Skip to main content

Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments

  • Chapter
DNA Methylation: Development, Genetic Disease and Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 310))

Abstract

Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of “genes plus environment” is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abkevich V, Camp NJ, Hensel CH, et al (2003) Predisposition locus for major depression at chromosome 12q22–12q23.2. Am J Hum Genet 73:1271–1281

    PubMed  CAS  Google Scholar 

  • Adorjan P, Distler J, Lipscher E, et al (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21

    PubMed  Google Scholar 

  • Akey DT, Akey JM, Zhang K, Jin L (2002) Assaying DNA methylation based on high-throughput melting curve approaches. Genomics 80:376–384

    PubMed  CAS  Google Scholar 

  • Allen ND, Norris ML, Surani MA (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61:853–861

    PubMed  CAS  Google Scholar 

  • Allen ND, Logan K, Lally G, et al (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci U S A 92:10782–10786

    PubMed  CAS  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    PubMed  CAS  Google Scholar 

  • Balog RP, de Souza YE, Tang HM, et al (2002) Parallel assessment of CpG methylation by two-color hybridization with oligonucleotide arrays. Anal Biochem 309:301–310

    PubMed  CAS  Google Scholar 

  • Barlow DP (1995) Gametic imprinting in mammals. Science 270:1610–1613

    PubMed  CAS  Google Scholar 

  • Baumer A, Wiedemann U, Hergersberg M, Schinzel A (2001) A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Hum Mutat 17:423–430

    PubMed  CAS  Google Scholar 

  • Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    PubMed  CAS  Google Scholar 

  • Beck S, Olek A, Walter J (1999) From genomics to epigenomics: a loftier view of life. Nat Biotechnol 17:1144

    PubMed  CAS  Google Scholar 

  • Bertelsen A, Harvald B, Hauge M (1977) A Danish twin study of manic-depressive disorders. Br J Psychiatry 130:330–351

    PubMed  CAS  Google Scholar 

  • Bestor TH, Chandler VL, Feinberg AP (1994) Epigenetic effects in eukaryotic gene expression. Dev Genet 15:458

    PubMed  CAS  Google Scholar 

  • Brock GJ, Huang TH, Chen CM, Johnson KJ (2001) A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). Nucleic Acids Res 29:E123

    PubMed  CAS  Google Scholar 

  • Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet 97:12–17

    PubMed  CAS  Google Scholar 

  • Chotai KA, Payne SJ (1998) A rapid, PCR based test for differential molecular diagnosis of Prader-Willi and Angelman syndromes. J Med Genet 35:472–475

    PubMed  CAS  Google Scholar 

  • Clement G, Benhattar J (2005) A methylation sensitive dot blot assay (MS-DBA) for the quantitative analysis of DNA methylation in clinical samples. J Clin Pathol 58:155–158

    PubMed  CAS  Google Scholar 

  • Constancia M, Pickard B, Kelsey G, Reik W (1998) Imprinting mechanisms. Genome Res 8:881–900

    PubMed  CAS  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    PubMed  CAS  Google Scholar 

  • Cottrell SE, Distler J, Goodman NS, et al (2004) A real-time PCR assay for DNA methylation using methylation-specific blockers. Nucleic Acids Res 32:e10

    PubMed  Google Scholar 

  • Cross SH, Charlton JA, Nan X, Bird AP (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6:236–244

    PubMed  CAS  Google Scholar 

  • Crow TJ, DeLisi LE, Johnstone EC (1989) Concordance by sex in sibling pairs with schizophrenia is paternally inherited. Evidence for a pseudoautosomal locus. Br J Psychiatry 155:92–97

    PubMed  CAS  Google Scholar 

  • Csordas A, Puschendorf B, Grunicke H (1986) Increased acetylation of histones at an early stage of oestradiol-mediated gene activation in the liver of immature chicks. J Steroid Biochem 24:437–442

    PubMed  CAS  Google Scholar 

  • Cui H, Cruz-Correa M, Giardiello FM, et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    PubMed  CAS  Google Scholar 

