Skip to main content

Functional Micro-imaging at the Interface of Bone Mechanics and Biology

  • Chapter
Mechanics of Biological Tissue

8 Conclusions

Micro-architectural bone imaging is a nondestructive, non-invasive, and precise procedure that allows the measurement of trabecular and compact bone as well as the repetitive 3D assessment and computation of microstructural and micromechanical properties in patients. The procedure can help improve predictions of fracture risk, clarify the pathophysiology of skeletal diseases, and define the response to therapy. Hierarchical bioimaging in combination with biocomputational approaches are well suited for investigating structurefunction relationships as well as failure mechanisms in normal, osteoporotic and treated bone. We expect these findings to improve our understanding of the influence of densitometric, morphological but also loading factors in the etiology of spontaneous fractures of the hip and the spine. Eventually, this improved understanding may lead to more successful approaches in the prevention of such age- and disease-related fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J. M., Bab, I., Fish, S., Müller, R., Uchiyama, T., Gronowicz, G., Nahounou, M., Zhao, Q., Chorev, M., Gazit, D., and Rosenblatt, M. (2001). Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J. Bone Miner. Res. 16:1665–1673.

    Article  Google Scholar 

  • Balto, K., Müller, R., Carrington, D. C., Dobeck, J., and Stashenko, P. (2000). Quantification of periapical bone destruction in mice by micro-computed tomography. J. Dent. Res. 79:35–40.

    Article  Google Scholar 

  • Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., and Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35.

    Article  Google Scholar 

  • Bonse, U., Busch, F., Gunnewig, O., Beckmann, F., Pahl, R., Delling, G., Hahn, M., and Graeff, W. (1994). 3D computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(−4) energy resolution. Bone Miner. 25:25–38.

    Google Scholar 

  • Ciarelli, M. J., Goldstein, S. A., Kuhn, J. L., Cody, D. D., and Brown, M. B. (1991). Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 9:674–682.

    Article  Google Scholar 

  • Conference, C. D. (2000). Osteoporosis prevention, diagnosis, and therapy. In NIH consensus statement, volume 17, 1–45.

    Google Scholar 

  • Dempster, D. W., Cosman, F., Kurland, E. S., Zhou, H., Nieves, J., Woelfert, L., Shane, E., Plavetic, K., Müller, R., Bilezikian, J., and Lindsay, R. (2001). Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 16:1846–1853.

    Article  Google Scholar 

  • Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., and Kleerekoper, M. (1989). The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 4:3–11.

    Article  Google Scholar 

  • Goldstein, S. A. (1987). The mechanical properties of trabecular bone: dependence on anatomic location and function. J. Biomech. 20:1055–1061.

    Article  Google Scholar 

  • Hildebrand, T., Laib, A., Müller, R., Dequeker, J., and Rüegsegger, P. (1999). Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14:1167–1174.

    Article  Google Scholar 

  • Homminga, J., McCreadie, B. R., Weinans, H., and Huiskes, R. (2003). The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 36:1461–1467.

    Article  Google Scholar 

  • Kabel, J., Van Rietbergen, B., Dalstra, M., Odgaard, A., and Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32:673–680.

    Article  Google Scholar 

  • Kapadia, R. D., Stroup, G. B., Badger, A. M., Koller, B., Levin, J. M., Coatney, R. W., Dodds, R. A., Liang, X., Lark, M. W., and Gowen, M. (1998). Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technol. Health Care 6:361–372.

    Google Scholar 

  • Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., and Lou, A. (1997). Systematic and random errors in compression testing of trabecular bone. J. Orthop. Res. 15:101–110.

    Article  Google Scholar 

  • Keaveny, T. M., Morgan, E. F., Niebur, G. L., and Yeh, O. C. (2001). Biomechanics of trabecular bone. Ann. Rev. Biomed. Eng. 3:307–333.

    Article  Google Scholar 

  • Ladd, A. J., Kinney, J. H., Haupt, D. L., and Goldstein, S. A. (1998). Finiteelement modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J. Orthop. Res. 16:622–628.

    Article  Google Scholar 

  • Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21:163–169.

    Google Scholar 

  • Lutolf, M. P., Weber, F. E., Schmoekel, H. G., Schense, J. C., Kohler, T., Müller, R., and Hubbell, J. A. (2003). Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21:513–518.

