Skip to main content

Role of Stabilised Enzymes in Microbial Ecology and Enzyme Extraction from Soil with Potential Applications in Soil Proteomics

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoniani C, Montanari T, Camoriano A (1954) Investigations in soil enzymology. I. Cathepsin-like activity. A preliminary note. Annali Facoltà di Agraria, Università di Milano 3:99–101

    Google Scholar 

  • Atlas RM, Bartha R (1981) Microbial ecology. Fundamentals and applications. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Batistic L, Sarkar JM, Mayaudon J (1980) Extraction, purification and properties of soil hydrolases. Soil Biol Biochem 12:59–63

    Article  CAS  Google Scholar 

  • Bjellqvist P, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilised pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Bonmati M, Ceccanti B, Nannipieri P (1988) Protease extraction from soil by sodium pyrophosphate and chemical characterization of the extracts. Soil Biol Biochem 14:2113–2125

    Google Scholar 

  • Bremner JM (1965) Organic forms of nitrogen. In: Black CA (ed) Methods of soil analysis, part 2. American Society of Agronomy, Madison, WI, pp 1238–1255

    Google Scholar 

  • Bremner IM, Lee H (1949) Studies on soil organic matter. II. The extraction of organic matter from soil by neutral reagents. J Agric Sci 39:274–279

    Article  CAS  Google Scholar 

  • Briggs MH, Segal L (1963) Preparation and properties of a free soil enzyme. Life Sci 1:69–72

    Article  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Burns RG (1986) Interactions of enzymes with soil mineral and organic colloids. In: Huang M, Schnitzer M (eds) Interactions of soil mineral with natural organics and microbes. Special publication 17. Soil Science Society of America, Madison, WI, pp 429–451

    Google Scholar 

  • Burns RG, Pukite AH, McLaren AD (1972a) Concerning the location and persistence of soil urease. Soil Sci Am Proc 36:308–311

    Article  CAS  Google Scholar 

  • Burns RG, El-Sayed MH, McLaren AD (1972b) Extraction of a urease-active organo-complex from soil. Soil Biol Biochem 4:107–108

    Article  CAS  Google Scholar 

  • Busto MD, Perez-Mateos M (1995) Extraction of humic β-glucosidase fractions from soil. Biol Fertil Soils 20:77–82

    Article  CAS  Google Scholar 

  • Cacco G, Maggioni A (1976) Multiple forms of acetyl-naphthyl esterase activity in soil organic matter. Soil Biol Biochem 8:321–325

    Article  CAS  Google Scholar 

  • Ceccanti B, Nannipieri P, Cervellli S, Sequi P (1978) Fractionation of humus-urease complexes. Soil Biol Biochem 10:39–45

    Article  CAS  Google Scholar 

  • Ceccanti B, Alcaniz-Baldellou JM, Gispert-Negrell M, Gassiot-Matas M (1986) Characterization of organic matter from two different soils by pyrolysis-gas chromatography and isoelectric focusing. Soil Sci 142:83–90

    CAS  Google Scholar 

  • Ceccanti B, Bonmati-Pont M, Nannipieri P (1989) Microdetermination of protease activity in humic bands of different sizes after analytical focusing. Boil Fertil Soils 7:202–206

    Article  CAS  Google Scholar 

  • Colledge M, Scott JD (1999) AKAPs: from structure to functions. Trends Cell Biol 9:216–221

    Article  PubMed  CAS  Google Scholar 

  • Duarte GF, Rosado AS, Seldin L, Keijzer-Wolters AC, van Elsas JD (1998) Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous microbial community. J Microbiol Methods 32:21–29

    Article  CAS  Google Scholar 

  • Erdmann VA, Szymanski M, Hochberg A, deGroot N, Barciszewski (1999) Collection of mRNA-like non-coding RNAs. Nucleic Acids Res 27:192–196

    Article  PubMed  CAS  Google Scholar 

  • Foster R (1985) In situ localization of organic matter in soils. Questiones Entomologicae 21:609–633

    Google Scholar 

  • Foster R, Martin JK (1981) In situ analysis of soil components of biological origin. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 75–110

    Google Scholar 

  • Fusi P, Ristori GG, Calamai L, Stotzky G (1989) Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides)montmorillonite, illite and kaolinite. Soil Biol Biochem 21:911–920

    Article  CAS  Google Scholar 

  • Getzin LW, Rosefield I (1971) Partial purification and properties of a soil enzyme that degrades the insecticide malathion. Biochim Biophys Acta 235:442–453

    PubMed  CAS  Google Scholar 

  • Gigy SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  • Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilised pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  CAS  Google Scholar 

  • Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed  CAS  Google Scholar 

  • Hope CFA, Burns RG (1985) The barrier-ring plate technique for studying extracellular enzyme diffusion and microbial growth in model soil environments. J Gen Microbiol 131:1237–1243

    CAS  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 368–386

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Kirschner M (1999) Intracellular proteolysis. Trends Cell Biol 9:M42–M45

    Article  PubMed  CAS  Google Scholar 

  • Knicker H, Fründ R, Lüdemann H-D (1993) The chemical nature of nitrogen in native soil organic matter. Naturwissenschaften 80:219–221

    Article  CAS  Google Scholar 

  • Krishna RG, Wold F (1993) Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol 6:265–298

    Google Scholar 

  • Ladd JN (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4:227–237

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JHA (1975) Humus-enzyme systems and synthetic organic polymer enzyme analogs. In: Paul EA, Mc Laren AD (eds) Soil biochemistry, vol 4. Marcel Dekker, New York, pp 143–194

    Google Scholar 

  • Ladd JN, Foster RC, Skjemstad JO (1993) Soil structure: carbon and nitrogen metabolism. In: Brussard L, Kooinstra MJ (eds) Workshop on methods of research on soil structure. Geoderma 56:401–434

    Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 6. Marcel Dekker, NewYork, pp 23–78

    Google Scholar 

  • Leonowicz A, Bollag J-M (1987) Laccases in soil and feasibility of their extractions. Soil Biol Biochem 19:237–242

    Article  CAS  Google Scholar 

  • Lloyd AB (1975) Extraction of urease from soil. Soil Biol Biochem 7:357–358

    Article  CAS  Google Scholar 

  • Mayaudon J (1986) The role of carbohydrates in the free enzymes in soil. In: Fuchsman CH (ed) Peat and water. Elsevier Applied Science, New York, pp 263–309

    Google Scholar 

  • Mayaudon J, El Halfawi M, Chaivignac MA (1973) Properties of diphenol oxidase extracted from soil. Soil Biol Biochem 5:369–383

    Article  CAS  Google Scholar 

  • Murase A, Yoneda M, Ueno R, Yonebayashi K (2003) Isolation of extracellular protein from greenhouse soil. Soil Biol Biochem 35:733–736

    Article  CAS  Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota. Management in sustainable farming systems. CSIRO, East Melbourne, pp 238–244

    Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1974) Use of 0.1 M pyrophosphate to extract urease from podzol. Soil Biol Biochem 6:359–362

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1978) Stability and kinetic properties of humus-urease complexes. Soil Biol Biochem 10:143–147

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1980) Extraction of urease, phosphatase, proteases, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Conti C, Bianchi D (1982) Hydrolase extracted from soil: properties and activities. Soil Biol Biochem 14:257–263

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Bianchi D, Bonmati M (1985) Fractionation of hydrolase-humus complexes by gel chromatography. Biol Fert Soils 1:25–29

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of humus-phosphatase complexes extracted from soil. Soil Biol Biochem 20:683–691

    Article  CAS  Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 293–328

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 1–16

    Google Scholar 

  • Newman A (1998) RNA splicing. Curr Biol 8:R903–R905

    Article  PubMed  CAS  Google Scholar 

  • Perez Mateos M, Gonzales Carcedo S, Busto Nunez MD (1988) Extraction of catalase from soil. Soil Sci Soc Am J 52:408–411

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Nannipieri P (2002) Hydrolase activity during and after the chloroform fumigation of soil as affected by protease activity. Soil Biol Biochem 34:51–60

    Article  CAS  Google Scholar 

  • Rilling MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  Google Scholar 

  • Sarkar N (1977) Polyadenylate of mRNA in prokaryotes. Ann Rev Biochem 66:173–197

    Article  Google Scholar 

  • Satyanarayana T, Getzin LW (1973) Properties of a stable cell-free esterase from soil. Biochemistry 12:1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze E-D (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335–343

    Article  PubMed  Google Scholar 

  • Shcherbakova TA, Mas’ko AA, Galushko NA, Kuprevich VF (1981) Extraction of organomineral complexes with enzymatic activity from soil. Pochvovedeniye (Translated) 4:71–78

    Google Scholar 

  • Singleton I, Merrington G, Colvan S, Delahunty JS (2003) The potential soil protein-based methods to indicate metal contamination. Appl Soil Ecol 23:23–52

    Article  Google Scholar 

  • Skujins J (1967) Enzymes in soil. In: McLaren AD, Peterson GH (eds) Soil biochemistry, vol 1. Marcel Dekker, New York, pp 371–414

    Google Scholar 

  • Smalla K (2004) Culture-independent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 88–99

    Google Scholar 

  • Stevenson FJ (1986) Cycles of soil. Carbon, nitrogen, phosphorus, sulfur and micronutrients. John Wiley & Sons, New York

    Google Scholar 

  • Stotzky G (1986) Influence of soil minerals and metabolic processes, growth adhesion, and ecology of microbes and viruses. In: Huang M, Schnitzer M (eds) Interactions of soil mineral with natural organics andmicrobes. Special Publication 17. Soil Science Society of America, Madison, WI, pp 305–428

    Google Scholar 

  • Tabatabai A, Fu M (1992) Extraction of enzymes from soils. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 197–227

    Google Scholar 

  • Torsvik VL, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities — a review. J Ind Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  PubMed  CAS  Google Scholar 

  • Weinbauer MG, Fritz I, Wenderoth DF, Höfle MG (2002) Simultaneous extraction from bacterioplankton of total RNA and DNA suitable for quantitative structure and function analyses. Appl Environ Microbiol 68:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez, JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser F, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Gen Engin Rev 13:19–50

    Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein fromsoil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nannipieri, P. (2006). Role of Stabilised Enzymes in Microbial Ecology and Enzyme Extraction from Soil with Potential Applications in Soil Proteomics. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_4

Download citation

Publish with us

Policies and ethics