Thermally Activated Conduction in Molecular Junctions. J. Am. Chem. Soc. 126, 4052–4053 (2004).

    Article  Google Scholar 

  30. Y. Selzer, L. Cai, M. A. Cabassi, Y. Yao, J. M. Tour, T. S. Mayer, and D. L. Allara, Effect of Local Environment on Molecular Conduction: Isolated Molecule versus Self-Assembled Monolayer. Nano Lett. 5: 61–65 (2005).

    Article  ADS  Google Scholar 

  31. G. J. Ashwell, J. R. Sambles, A. S. Martin, W. G. Parker, and M. Szablewski, Rectifying Characteristics of Mg (C16H33-Q3CNQ LB Film) | Pt Structures. J. Chem. Soc. Chem.Commun. 1374–1376 (1990).

    Google Scholar 

  32. A. S. Martin, J. R. Sambles, and G. J. Ashwell, Molecular Rectifier. Phys. Rev. Lett. 70, 218–221 (1993).

    Article  ADS  Google Scholar 

  33. R. M. Metzger, B. Chen, U. Höpfner, M. V. Lakshmikantham, D. Vuillaunie, T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer, and G. J. Ashwell, Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455–10466 (1997).

    Article  Google Scholar 

  34. B. Chen and R. M. Metzger, Rectification between 370 K and 105 K in Hexadecylquinoliniuni Tricyanoquinodimethanide. J. Phys. Chem. B103, 4447–4451 (1999).

    Google Scholar 

  35. T. Xu, I. R., Peterson, M. V. Lakshmikantham, and R. M. Metzger, Rectification by a Monolayer of Hexadecylquinoliniuni Tricyanoquinodimethanide between Gold Electrodes. Angew. Chem. Intl. Ed. 40, 1749–1752 (2001).

    Article  Google Scholar 

  36. R. M. Metzger, T. Xu, and I. R., Peterson, Electrical Rectification by a Monolayer of Hexadecylquinoliniuni Tricyano-quinodimethanide Measured between Macroscopic Gold Electrodes. J. Phys. Chem. B105, 7280–7290 (2001).

    Google Scholar 

  37. R. M. Metzger, Electrical Rectification by a Molecule: The Advent of Unimolecular Electronic Devices. Acc. Chem. Res. 32, 950–957 (1999).

    Article  Google Scholar 

  38. R. M. Metzger, Unimolecular Electrical Rectifiers. Chem. Reviews 103, 3803–3834 (2003).

    Article  Google Scholar 

  39. R. M. Metzger, Unimolecular Rectifiers and Prospects for Other Unimolecular Electronic Devices. Chem. Record 4, 291–304 (2004).

    Article  Google Scholar 

  40. J. W. Baldwin, B. Chen, S. C. Street, V. V. Konovalov, H. Sakurai, T. V. Hughes, C. S. Simpson, M. V. Lakshmikantham, M. P. Cava, L. D. Kispert, and R. M. Metzger, Spectroscopic Studies of Hexadecylquinoliniuni Tricyanoquinodimethanide. J. Phys. Chem. B103, 4269–4277 (1999).

    Google Scholar 

  41. A. Jaiswal, D. Rajagopal, M. V. Lakshmikantham, M. P. Cava, and R. M. Metzger, unpublished.

    Google Scholar 

  42. J. W. Baldwin, R. R., Amaresh, I. R., Peterson, W. J. Shumate, M. P. Cava, M. A. Amiri, R., Hamilton, G. J. Ashwell, and R. M. Metzger, Rectification and Nonlinear Optical Properties of a Langmuir-Blodgett Monolayer of a Pyridinium Dye. J. Phys. Chem. B106, 12158–12164 (2002).

    Google Scholar 

  43. R. M. Metzger, J. W. Baldwin, W. J. Shumate, I. R., Peterson, P. Mani, G. J. Mankey, T. Morris, G. Szulczewski, S. Bosi, M. Prato, A. Comito, and Y. Rubin, Large Current Asymmetries and Potential Device Properties of a Langmuir-Blodgett Monolayer of Dimethyanilinoazafullerene Sandwiched between Gold Electrodes. J. Phys. Chem. B107, 1021–1027 (2003).

    Google Scholar 

  44. A. Honciuc, A. Jaiswal, A. Gong, K. Ashworth, C. W. Spangler, I. R., Peterson, L. R., Dalton, and R. M. Metzger, Current Rectification in a Langmuir-Schaefer Monolayer of Fullerene-bis-[4-diphenylamino-4“-(N-ethyl-N-2”-ethyl)amino-l,4-diphenyl-l,3-butadiene] Malonate between Au Electrodes. J. Phys. Chem, B109, 857–871 (2005).

    Google Scholar 

  45. J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R., C. Jagessar, S. M. Dirk, D. W. Price, M. A. Reed, C.-W. Zhou, J. Chen, W. Wang, and I. Campbell, Synthesis and Preliminary Testing of Molecular Wires and Devices. Chem. Eur. J. 7, 5118–5134 (2001).