    Article  Google Scholar 

  • Van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A. (1995). A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28:69–81.

    Article  Google Scholar 

  • Van Rietbergen, B., Odgaard, A., Kabel, J., and Huiskes, R. (1998). Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J. Orthop. Res. 16:23–28.

    Article  Google Scholar 

  • Van Rietbergen, B., Huiskes, R., Eckstein, F., and Rüegsegger, P. (2003). Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res. 18:1781–1788.

    Article  Google Scholar 

  • von Stechow, D., Balto, K., Stashenko, P., and Müller, R. (2003). Threedimensional quantitation of periradicular bone destruction by microcomputed tomography. J. Endod. 29:252–256.

    Article  Google Scholar 

  • Mosekilde, L. (1990). Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10:13–35.

    Article  Google Scholar 

  • Müller, R., and Rüegsegger, P. (1997). Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud. Health Technol. Inform. 40:61–79.

    Google Scholar 

  • Müller, R., Gerber, S. C., and Hayes, W. C. (1998a). Micro-compression: a novel technique for the nondestructive assessment of local bone failure. Technol. Health Care 6:433–444.

    Google Scholar 

  • Müller, R., Van Campenhout, H., Van Damme, B., Van der Perre, G., Dequeker, J., Hildebrand, T., and Rüegsegger, P. (1998b). Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66.

    Article  Google Scholar 

  • Müller, R., Boesch, T., Jarak, D., Stauber, M., Nazarian, A., Tantillo, M., and Boyd, S. K. (2002). Micro-mechanical evaluation of bone microstructures under load. In Bonse, U., ed., Developments in X-RayT omographyIII. San Diego, CA: SPIE. 189–200.

    Google Scholar 

  • Müller, R., Hannan, M., Smith, S. Y., and Bauss, F. (2004). Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J. Bone Miner. Res. 19:1787–1796.

    Article  Google Scholar 

  • Müller, R. (2003). Bone microarchitecture assessment: current and future trends. Osteoporos. Int. 14(Suppl. 5):89–99.

    Article  Google Scholar 

  • Nägele, E., Kuhn, V., Vogt, H., Linka, T. M., Müller, R., Lochmüller, E. M., and Eckstein, F. (2004). Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif. Tissue Int. 75:15–22.

    Article  Google Scholar 

  • Nazarian, A., and Müller, R. (2004). Time-lapsed microstructural imaging of bone failure behavior. J. Biomech. 37:55–65.

    Article  Google Scholar 

  • Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., and Keaveny, T. M. (2000). High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33:1575–1583.

    Article  Google Scholar 

  • Odgaard, A. (1997). Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328.

    Article  Google Scholar 

  • Parfitt, A. M., Mathews, C. H., Villanueva, A. R., Kleerekoper, M., Frame, B., and Rao, D. S. (1983). Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. implications for the microanatomic and cellular mechanisms of bone loss. J. Clin. Invest. 72: 1396–1409.

    Article  Google Scholar 

  • Ray, N. F., Chan, J. K., Thamer, M., and Melton 3rd, L. J. (1997). Medical expenditures for the treatment of osteoporotic fractures in the united states in 1995: report from the national osteoporosis foundation. J. Bone Miner. Res. 12:24–35.

    Article  Google Scholar 

  • Rüegsegger, P., Koller, B., and Müller, R. (1996). A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58:24–29.

    Article  Google Scholar 

  • Turner, C. H., Cowin, S. C., Rho, J. Y., Ashman, R. B., and Rice, J. C. (1990). The fabric dependence of the orthotropic elastic constants of cancellous bone. J. Biomech. 23:549–561.

    Article  Google Scholar 

  • Turner, C. H., Hsieh, Y. F., Müller, R., Bouxsein, M. L., Baylink, D. J., Rosen, C. J., Grynpas, M. D., Donahue, L. R., and Beamer, W. G. (2000). Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J. Bone Miner. Res. 15:1126–1131.

    Article  Google Scholar 

  • Whitehouse, W. J. (1974). The quantitative morphology of anisotropic trabecular bone. J. Microscopy 101:153–168.

    Google Scholar 

  • Zeltinger, J., Sherwood, J. K., Graham, D. A., Müller, R., and Griffith, L. G. (2001). Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tiss. Engrg. 7:557–572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, R. et al. (2006). Functional Micro-imaging at the Interface of Bone Mechanics and Biology. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics