Skip to main content

Making Contacts to Single Molecules: Are We There Yet?

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

The problem of connecting two wires to a single molecule has several practical solutions, varying from break junctions, to gaps formed by controlled evaporation and self-assembled structures. Here, we focus on gold nanoparticle selfassembled junctions, and break junctions, two techniques that allow the number of molecules in the gap to be determined. We show that the nanoparticle junctions are affected by the electronic properties of the nanoparticles, and that corrections for these effects tend to bring the data into closer agreement with both break-junction measurements and ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.D. Dunlap, R. Garcia, E. Schabtach, and C. Bustamante: Masking generates contiguous segments of metal coated and bare DNA for STM imaging. Proc. Natl. Acad. Sci. (USA) 90, 7652 (1993).

    Article  ADS  Google Scholar 

  2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekkar: Direct measurement of electrical transport through DNA molecules, Nature 403, 635 (2000).

    Article  ADS  Google Scholar 

  3. H.-W. Fink and C. Schoenberger: Electrical conduction through DNA molecules, Nature 398, 407 (1999).

    Article  ADS  Google Scholar 

  4. A.Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V.T. Volkov, D.V. Klinov, and H. Bouchiat: Proximity-Induced Superconductivity in DNA, Science 291, 280 (2001).

    Article  ADS  Google Scholar 

  5. B. Xu, P.M. Zhang, X.L. Li, and N.J. Tao: Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution, Nanoletts. 4, 1105 (2004).

    ADS  Google Scholar 

  6. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, and P.S. Weiss: Are single molecular wires conducting? Science 271, 1705 (1996).

    Article  ADS  Google Scholar 

  7. N. Tao: Probing potential-tuned resonsonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Letts. 76, 4066 (1996).

    Article  ADS  Google Scholar 

  8. W. Han, E.N. Durantini, T.A. Moore, A.L. Moore, D. Gust, P. Rez, G. Leatherman, G.R. Seely, N. Tao, and S.M. Lindsay: STM contrast, electron-transfer chemistry and conduction in molecules, J. Phys. Chem. 101, 10719 (1997).

    Google Scholar 

  9. D.J. Wold and C.D. Frisbie: Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip, J. Am. Chem. Soc. 122, 2970 (2000).

    Article  Google Scholar 

  10. X.D. Cui, X. Zarate, J. Tomfohr, A. Primak, A.L. Moore, T.A. Moore, D. Gust, G. Harris, O.F. Sankey, and S.M. Lindsay: Making electrical contacts to molecular monolayers, Nanotechnology 13, 5 (2002).

    Article  ADS  Google Scholar 

  11. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour: Conductance of a molecular junction, Science 278, 252 (1997).

    Article  Google Scholar 

  12. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H. von Lohneysen: Driving current through single organic molecules, Phys Rev. Lett. 88, 176804 (2002).

    Article  ADS  Google Scholar 

  13. J. Reichert, H.B. Weber, M. Mayor, and H. von Lohneysen: Low-temperature conductance measurements on single molecules, Applied Physics Letters 82, 4137 (2003).

    Article  ADS  Google Scholar 

  14. H. Park, A.K.L. Lim, Alivisatos, A.P., J. Park, and P.L. McEuen: Fabrication of metallic electrodes with nanometer separation by electromigration, Applied Physics Letters 74, 301 (1999).

    Article  ADS  Google Scholar 

  15. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph: Coulomb Blockade and the Kondo Effect in single atom transistors, Nature 417, 722 (2002).

    Article  ADS  Google Scholar 

  16. T. Lee, W. Wang, J.F. Klemic, J.J. Zhang, J. Su, and M.A. Reed: Comparison of electronic transport characterization methods for alkanethiol self-assembled monolayers, J. Phys. Chem Bpublished on web May 2004 (2004).

    Google Scholar 

  17. E. Holmlin, R. Haag, M.L. Chabinye, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, and G.M. Whitesides: Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, J.Am. Chem. Soc. 123, 5075 (2001).

    Article  Google Scholar 

  18. J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, and R. Shashidhar: Metal-Molecule Contacts and Charge Transport across Monomolecular Layers: Measurement and Theory. Phys Rev. Lett. 89, 086802/1 (2002).

    Article  ADS  Google Scholar 

  19. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie: Comparison of electronic transport measurements on organic molecules, Advanced Materials 15, 1881 (2003).

    Article  Google Scholar 

  20. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm: Single electron transistor of a single organic molecule with access to several redox states, Nature 425, 698 (2003).

    Article  ADS  Google Scholar 

  21. S. Kubatkin, A. Danilov, H. Olin, and T. Claeson: Tunneling through a single quench-condensed cluster, J. Low Temp. Phys. 118, 307 (2000).

    Article  Google Scholar 

  22. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, H. G., and S.M. Lindsay: Reproducible measurement of singlemolecule conductivity, Science 294, 571 (2001).

    Article  ADS  Google Scholar 

  23. J.A.M. Sondag-Huethorst, C Schonenberger, and L.G.J. Fokkink: Formation of Holes in Alkanethiol Monolayers on Gold, J. Phys. Chem. 98, 6826 (1994).

    Article  Google Scholar 

  24. M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, and P.S. Weiss: Insertion, conductivity and structure of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au(111), J. Am. Chem. Soc. 120, 2721 (1998).

    Article  Google Scholar 

  25. W.W. Weare, S.M. Reed, M.G. Warner, and J.E. Huchison: Improved synthesis of small (d-core=1.5nm) phosphine-stabilized gold nanoparticles, J. Am. Chem. Soc. 122, 12890 (2000).

    Article  Google Scholar 

  26. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, L.A. Nagahara, and S.M. Lindsay: Changes in the electronic properties of a molecule when it is wired into a circuit, J. Phys. Chem B 106, 8609 (2002).

    Article  Google Scholar 

  27. B. Xu and N.J. Tao: Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions, Science 301, 1221 (2003).

    Article  ADS  Google Scholar 

  28. B. Xu, X. Xiao, and N.J. Tao: Measurements of Single-Molecule Electromechanical Properties, J. Am. Chem. Soc. 125, 16164 (2003).

    Article  Google Scholar 

  29. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett. 79, 2530 (1997).

    Article  ADS  Google Scholar 

  30. B. Wang, H. Wang, H. Li, C. Zeng, and J.G. Hou: Tunable single-electron tunneling behavior of ligand-stabilized gold particles on self-assembled monolayers, Phys. Rev. B 63, 035403 (2000).

    Article  ADS  Google Scholar 

  31. A.E. Hanna and M. Tinkham: Variation of the Coulomb staircase in a two-junction system by fractional electron charge, Physical Review B 44, 5919 (1991).

    Article  ADS  Google Scholar 

  32. J. Tomfohr, Electron tunneling transport theory for molecules, in Physics. 2002, Arizona State University: Tempe.

    Google Scholar 

  33. J.K. Tomfohr and O.F. Sankey: Theoretical analysis of electron transport through organic molecules, J. Chem. Phys. 120, 1542 (2004).

    Article  ADS  Google Scholar 

  34. J. Tomfohr and O.F. Sankey: Simple estimates of the electron transport properties of molecules, Phys. Stat. Sol. B - Basic Research 233, 59 (2002).

    Article  ADS  Google Scholar 

  35. J. Tomfohr and O.F. Sankey: Complex bandstructure, decay lengths and Fermi level alignment in simple molecular electronic systems, Phys. Rev. B 65, 245105 (2002).

    Article  ADS  Google Scholar 

  36. G.H. Woerhle, M.G. Warner, and J.E. Huchison: Ligand exchange reactions yield sub-nanometer, thiol-stabilzed gold particles with defined optical transisitons, J. Chem. Phys. B 106, (2002).

    Google Scholar 

  37. L.A. Nagahara, T. Thundat, and S.M. Lindsay: Preparation and Characterization of STM Tips for Electrochemical Studies, Rev. Sci. Instrum. 60, 3128 (1989).

    Article  ADS  Google Scholar 

  38. W. Wang, T. Lee, M. Reed: Intrinsic electronic conduction mechanisms in self-assembled monolayers, Lecture Notes in Physics vvv, xxx (2005); Chap. 10 of this collection.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tomfohr, J., Ramachandran, G., Sankey, O., Lindsay, S. (2006). Making Contacts to Single Molecules: Are We There Yet?. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_12

Download citation

Publish with us

Policies and ethics