Skip to main content

Molecular Epidemiology and Biology of Mesothelioma

  • Chapter
Tumors of the Chest

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi C, Giarelli L, Grandi G, Brollo A, Ramani L, Zuch C. Latency periods in asbestos-related mesothelioma of the pleura. Eur J Cancer Prev 1997;6:162.

    PubMed  CAS  Google Scholar 

  2. Pira E, Pelucchi C, Buffoni L et al. Cancer mortality in a cohort of asbestos textile workers. Br J Cancer 2005;92:580.

    Article  PubMed  CAS  Google Scholar 

  3. Puntoni R, Vercelli M, Merlo F, Valerio F, Santi L. Mortality among shipyard workers in Genoa, Italy. Ann N Y Acad Sci 1979;330:353.

    PubMed  CAS  Google Scholar 

  4. Huncharek M. Genetic factors in the aetiology of malignant mesothelioma Eur J Cancer 1995;31:1741.

    Article  Google Scholar 

  5. Dopp E, Seedier J, Stopper H., Weiss DG, Schiffman D. Mitotic disturbances and micronucleus induction in Syrian hamster embryo fibroblast cells caused by asbestos fi bers. Environ Health Perspect 1995;103:268.

    PubMed  CAS  Google Scholar 

  6. Kodama Y, Boreiko CJ, Maness SC, Hesterberg TW. Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cells in culture. Carcinogenesis 1993;14:691.

    PubMed  CAS  Google Scholar 

  7. Liu W, Ernst JD, Courtney Broaddus V. Phagocytosis of crocidolite asbestos induces oxidative stress, DNA dama ge, and apoptosis in mesothelial cells. Am J Respir Cell Mol Biol 2000;23:371.

    PubMed  CAS  Google Scholar 

  8. Ollikainen T, Linnainmaa K, Kinnula VL. DNA single strand breaks induced by asbestos fibers in human pleu-ral mesothelial cells in vitro. Environ Mol Mutagen 1999;33:153.

    Article  PubMed  CAS  Google Scholar 

  9. Speit G. Appropriate in vitro test conditions for genotoxic-ity testing of fibers. Inhalat Toxicol 2002;14:79.

    Article  CAS  Google Scholar 

  10. Okayasu R, Takahashi S, Yamada S, Hei TK, Ullrich RL. Asbestos and DNA double strand breaks. Cancer Res 1999;59:298.

    PubMed  CAS  Google Scholar 

  11. Kamp DW, Weitzman SA. The molecular basis of asbestos induced lung injury. Thorax 1999;54:638.

    PubMed  CAS  Google Scholar 

  12. Knaapen AM, Borm PJA, Albrecht C, Schins RPF. Inhaled particles and lung cancer. Part A: mechanisms. Int J Can cer 2004;109:799.

    CAS  Google Scholar 

  13. Borm PJA, Schins RPF, Albrecht C. Inhaled particles and lung cancer. Part B: paradigms and risk assessment. Int J Cancer 2004;110:3.

    Article  PubMed  CAS  Google Scholar 

  14. Schins RPF. Mechanism of genotoxicity of particles and fibers. Inhalat Toxicol 2002;14:57.

    Article  CAS  Google Scholar 

  15. Schurkes C, Brock W, Abel J, Unfried K. Induction of 8-hydroxydeoxyguanosine by man made vitreous fibres and crocidolite asbestos administered intraperitoneally in rats. Mutat Res 2004;553:59.

    PubMed  CAS  Google Scholar 

  16. Topinka J, Loli P, Georgiadis P, et al. Mutagenesis by asbestos in the lung of λ-lacI transgenic mice. Mutat Res 2004;553:67.

    PubMed  CAS  Google Scholar 

  17. Marczynski B, Kraus T, Rozynwwk P, Schlosser S, Raithel HJ, Baur X. Changes in low molecular weight DNA fragmentation in white blood cells of workers highly exposed to asbestos. Int Arch Occup Environ Health 2001;74:315.

    Article  PubMed  CAS  Google Scholar 

  18. Cristaudo A, Foddis R, Vivaldi A, et al. SV40 enhances the risk of malignant mesothelioma among people exposed to asbestos: a molecular epidemiologic case-control study. Cancer Res 2005;65:3049.

    PubMed  CAS  Google Scholar 

  19. Digweed M, Demuth I, Rothe S, et al. SV40 large T-anti-gen disturbs the formation of nuclear DNA-repair focicontaining MRE11. Oncogene 2002;21:4873.

    Article  PubMed  CAS  Google Scholar 

  20. Bowman KK, Sicard DM, Ford JM, Hanawalt PC. Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells. Mol Carcinog 2000;29:17.

    Article  PubMed  CAS  Google Scholar 

  21. Carbone M, Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin Oncol 2002;29:2.

    Article  PubMed  CAS  Google Scholar 

  22. Berwick M, Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 2000;92:874.

    Article  PubMed  CAS  Google Scholar 

  23. Lechner JF, Tesfaiqzi J, Gerwin BI. Oncogenes and tumor-suppressor genes in mesothelioma: a synopsis. Environ Health Perspect 1997;105:1061.

    PubMed  Google Scholar 

  24. Perera FP. Molecular cancer epidemiology: a new tool in cancer prevention. J Natl Cancer Inst 1987;78:87.

    Google Scholar 

  25. Hulka BS, Wilcosky T. Biological markers in epidemio logic research. Arch Environ Health 1988;43:83.

    Article  PubMed  CAS  Google Scholar 

  26. Wogan GN. Molecular epidemiology in cancer risk. Assessment and prevention: recent progress and avenues for future research. Environ Health Perspect 1992;98:167.

    PubMed  CAS  Google Scholar 

  27. Bonassi S, Hagmar L, Stromberg U, Heikkila P. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Res 2000;15:1619.

    Google Scholar 

  28. Maluf SW, Erdtmann B. Genomic instability in Down syndrome and Fanconi anemia assessed by micronucleus analysis in single-cell gel electrophoresis. Cancer Genet Cytogenet 2001;124:71.

    Article  PubMed  CAS  Google Scholar 

  29. Rothfub A, Schutz P, Bochum S, et al. Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carriers of a BRCA1 mutation in breast cancer families. Cancer Res 2000;60:390.

    Google Scholar 

  30. Trenz K, Rothfuss A, Schutz P, Speit G. Mutagen sensitivity of peripheral blood for women carrying a BRCA1 or BRCA2 mutation. Mutat Res 2002;500:89.

    PubMed  CAS  Google Scholar 

  31. Fellay-Reynier I, Orsiere T, Sari-Minodier I, et al. Evaluation of micronucleated lymphocytes, constitutional karyotypes and anti p53 antibodies in 21 children with various malignancies. Mutat Res 2000;467:31.

    PubMed  CAS  Google Scholar 

  32. Fenech M, Denham J, Francis W, Morley A. Micronuclei in cytokinesis-blocked lymphocytes of cancer patients following fractionated partial-body radiotherapy. Int J Radiat Biol 1990;57:373.

    PubMed  CAS  Google Scholar 

  33. Venkatachalam P, Paul S, Mohankumar M, Prabhu BK, Gajendiran N, Kathiresan A, Jeevanram RK. Higher frequency of dicentrics and micronuclei in peripheral blood lymphocytes of cancer patients. Mutat Res 1999;425:1.

    PubMed  CAS  Google Scholar 

  34. Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology 2004;318:1.

    Article  PubMed  CAS  Google Scholar 

  35. White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004;324:1.

    Article  PubMed  CAS  Google Scholar 

  36. Dolcetti R, Martini F, Quaia M, et al. Simian virus 40 sequences in human lymphoblastoid B-cell lines. J Virol 2003;82:1595.

    Article  CAS  Google Scholar 

  37. Neel JV, Major EO, Awa AA. Hypothesis: “rogue cell”-type chromosomal damage in lymphocytes is associated with infection with the JC human polyoma virus and has implications for oncogenesis. Proc Natl Acad Sci U S A 1996;93:2690.

    Article  PubMed  CAS  Google Scholar 

  38. Bolognesi C, Filiberti R, Neri M, et al. High frequency of micronuclei in peripheral blood lymphocytes as index of susceptibility to pleural malignant mesothelioma. Cancer Res 2002;62:5418.

    PubMed  CAS  Google Scholar 

  39. Fenech M, Morley AA. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo aging and low dose X-irradiation. Mutat Res 1986;161:193.

    PubMed  CAS  Google Scholar 

  40. Dopp E, Schuler M, Schiffman D, Eastmond DA. Induction of micronuclei, hyperploidy and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos and ceramic fibers. Mutat Res 1997;377:77.

    PubMed  CAS  Google Scholar 

  41. Lu J, Keane MJ, Ong T, Wallace WE. In vitro genotoxicity studies of chrysotile asbestos fibers dispersed in simulated pulmonary surfactant. Mutat Res 1994;320:253.

    Article  PubMed  CAS  Google Scholar 

  42. Bartsch H, Aitio A, Camus AM, Malaveille C, Ohshima H, Pignatelli B, Sabadie N. Carcinogen metabolizing enzymes and susceptibility to chemical carcinogenesis. IARC Sci Publ 1982;39:337.

    PubMed  Google Scholar 

  43. Hanke JZ. Genetic susceptibility to toxic substances and its relationship to carcinogenesis. IARC Sci Publ 1984;59:99.

    PubMed  CAS  Google Scholar 

  44. Harrison DJ, Hubbard AL, MacMillan J, Wyllie AH, Smith CA. Microsomal epoxide hydrolase gene polymorphism and susceptibility to colon cancer. Br J Cancer 1999;79:168.

    Article  PubMed  CAS  Google Scholar 

  45. Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 1997;350:630.

    Article  PubMed  CAS  Google Scholar 

  46. Arif JM, Khan SG, Mahmood N, Aslam M, Rahman Q. Effect of coexposure to asbestos and kerosene soot on pulmonary drug-metabolizing enzyme system. Environ Health Perspect 1994;102:181.

    PubMed  CAS  Google Scholar 

  47. Fretland AJ, Omiecinski CJ. Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 200;129:41.

    Google Scholar 

  48. Kandaswami C, O’Brien PJ. Effect of chrysotile asbestos and silica on the microsomal metabolism of benzo(a)pyrene. Environ Health Perspect 1983;51:311.

    PubMed  CAS  Google Scholar 

  49. Gsur A, Zidek T, Schnattinger K, et al. Association of microsomal epoxide hydrolase polymorphisms and lung cancer risk. Br J Cancer 2003;89:702.

    Article  PubMed  CAS  Google Scholar 

  50. Smith CM, Kelsey KT, Wiencke JK, Leyden K, Stephen L, Christiani DC. Inherited glutathione S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomarkers Prev 1994;3:471.

    PubMed  CAS  Google Scholar 

  51. Hirvonen A, Saarikoski ST, Linnainmaa K, Koskinen K, Husgafvel-Pursiainen K, Mattson K, Vainio H. Glutathione S-transferase and N-acetyltransferase genotypes and asbestos-associated pulmonary disorders. J Natl Cancer Inst 1996;88:1853.

    PubMed  CAS  Google Scholar 

  52. Stacker I, Boffetta P, Antilla S, Benhamou S, Hirvonen A, London S, Taioli E. Lack of interaction between asbestos exposure and glutathione S-transferase Ml and Tl genotypes in lung carcinogenesis. Cancer Epidemiol Biomarkers Prev 2001;10:1253.

    Google Scholar 

  53. Hirvonen A, Pelin K, Tammilehto L, Karjalainen A, Mattson K, Linnainmaa K. Inherited GSTM1 and NAT2 defects as concurrent risk modifiers in asbestos-related human malignant mesothelioma. Cancer Res 1995;55:2981.

    PubMed  CAS  Google Scholar 

  54. Neri M, Filiberti R, Taioli E, et al. Pleural malignant mesothelioma, genetic susceptibility and asbestos exposure. Mutat Res 2005 (in press).

    Google Scholar 

  55. Garte SJ, Zocchetti C, Taioli E. Gene-environment interactions in the application of biomarkers of cancer susceptibility in epidemiology. In: Toniolo P, Boffetta P, Shuker DEG, Rothman N, Hulka B, Pearce N (eds) Application of Biomarkers in Cancer Epidemiology. IARC Scientific Publications 142. Oxford: Oxford University Press, 1997:251.

    Google Scholar 

  56. Vineis P, Bartsch H, Caporaso N, et al. Genetically based N-acetyltransferase metabolic polymorphism and low level environmental exposure to carcinogens. Nature 1994;369:154.

    Article  PubMed  CAS  Google Scholar 

  57. Partanen R, Koskinen H, Oksa P, Hemminki K, Carney W, Smith S, Brandt-Rauf P. Serum oncoproteins in asbestosis patients. Clin Chem 1995;23:1844.