  • Cyranowski JM, Frank E, Young E, Shear MK (2000) Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch Gen Psychiatry 57:21–27

    PubMed  CAS  Google Scholar 

  • Dahl C, Guldberg P (2003) DNA methylation analysis techniques. Biogerontology 4:233–250

    PubMed  CAS  Google Scholar 

  • Deb-Rinker P, Klempan TA, O’Reilly RL, et al (1999) Molecular characterization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics 61:133–144

    PubMed  CAS  Google Scholar 

  • Deb-Rinker P, O’Reilly RL, Torrey EF, Singh SM (2002) Molecular characterization of a 2.7 kb, 12q13-specific, retroviral related sequence isolated by RDA from monozygotic twins discordant for schizophrenia. Genome 45:1–10

    Google Scholar 

  • Dobrovic A, Bianco T, Tan LW, et al (2002) Screening for and analysis of methylation differences using methylation-sensitive single-strand conformation analysis. Methods 27:134–138

    PubMed  CAS  Google Scholar 

  • Dupont JM, Tost J, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    PubMed  CAS  Google Scholar 

  • Eads CA, Danenberg KD, Kawakami K, et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Ehrlich K (1993) Effect of DNA methylation and the binding of vertebrate and plant proteins to DNA. In: Jost J, Saluz P (eds) DNA methylation: molecular biology and biological significance. Birkhauser Verlag, Basel, 145–168

    Google Scholar 

  • Feinberg AP (1999) Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 59:1743s–1746s

    PubMed  CAS  Google Scholar 

  • Fraga MF, Uriol E, Borja Diego L, et al (2002) High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis 23:1677–1681

    PubMed  CAS  Google Scholar 

  • Frigola J, Ribas M, Risques RA, Peinado MA (2002) Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res 30:e28

    PubMed  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    PubMed  CAS  Google Scholar 

  • Fuke C, Shimabukuro M, Petronis A, et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    PubMed  CAS  Google Scholar 

  • Galm O, Rountree MR, Bachman KE, et al (2002) Enzymatic regional methylation assay: a novel method to quantify regional CpG methylation density. Genome Res 12:153–157

    PubMed  CAS  Google Scholar 

  • Gitan RS, Shi H, Chen CM, et al (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158–164

    PubMed  CAS  Google Scholar 

  • Gonzalgo ML, Jones PA (2002) Quantitative methylation analysis using methylationsensitive single-nucleotide primer extension (Ms-SNuPE). Methods 27:128–133

    PubMed  CAS  Google Scholar 

  • Gonzalgo ML, Liang G, Spruck CH 3rd, et al (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57:594–599

    PubMed  CAS  Google Scholar 

  • Guldberg P, Worm J, Gronbaek K (2002) Profiling DNA methylation by melting analysis. Methods 27:121–127

    PubMed  CAS  Google Scholar 

  • Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46:857–873

    PubMed  CAS  Google Scholar 

  • Hatada I, Kato A, Morita S, et al (2002) A microarray-based method for detecting methylated loci. J Hum Genet 47:448–451

    PubMed  CAS  Google Scholar 

  • Hayashizaki Y, Hatada I, Hirotsune S, et al (1993) Restriction landmark genomic scanning (RLGS) method and its application (in Japanese). Seikagaku 65:109–115

    PubMed  CAS  Google Scholar 

  • Heiman GA, Hodge SE, Wickramaratne P, Hsu H (1996) Age-at-interview bias in anticipation studies: computer simulations and an example with panic disorder. Psychiatr Genet 6:61–66

    PubMed  CAS  Google Scholar 

  • Henikoff S, Matzke MA (1997) Exploring and explaining epigenetic effects. Trends Genet 13:293–295

    PubMed  CAS  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    PubMed  CAS  Google Scholar 

  • Hodge SE, Wickramaratne P (1995) Statistical pitfalls in detecting age-of-onset anticipation: the role of correlation in studying anticipation and detecting ascertainment bias. Psychiatr Genet 5:43–47

    PubMed  CAS  Google Scholar 

  • Hou P, Ji M, Ge C, et al (2003a) Detection of methylation of human p16(Ink4a) gene 5′-CpG islands by electrochemical method coupled with linker-PCR. Nucleic Acids Res 31:e92

    PubMed  Google Scholar 

  • Hou P, Ji M, Liu Z, et al (2003b) A microarray to analyze methylation patterns of p16(Ink4a) gene 5′-CpG islands. Clin Biochem 36:197–202

    PubMed  CAS  Google Scholar 

  • Hou P, Ji M, Li S, et al (2004) High-throughput method for detecting DNA methylation. J Biochem Biophys Methods 60:139–150

    PubMed  CAS  Google Scholar 

  • Howard R, Rabins PV, Seeman MV, Jeste DV (2000) Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The International Late-Onset Schizophrenia Group. Am J Psychiatry 157:172–178

    PubMed  CAS  Google Scholar 

  • Huang TH, Laux DE, Hamlin BC, et al (1997) Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res 57:1030–1034

    PubMed  CAS  Google Scholar 

  • Huang TH, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8:459–470

    PubMed  CAS  Google Scholar 

  • Hubrich-Kuhner K, Buhk HJ, Wagner H, et al (1989) Non-C-G recognition sequences of DNA cytosine-5-methyltransferase from rat liver. Biochem Biophys Res Commun 160:1175–1182

    PubMed  CAS  Google Scholar 

  • Ingrosso D, Cimmino A, Perna AF, et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361:1693–1699

    PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb M (1995) Epigenetic inheritance and evolution. Oxford University Press, New York, pp 1–360

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33Suppl:245–254

    PubMed  CAS  Google Scholar 

  • Jantzen K, Fritton HP, Igo-Kemenes T, et al (1987) Partial overlapping of binding sequences for steroid hormone receptors and DNaseI hypersensitive sites in the rabbit uteroglobin gene region. Nucleic Acids Res 15:4535–4552

    PubMed  CAS  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    PubMed  CAS  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    PubMed  CAS  Google Scholar 

  • Kaminsky ZA, Assadzadeh A, Flanagan J, Petronis A (2005) Single nucleotide extension technology for quantitative site-specific evaluation of metC/C in GC-rich regions. Nucleic Acids Res 33:e95

    PubMed  Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J, et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    PubMed  CAS  Google Scholar 

  • Kendler KS, Prescott CA (1999) A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry 56:39–44

    PubMed  CAS  Google Scholar 

  • Keverne EB (1997) Genomic imprinting in the brain. Curr Opin Neurobiol 7:463–468

    PubMed  CAS  Google Scholar 

  • Kuo KC, McCune RA, Gehrke CW, et al (1980) Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res 8:4763–4776

    PubMed  CAS  Google Scholar 

  • Lavrentieva I, Broude NE, Lebedev Y, et al (1999) High polymorphism level of genomic sequences flanking insertion sites of human endogenous retroviral long terminal repeats. FEBS Lett 443:341–347

    PubMed  CAS  Google Scholar 

  • Leonard CM, Williams CA, Nicholls RD, et al (1993) Angelman and Prader-Willi syndrome: a magnetic resonance imaging study of differences in cerebral structure. Am J Med Genet 46:26–33

    PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    PubMed  CAS  Google Scholar 

  • Li J, Protopopov A, Wang F, et al (2002) NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc Natl Acad Sci U S A 99:10724–10729

    PubMed  CAS  Google Scholar 

  • Liang G, Gonzalgo ML, Salem C, Jones PA (2002) Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods 27:150–155

    PubMed  CAS  Google Scholar 

  • Lo YM, Wong IH, Zhang J, et al (1999) Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 59:3899–3903

    PubMed  CAS  Google Scholar 

  • Matin MM, Baumer A, Hornby DP (2002) An analytical method for the detection of methylation differences at specific chromosomal loci using primer extension and ion pair reverse phase HPLC. Hum Mutat 20:305–311

    PubMed  CAS  Google Scholar 

  • McInnis MG (1996) Anticipation: an old idea in new genes. Am J Hum Genet 59:973–979

    PubMed  CAS  Google Scholar 

  • McMahon FJ, Stine OC, Meyers DA, et al (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56:1277–1286

    PubMed  CAS  Google Scholar 

  • McMahon FJ, Hopkins PJ, Xu J, et al (1997) Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series. Am J Hum Genet 61:1397–1404

    PubMed  CAS  Google Scholar 

  • Mueller K, Doerfler W (2000) Methylation-sensitive amplicon subtraction: a novel method to isolate differentially methylated DNA sequences in complex genomes. Gene Funct Dis 1:154–160

    Google Scholar 

  • Nan X, Ng HH, Johnson CA, et al (1998) Transcriptional repression by themethyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    PubMed  CAS  Google Scholar 

  • Nicholls RD (2000) The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest 105:413–418

    PubMed  CAS  Google Scholar 

  • Nicholls RD, Knepper JL (2001) Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2:153–175

    PubMed  CAS  Google Scholar 

  • Numachi Y, Yoshida S, Yamashita M, et al (2004) Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann N Y Acad Sci 1025:102–109

    PubMed  CAS  Google Scholar 

  • Oakeley EJ, Podesta A, Jost JP (1997) Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci U S A 94:11721–11725

    PubMed  CAS  Google Scholar 

  • Oakeley EJ, Schmitt F, Jost JP (1999) Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques 27:744–746, 748–750, 752

    PubMed  CAS  Google Scholar 

  • Ohara K, Xu HD, Mori N, et al (1997) Anticipation and imprinting in schizophrenia. Biol Psychiatry 42:760–766

    PubMed  CAS  Google Scholar 

  • Pasqualini JR, Mercat P, Giambiagi N (1989) Histone acetylation decreased by estradiol in the MCF-7 human mammary cancer cell line. Breast Cancer Res Treat 14:101–105

    PubMed  CAS  Google Scholar 

  • Peoples R, Wood M, Van Atta R (2004) Photocrosslinking oligonucleotide hybridization assay for concurrent gene dosage and CpG methylation analysis. Methods Mol Biol 287:233–249

    PubMed  CAS  Google Scholar 

  • Petronis A (1996) Genomic imprinting in unstable DNA diseases. Bioessays 18:587–590

    PubMed  CAS  Google Scholar 

  • Petronis A (2004) The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55:965–970

    PubMed  CAS  Google Scholar 

  • Petronis A, Kennedy JL (1995) Unstable genes—unstable mind? Am J Psychiatry 152:164–172

    PubMed  CAS  Google Scholar 

  • Petronis A, Popendikyte V, Kan P, Sasaki T (2002) Major psychosis and chromosome 22: genetics meets epigenetics. CNS Spectr 7:209–214

    PubMed  Google Scholar 

  • Petronis A, Gottesman II, Kan P, et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178

    PubMed  Google Scholar 

  • Pfeifer GP, Steigerwald SD, Mueller PR, et al (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246:810–813

    PubMed  CAS  Google Scholar 

  • Pfeifer K (2000) Mechanisms of genomic imprinting. Am J Hum Genet 67:777–787

    PubMed  CAS  Google Scholar 

  • Piccinelli M, Wilkinson G (2000) Gender differences in depression. Critical review. Br J Psychiatry 177:486–492

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Xiao H, Torrey EF, et al (1993) Search for a genetic event in monozygotic twins discordant for schizophrenia. Psychiatry Res 48:27–36

    PubMed  CAS  Google Scholar 

  • Rakyan V, Whitelaw E (2003) Transgenerational epigenetic inheritance. Curr Biol 13:R6

    PubMed  CAS  Google Scholar 

  • Rakyan VK, Preis J, Morgan HD, Whitelaw E (2001) The marks, mechanisms and memory of epigenetic states in mammals. Biochem J 356:1–10

    PubMed  CAS  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R, et al (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    PubMed  CAS  Google Scholar 

  • Rakyan VK, Hildmann T, Novik KL, et al (2004) DNA methylation profiling of the humanmajor histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2:e405

    PubMed  Google Scholar 

  • Rand K, Qu W, Ho T, et al (2002) Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods 27:114–120

    PubMed  CAS  Google Scholar 

  • Razin A, Shemer R (1999) Epigenetic control of gene expression. Results Probl Cell Differ 25:189–204

    PubMed  CAS  Google Scholar 

  • Rein T, De Pamphilis ML, Zorbas H (1998) Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 26:2255–2264

    PubMed  CAS  Google Scholar 

  • Reiss D, Plomin R, Hetherington EM (1991) Genetics and psychiatry: an unheralded window on the environment. Am J Psychiatry 148:283–291

    PubMed  CAS  Google Scholar 

  • Riggs A, Porter T (1996) Overview of epigenetic mechanisms. In: Russo VEA MR, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 29–45

    Google Scholar 

  • Riggs A, Xiong Z, Wang L, JM L (1998) Methylation dynamics, epigenetic fidelity and X chromosome structure. In: Wolffe A (ed) Epigenetics. John Wiley and Sons, Chichester, pp 214–227

    Google Scholar 

  • Risch N (1990) Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol 7:3–16; discussion 17–45

    PubMed  CAS  Google Scholar 

  • Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207

    PubMed  CAS  Google Scholar 

  • Rother KI, Silke J, Georgiev O, et al (1995) Influence of DNA sequence and methylation status on bisulfite conversion of cytosine residues. Anal Biochem 231:263–265

    PubMed  CAS  Google Scholar 

  • Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci U S A 83:7167–7171

    PubMed  CAS  Google Scholar 

  • Schatz P, Dietrich D, Schuster M (2004) Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF. Nucleic Acids Res 32:e167

    PubMed  Google Scholar 

  • Schmitt F, Oakeley EJ, Jost JP (1997) Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272:1534–1540

    PubMed  CAS  Google Scholar 

  • Schulze TG, Chen YS, Badner JA, et al (2003) Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 53:239–243

    PubMed  CAS  Google Scholar 

  • Schumacher A (2001) Mechanisms and brain specific consequences of genomic imprinting in Prader-Willi and Angelman syndromes. Gene Funct Dis 1:7–25

    Google Scholar 

  • Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, Virtanen C, Winegarden N, Cheng J, Gingeras T, Petronis A (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 34:528–542

    PubMed  CAS  Google Scholar 

  • Shi H, Maier S, Nimmrich I, et al (2003a) Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem 88:138–143

    PubMed  CAS  Google Scholar 

  • Shi H, Wei SH, Leu YW, et al (2003b) Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 63:2164–2171

    PubMed  CAS  Google Scholar 

  • Siegfried Z, Eden S, Mendelsohn M, et al (1999) DNA methylation represses transcription in vivo. Nat Genet 22:203–206

    PubMed  CAS  Google Scholar 

  • Stach D, Schmitz OJ, Stilgenbauer S, et al (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res 31:E2

    PubMed  Google Scholar 

  • Sutherland E, Coe L, Raleigh EA (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225:327–348

    PubMed  CAS  Google Scholar 

  • Sutherland JE, Costa M (2003) Epigenetics and the environment. Ann N Y Acad Sci 983:151–160

    PubMed  CAS  Google Scholar 

  • Taubes G (1995) Epidemiology faces its limits. Science 269:164–169

    PubMed  CAS  Google Scholar 

  • Thomassin H, Oakeley EJ, Grange T (1999) Identification of 5-methylcytosine in complex genomes. Methods 19:465–475

    PubMed  CAS  Google Scholar 

  • Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32:e168

    PubMed  Google Scholar 

  • Tompa R, McCallum CM, Delrow J, et al (2002) Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr Biol 12:65–68

    PubMed  CAS  Google Scholar 

  • Tost J, Schatz P, Schuster M, et al (2003) Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res 31:e50

    PubMed  Google Scholar 

  • Toyota M, Ho C, Ahuja N, et al (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59:2307–2312

    PubMed  CAS  Google Scholar 

  • Truss M, Chalepakis G, Pina B, et al (1992) Transcriptional control by steroid hormones. J Steroid Biochem Mol Biol 41:241–248

    PubMed  CAS  Google Scholar 

  • Tsujita T, Niikawa N, Yamashita H, et al (1998) Genomic discordance between monozygotic twins discordant for schizophrenia. Am J Psychiatry 155:422–424

    PubMed  CAS  Google Scholar 

  • Uhlmann K, Brinckmann A, Toliat MR, et al (2002) Evaluation of a potential epigenetic biomarker by quantitativemethyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    PubMed  CAS  Google Scholar 

  • Ushijima T, Morimura K, Hosoya Y, et al (1997) Establishment of methylation-sensitive-representational difference analysis and isolation of hypo-and hypermethylated genomic fragments in mouse liver tumors. ProcNatl Acad Sci U S A 94:2284–2289

    CAS  Google Scholar 

  • Veldic M, Caruncho HJ, Liu WS, et al (2004) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101:348–353

    PubMed  CAS  Google Scholar 

  • Vincent JB, Kalsi G, Klempan T, et al (1998) No evidence of expansion of CAG or GAA repeats in schizophrenia families and monozygotic twins. Hum Genet 103:41–47

    PubMed  CAS  Google Scholar 

  • Walter J, Paulsen M (2003) Imprinting and disease. Semin Cell Dev Biol 14:101–110

    PubMed  CAS  Google Scholar 

  • Warren MP, Brooks-Gunn J (1989) Mood and behavior at adolescence: evidence for hormonal factors. J Clin Endocrinol Metab 69:77–83

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Weissman MM, Olfson M (1995) Depression in women: implications for health care research. Science 269:799–801

    PubMed  CAS  Google Scholar 

  • Weksberg R, Shuman C, Caluseriu O, et al (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325

    PubMed  CAS  Google Scholar 

  • Weksberg R, Smith AC, Squire J, Sadowski P (2003) Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet 12 Spec No 1:R61–68

    PubMed  CAS  Google Scholar 

  • Williams CA, Hendrickson JE, Cantu ES, Donlon TA (1989) Angelman syndrome in a daughter with del(15) (q11q13) associated with brachycephaly, hearing loss, enlarged foramen magnum, and ataxia in themother. Am J Med Genet 32:333–338

    PubMed  CAS  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J 12:949–957

    PubMed  CAS  Google Scholar 

  • Worm J, Aggerholm A, Guldberg P (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem 47:1183–1189

    PubMed  CAS  Google Scholar 

  • Wu J, Issa JP, Herman J, et al (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci U S A 90:8891–8895

    PubMed  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    PubMed  CAS  Google Scholar 

  • Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    PubMed  CAS  Google Scholar 

  • Yamamoto F, Yamamoto M (2004) A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Genet Genomics 271:678–686

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nagasaka T, Notohara K, et al (2004) Methylation assay by nucleotide incorporation: a quantitative assay for regional CpG methylation density. Biotechniques 36:846–850, 852, 854

    PubMed  CAS  Google Scholar 

  • Yan PS, Efferth T, Chen HL, et al (2002) Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 27:162–169

    PubMed  CAS  Google Scholar 

  • Yang AS JP, Shibata A (1996) The mutational burden of 5-methylcytosine. In: Russo V, Riggs A (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 77–94

    Google Scholar 

  • Yokomori N, Moore R, Negishi M (1995) Sexually dimorphic DNA demethylation in the promoter of the Slp (sex-limited protein) gene in mouse liver. Proc Natl Acad Sci U S A 92:1302–1306

    PubMed  CAS  Google Scholar 

  • Zeschnigk M, Bohringer S, Price EA, et al (2004) A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res 32:e125

    PubMed  Google Scholar 

  • Zhang Z, Chen CQ, Manev H (2004) Enzymatic regional methylation assay for determination of CpG methylation density. Anal Chem 76:6829–6832

    PubMed  CAS  Google Scholar 

  • Zubenko GS, Maher B, Hughes HB 3rd, et al (2003) Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet 123B:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petronis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schumacher, A., Petronis, A. (2006). Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Development, Genetic Disease and Cancer. Current Topics in Microbiology and Immunology, vol 310. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31181-5_6

Download citation

Publish with us

Policies and ethics