    Article  Google Scholar 

  46. W. Schottky, Simplified and Extended Theory of Barrier-Layer Rectifiers. Z. Phys. 118, 539–592 (1942).

    Article  MATH  ADS  Google Scholar 

  47. Y. Liu, Y. Xu, J. Wu, and D. Zhu, Preparation of LB Films of C60-doped poly(3-alkylthiophene)s and Electronic Properties of their Schottky Diodes. Solid St. Commun. 95, 695–704 (1995).

    Article  ADS  Google Scholar 

  48. Y. Liu, Y. Xu, and D. Zhu, Schottky Diodes Fabricated with Langmuir-Blodgett Films of C60-doped Poly(3-alkylthiophene)s. Synth. Metals 90, 143–146 (1997).

    Article  Google Scholar 

  49. C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, and R. M. Metzger, Theory of Rectification in a Molecular Monolayer. Phys. Rev. B64, #085405 (2001).

    ADS  Google Scholar 

  50. V. Mujica, M. A. Ratner, and A. Nitzan, Molecular Rectification: Why Is It So Rare? Chem. Phys. 281, 147–150 (2002).

    Article  Google Scholar 

  51. M. L. Chabinyc, X. Chen, R., E. Holmlin, H. Jacobs, H. Skulason, C. D. Frisbie, V. Mujica, M. A. Ratner, M. A. Rampi, and G. M. Whitesides, Molecular Rectification in a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 124, 11730–11736 (2002).

    Article  Google Scholar 

  52. S. Roth, S. Blumentritt, M. Burghard, C. M. Fischer, G. Philipp, and C. Müller-Schwannecke, Charge Transport in LB Microsandwiches. Synth. Metals 86, 2415–2418 (1997).

    Article  Google Scholar 

  53. I. R., Peterson, D. Vuillaume, and R. M. Metzger, Analytical Model for Molecular-Scale Charge Transport. J. Phys. Chem. A105, 4702–4707 (2001).

    Google Scholar 

  54. A. Stabel, P. Herwig, K. M¨llen, and J. P. Rabe, Diodelike Current-Voltage Curves for a Single Molecule-Tunneling Spectroscopy with Submolecular Resolution of an Alkylated, peri-Condensed Hexabenzocoronene. Angew. Chem. Int. Ed. 34, 1609–1611 (1995).

    Article  Google Scholar 

  55. L. E. Hall, J. R., Reimers, N. S. Hush, and K. Silverbrook, Formalism, Analytical Model, and A-priori Green's Function-Based Calculations on the Current-Voltage Characteristics of Molecular Wires. J. Chem. Phys. 112, 1510–1521 (2000).

    Article  ADS  Google Scholar 

  56. W. B. Davis, M. R., Wasiliewski, M. A. Ratner, V. Mujica, and A. Nitzan, Electron Transfer Rates in Bridged Molecular Systems: A Phenomenological Approach to Relaxation. J. Phys. Chem. A101, 6158–6164 (1997).

    Google Scholar 

  57. R., M. Metzger and C. A. Panetta, The Quest for Unimolecular Rectifiers. New J. Chem. 15, 209–221 (1991).

    Google Scholar 

  58. R. M. Metzger, D-σ-A Unimolecular Rectifiers. Matrls. Sci. Engrg. C3, 277–285 (1995).

    Google Scholar 

  59. K. B. Blodgett, Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 57, 1007–1022 (1935).

    Article  Google Scholar 

  60. K. B. Blodgett and I. Langmuir, Built-Up Films of Barium Stearate and Their Optical Properties. Phys. Rev. 51, 964–982 (1937).

    Article  ADS  Google Scholar 

  61. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, Oleophobic Monolayers. I. Films Adsorbed from Solution in Nonpolar Liquids. J. Colloid Sci. 1, 513–538 (1946).

    Article  Google Scholar 

  62. B. Mann and H. Kuhn, Tunneling through Fatty Acid Salt Monolayers. J. Appl. Phys. 42, 4398–4405 (1971).

    Article  ADS  Google Scholar 

  63. R. M. Handy and L. C. Scala, Electrical and Structural Properties of Langmuir Films. J. Electrochem. Soc. 113, 109–116 (1966).

    Article  Google Scholar 

  64. R. H. Tredgold, A. J. Vickers, and R., A. Allen, Structural Effects on the Electrical Conductivity of Langmuir-Blodgett Multilayers of Cadmium Stearate. J. Phys. D17, L5–L8 (1984).

    ADS  Google Scholar 

  65. G. G. Roberts, P. S. Vincett, and W. A. Barlow, AC and DC Conduction in Fatty Acid Langmuir Films. J. Phys. C11, 2077–2085 (1978).

    ADS  Google Scholar 

  66. N. J. Geddes, J. R. Sambles, D. J. Jarvis, W. G. Parker, and D. J. Sandman, Fabrication and Investigation of Asymmetric Current-Voltage Characteristics of a Metal/Langmuir-Blodgett Monolayer/Metal Structure. Appl. Phys. Lett. 56, 1916–1918 (1990).

    Article  ADS  Google Scholar 

  67. R. M. Metzger, C. A. Panetta, N. E. Heimer, A. M. Bhatti, E. Torres, G. F. Blackburn, S. K. Tripathy, and L. A. Samuelson, Toward Organic Rectifiers: Langmuir- Blodgett Films and Redox Properties of the N-4-n-Dodecyloxyphenyl and N-1-Pyrenyl Carbamates of 2-Bromo,5-(2′-hydroxyethoxy)TCNQ. J. Mol. Electronics 2, 119–124 (1986).

    Google Scholar 

  68. N. J. Geddes, J. R., Sambles, D. J. Jarvis, W. G. Parker, and D. J. Sandman, The Electrical Properties of Metal-Sandwiched Langmuir-Blodgett Multilayers and Monolayers of a Redox-Active Organic Molecular Compound. J. Appl. Phys. 71, 756–768 (1992).

    Article  ADS  Google Scholar 

  69. R. M. Metzger, N. E. Heimer, and G. J. Ashwell, Crystal and Molecular Structure and Properties of Picolytricyano-quinodimethan, the Zwitterionic Donor-Pi-Acceptor Adduct between Li+TCNQ- and 1,2-Dimethylpyrididium Iodide. Mol. Cryst. Liq. Cryst. 107, 133–149 (1984).

    Article  Google Scholar 

  70. N. A. Bell, R., A. Broughton, J. S. Brooks, T. A. Jones, S. C. Thorpe, and G. J. Ashwell, Synthesis and Langmuir-Blodgett Films of a Zwiterionic D-A Adduct of Tetracyanoquinodimethane (TCNQ). J. Chem. Soc. Chem. Commun. 325–326 (1990).

    Google Scholar 

  71. R. M. Metzger, The Search for Organic Unimolecular Rectifiers. Am. Inst. Phys. Conf. Proc. 262, 85–92 (1992).

    ADS  Google Scholar 

  72. R. M. Metzger, The Quest for D-σ-A Unimolecular Rectifiers and Related Topics in Molecular Electronics. Am. Chem. Soc. Adv. in Chem. Ser. 240, 81–129 (1994).

    Google Scholar 

  73. G. J. Ashwell and G. A. N. Paxton, Multifunctional Properties of Z-β-(N-Hexadecylquinolinium)-α-cyano-4-styryldicyano-methanide: a Molecular Rectifier, Optically Non-Linear Dye, and Ammonia Sensor. Austr. J. Chem. 55, 199–204 (2002).

    Article  Google Scholar 

  74. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Second Edition (VCH, Weinheim, Germany 1990).

    Google Scholar 

  75. R. M. Metzger, H. Tachibana, X. Wu, U. Höpfner, B. Chen, M. V. Lakshmikantham, and M. P. Cava, Is Ashwell's Zwitterion a Molecular Diode? Synth. Metals 85, 1359–1360 (1997).

    Article  Google Scholar 

  76. A. Jaiswal, R. R., Amaresh, M. V. Lakshikantham, A. Honciuc, M. P. Cava, and R. M. Metzger, Electrical Rectification in a Monolayer of Zwitterions Assembled by Either Physisorption or Chemisorption. Langmuir 19, 9043–9050 (2003).

    Article  Google Scholar 

  77. T. Xu, T. A. Morris, G. J. Szulczewski, R. R., Amaresh, Y. Gao, S. C. Street, L. D. Kispert, R. M. Metzger, and F. Terenziani, A Spectroscopic Study of Hexadecylquinolinium Tricyanoquinodimethanide as a Monolayer and in Bulk. J. Phys. Chem B106, 10374–10381 (2002).

    Google Scholar 

  78. G. J. Ashwell, Improved Second Harmonic Generation from Monolayer and Multilayer Langmuir-Blodgett Film Structures. In Organic Materials for Nonlinear Optics III, G. J. Ashwell and D. Bloor, Eds. (Royal Soc. of Chem., Cambridge, 1993), pp. 31–39.

    Google Scholar 

  79. N. Okazaki and J. R., Sambles, A New Fabrication Technique and Current-Voltage Properties of a Au/LB/Au Structure. In Extended Abstracts of the International Symposium on Organic Molecular Electronics, Nagoya, Japan, pp. 66–67 (2000).

    Google Scholar 

  80. M. A. Reed, Sub-Nanoscale Electronic Systems and Devices. United States Patent 5,475,341 (12 Dec. 1995).

    Google Scholar 

  81. J. C. Ellenbogen, Monomolecular Electronic Device Including a Molecular Diode Having at Least One Barrier Insulating Group. United States Patent 6,339,227 (15 Jan. 2002).

    Google Scholar 

  82. R. M. Metzger, unpublished.

    Google Scholar 

  83. V. Mujica, A. E. Roitberg, and M. Ratner, Molecular Wire Conductance: Electrostatic Potential Spatial Profile. J. Chem Phys. 112, 6834–6839 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Metzger, R.M. (2006). Six Unimolecular Rectifiers and What Lies Ahead. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_13

Download citation

Publish with us

Policies and ethics