    Google Scholar 

  58. Rihn BH, Mohr S, McDowell SA, et al. Differential gene expression in mesothelioma. FEBS Lett 2000;480:95.

    Article  PubMed  CAS  Google Scholar 

  59. Brandt-Rauf PW Biomarkers of gene expression: growth factors and oncoproteins. Environ Health Perspect 1997;105:807.

    PubMed  CAS  Google Scholar 

  60. Ascoli A, Aalto Y, Carnovale-Scalzo C, Nardi F, Falzetti D, Mecucci C, Knuutila S. DNA copy number changes in familial malignant mesothelioma. Cancer Genet Cytogenet 2001;127:80.

    Article  PubMed  CAS  Google Scholar 

  61. Kettunen E, Nissen AM, Ollikainen T, et al. Gene expression profiling of malignant mesothelioma cell lines: cDNA array study. Int J Cancer 2001;91:492.

    Article  PubMed  CAS  Google Scholar 

  62. Lee WC, Testa JR. Somatic genetic alterations in human malignant mesothelioma (review). Int J Oncol 1999;14:181.

    PubMed  CAS  Google Scholar 

  63. Illei PB, Ladanyi M, Rusch VW, Zakowski ME The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer 2003;99:51.

    Article  PubMed  CAS  Google Scholar 

  64. Frizelle SP, Grim J, Zhou J, Gupta P, Curiel DT, Geradts J, Kratzke RA. Re-expression of pl6INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 1998;16:3087.

    Article  PubMed  CAS  Google Scholar 

  65. Papp T, Schipper H, Pemsel H, et al. Mutational analysis of N-ras, p53, pl6INK4a, pl4ARF and CDK4 genes in primary human malignant mesotheliomas. Int J Oncol 2001;8:425.

    Google Scholar 

  66. Yang CT, You L, Lin YC, Lin CL, McCormick F, Jablons DM. A comparison analysis of anti-tumor efficacy of ade-noviral gene replacement therapy (pl4ARF and pl6INK4A) in human mesothelioma cells. Anticancer Res 2003;23:33.

    PubMed  Google Scholar 

  67. Kratzke RA, Otterson GA, Lincoln CE, Ewing S, Oie H, Geradts J, Kaye FJ. Immunohistochemical analysis of the pl6INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 1995;87:1870.

    PubMed  CAS  Google Scholar 

  68. Wong L, Zhou J, Anderson D, Kratzke RA. Inactivation of pl6(INK4a) expression in malignant mesothelioma by methylation. Lung Cancer 2002;38:131.

    Article  PubMed  Google Scholar 

  69. Xio S, Li D, Vijg J, Sugarbaker DJ, Corson JM, Fletcher JA. Codeletion of pl5 and pl6 in primary malignant mesothelioma. Oncogene 1995;11:511.

    PubMed  CAS  Google Scholar 

  70. Hirao T, Bueno R, Chen CJ, Gordon GJ, Heilig E, Kelsey KT. Alterations of the pl6(INK4) locus in human malignant mesothelial tumors. Carcinogenesis 2002;23:1127.

    Article  PubMed  CAS  Google Scholar 

  71. Attanoos RL, Griffin A, Gibbs AR. The use of immunohis-tochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, plate let-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology 2003;43:231.

    Article  PubMed  CAS  Google Scholar 

  72. Kitamura F, Araki S, Suzuki Y, Yokoyama K, Tanigawa T, Iwasaki R. Assessment of the mutations of p53 suppressor gene and Ha-and Ki-ras oncogenes in malignant mesothelioma in relation to asbestos exposure: a study of 12 American patients. Ind Health 2002;40:175.

    PubMed  CAS  Google Scholar 

  73. Metcalf RA, Welsh JA, Bennett WP, et al. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res 1992;52:2610.

    PubMed  CAS  Google Scholar 

  74. Mor O, Yaron P, Huszar M, et al. Absence of p53 mutations in malignant mesotheliomas. Am J Respir Cell Mol Biol 1997;16:9.

    PubMed  CAS  Google Scholar 

  75. Esposito V, Baldi A, De LA, et al. p53 immunostaining in differential diagnosis of pleural mesothelial proliferations. Anticancer Res 1997;17:733.

    PubMed  CAS  Google Scholar 

  76. Ramael M, Lemmens G, Eerdekens C, Buysse C, Deblier I, Jacobs W, van Marck E. Immunoreactivity for p53 protein in malignant mesothelioma and non-neoplastic mesothe lium. J Pathol 1992;168:371.

    Article  PubMed  CAS  Google Scholar 

  77. Creaney J, McLaren BM, Stevenson S, Musk AW, de Klerk N, Robinson BW, Lake RA. p53 autoantibodies in patients with malignant mesothelioma: stability through disease progression. Br J Cancer 2001;84:52.

    Article  PubMed  CAS  Google Scholar 

  78. Isik R, Metintas M, Gibbs AR, et al. p53, p21 and metallothionein immunoreactivities in patients with malignant pleural mesothelioma: correlations with the epidemiological features and prognosis of mesotheliomas with environmental asbestos exposure. Respir Med 2001;95:588.

    Article  PubMed  CAS  Google Scholar 

  79. Neri M, Betta P, Marroni P, et al. Serum anti-p53 autoantibodies in pleural malignant mesothelioma, lung cancer and non-neoplastic lung diseases. Lung Cancer 2003;39:165.

    Article  PubMed  Google Scholar 

  80. Amin KM, Litzky LA, Smythe WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146:344.

    PubMed  CAS  Google Scholar 

  81. Hecht JL, Lee BH, Pinkus JL, et al. The value of Wilms tumor susceptibility gene 1 in cytologic preparations as a marker for malignant mesothelioma. Cancer 2002;96:105.

    Article  PubMed  Google Scholar 

  82. Bianchi A, Mitsunaga SI, Cheng JQ, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesothelioma. Proc Natl Acad Sci U S A 1995;92:10854.

    Article  PubMed  CAS  Google Scholar 

  83. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, Minna JD. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 1995;55:1227.

    PubMed  CAS  Google Scholar 

  84. Cristaudo A, Vivaldi A, Sensales G, Guglielmi G, Ciancia E, Elisei R, Ottenga F. Molecular biology studies on mesothelioma tumor samples: preliminary data on H-ras, p21, and SV40. J Environ Pathol Toxicol Oncol 1995;14:29.

    PubMed  CAS  Google Scholar 

  85. Ni Z, Liu Y, Keshava N, et al. Analysis of K-ras and p53 mutations in mesotheliomas from humans and rats exposed to asbestos. Mutat Res 2000;468:7.

    Google Scholar 

  86. Brandt-Rauf PW, Smith S, Hemminki K, Koskinen H, Vainio H, Niman H, Ford J. Serum oncoproteins and growth factors in asbestosis and silicosis patients. Int J Cancer 1992;50:881.

    PubMed  CAS  Google Scholar 

  87. Baldi A, Groeger AM, Esposito V, et al. Expression of p21 in SV40 large T antigen positive human pleural mesothelioma: relationship with survival. Thorax 2002;57:353.

    Article  PubMed  CAS  Google Scholar 

  88. Baldi A, Santini D, Vasaturo F, et al. Prognostic significance of cyclooxygenase-2 (COX-2) and expression of cell cycle inhibitors p21 and p27 in human pleural malignant mesothelioma. Thorax 2004;59:428.

    Article  PubMed  CAS  Google Scholar 

  89. Ross R. Platelet-derived growth factor. Lancet 1989;1:1179.

    Article  PubMed  CAS  Google Scholar 

  90. Ascoli V, Scalzo CC, Facciolo F, Nardi F. Platelet-derived growth factor receptor immunoreactivity in mesothelioma and nonneoplastic mesothelial cells in serous effusions. Acta Cytol 1995;39:613.

    PubMed  CAS  Google Scholar 

  91. Langerak AW, De Laat PA, Van der Linden-Van Beurden CA, et al. Expression of platelet-derived growth factor (PDGF) and PDGF receptors in human malignant meso thelioma in vitro and in vivo. J Pathol 1996;178:151.

    Article  PubMed  CAS  Google Scholar 

  92. Metheny-Barlow LJ, Flynn B, van Gijssel HE, Marrogi A, Gerwin BI. Paradoxical effects of platelet-derived growth factor-A overexpression in malignant mesothelioma. Antiproliferative effects in vitro and tumorigenic stimulation in vivo. Am J Respir Cell Mol Biol 2001;24:694.

    PubMed  CAS  Google Scholar 

  93. Pogrebniak W, Lubesnsky A, Pass HI. Differential expression of platelet-derived growth factor-beta in malignant mesothelioma: a clue to future therapies? Surg Oncol 1993;2:235.

    Article  PubMed  CAS  Google Scholar 

  94. Filiberti R, Marroni P, Neri M, et al. Serum PDGF-AB in pleural mesothelioma. Tumour Biol 2005;26:221.

    Article  PubMed  CAS  Google Scholar 

  95. Nowak AK, Lake RA, Kindler HL, Robinson BW. New approaches for mesothelioma: biologics, vaccines, gene therapy, and other novel agents. Semin Oncol 2002;29:82.

    Article  PubMed  CAS  Google Scholar 

  96. Brandt-Rauf PW, Luo JC, Carney WP, et al. Detection of increased amounts of the extracellular domain of the c-erbB-2 oncoprotein in serum during pulmonary carcinogenesis in humans. Int J Cancer 1994;56:383.

    PubMed  CAS  Google Scholar 

  97. Thirkettle I, Harvey P, Hasleton PS, Ball RY, Warn RM. Immunoreactivity for cadherins, HGF/SF, met, and erbB-2 in pleural malignant mesotheliomas. Histopathology 2000;36:522.

    Article  PubMed  CAS  Google Scholar 

  98. Morocz IA, Schmitter D, Lauber B, Stahel RA. Autocrine stimulation of a human lung mesothelioma cell line is mediated through the transforming growth factor alpha/epidermal growth factor receptor mitogenic pathway. Br J Cancer 1994;70:850.

    PubMed  CAS  Google Scholar 

  99. Vogelzang NJ. Emerging insights into the biology and therapy of malignant mesothelioma. Semin Oncol 2002;29:35.

    PubMed  Google Scholar 

  100. Pache JC, Janssen YM, Walsh ES, et al. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol 1998;152:333.

    PubMed  CAS  Google Scholar 

  101. Manning CB, Cummins AB, Jung MW, et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res 2002;62:4169.

    PubMed  CAS  Google Scholar 

  102. Janne PA, Taffaro ML, Salgia R, Johnson BE. Inhibition of epidermal growth factor receptor signaling in malignant pleural mesothelioma. Cancer Res 200;15:5242.

    Google Scholar 

  103. Harvey P, Warn A, Newman P, et al. Immunoreactivity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J Pathol 1996;180:389.

    Article  PubMed  CAS  Google Scholar 

  104. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 2002;13:41.

    Article  PubMed  CAS  Google Scholar 

  105. Tolnay E, Kuhnen C, Wiethege T, Konig JE, Voss B, Mul-ler KM. Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 1998;124:291.

    Article  PubMed  CAS  Google Scholar 

  106. Strizzi L, Catalano A, Vianale G, Procopio A, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 2001;193:468.

    Article  PubMed  CAS  Google Scholar 

  107. Strizzi L, Vianale G, Catalano A, et al. Basic fibroblast growth factor in mesothelioma pleural effusions: correlation with patient survival and angiogenesis. Int J Oncol 2001;18:1093.

    PubMed  CAS  Google Scholar 

  108. Cacciotti P, Strizzi L, Vianale G, et al.. The presence of simian-virus 40 sequences in mesothelioma and mesothelial cells is associated with high levels of vascular endothelial growth factor. Am J Respir Cell Mol Biol 2002;26:189.

    PubMed  CAS  Google Scholar 

  109. Catalano A, Romano M, Martinotti S, Procopio A. Enhanced expression of vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression potential induced by simian virus 40 large T antigen. Oncogene 2002;25:2896.

    Article  Google Scholar 

  110. Catalano A, Graciotti L, Rinaldi L, et al. Preclinical evaluation of the nonsteroidal anti-inflammatory agent celecoxib on malignant mesothelioma chemoprevention. Int J Cancer 2004;1093:322.

    Article  CAS  Google Scholar 

  111. Masood R, Kundra A, Zhu S, Xia G, Scalia P, Smith DL, Gill PS. Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Cancer 2003;04:603.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Puntoni, R., Filiberti, R. (2006). Molecular Epidemiology and Biology of Mesothelioma. In: Syrigos, K.N., Nutting, C.M., Roussos, C. (eds) Tumors of the Chest. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31040-1_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-31040-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31039-6

  • Online ISBN: 978-3-540-31040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics