Skip to main content

e-Beam Nanolithography Integrated with Nanoassembly: Precision Chemical Engineering

  • Chapter
Micromanufacturing and Nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.5 References

  • Ball P (2000) Chemistry meets computing, Nature 406:118–20

    Article  CAS  Google Scholar 

  • Baum A, Arcuni P, Aebi V, Presley S, Elder M (1999) Prototype negative electron affinity-based multibeam electron gun for lithography and microscopy, J Vac Sci Technol B 17:2819–2822

    CAS  Google Scholar 

  • Chang THP, Thomson MGR, Kratschmer E, Kim HS, Yu ML, Lee KY, Rishton SA, Hussey BW, Zolgharnain S (1996) Electron-beam microcolumns for lithography and related applications, J Vac Sci Technol B 14:3774–3780

    Article  CAS  Google Scholar 

  • Chen W, Ahmed H (1993) Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist, Appl Phys Lett. 62:1499–501

    Article  CAS  Google Scholar 

  • Dagani R (2000) Building from the bottom up, C&EN, October 16:27–32

    Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology Chem. Rev. 10:293–346

    Article  CAS  Google Scholar 

  • Dobisz EA, Fedynshyn TN, Ma D, Shirley LM, Bass R (1998) Electron-beam nanolithography, acid diffusion, and chemical kinetics in SAL-601, J Vac Sci Technol B 16:3773–3778

    Article  CAS  Google Scholar 

  • Dobisz EA, Marrian CRK (1997) Control in sub-100 nm lithography in SAL-601, Vac Sci Technol B 15:2327–2331

    Article  CAS  Google Scholar 

  • Dressick WJ, Chen M-S, Brandow SL, Rhee KW, Shirey LM, Perkins FK (2001) Imaging layers for 50 kV electron beam lithography: Selective displacement of noncovalently bound amine ligands from a siloxane host film, Appl Phys Lett. 78:676–678

    Article  CAS  Google Scholar 

  • Dressick WJ, Nealey PF, Brandow SL (2001) Fabrication of patterned surface reactivity templates using physisorption of reactive species in solvent-imprinted nanocavities. Proc. of the SPIE, vol. 4343, pp 294–330

    Article  CAS  Google Scholar 

  • Eck W, Stadler V, Geyer W, Zharnikov M, Gölzhäuser A, Grunze M (2000) Generation of surface amino groups on aromatic self-assembled monolayers by low energy electron beams-A first step towards chemical lithography, Adv Mater 12:805–808

    Article  CAS  Google Scholar 

  • Frey S, Rong H-T, Heister K, Yang Y-J, Buck M, Zharnikov (2002) Response of biphenylsubstituted alkanethiol self-assembled monolayers to electron irradiation: Damage suppression and odd-even effects, Langmuir 18:3142–3150

    Article  CAS  Google Scholar 

  • Fujita J, Oshnishi Y, Ochiai Y, Matsui S (1996) Ultrahigh resolution of calixarene negative resist in electron beam lithography, Appl Phys Lett. 68:1297–1299

    Article  CAS  Google Scholar 

  • Geyer W, Stadler V, Eck W, Zharnikov M, Gölzhäuser A, Grunze M (1996) Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography, Appl Phys Lett. 75:2401–2403

    Article  Google Scholar 

  • Geyer W, Stadler V, Eck W, Zharnikov M, Gölzhäuser A, Grunze M (2001) Electron induced chemical nanolithography with self-assembled monolayers, J Vac Sci Technol B 19:2732–2735

    Article  CAS  Google Scholar 

  • Gölzhäuser A, Eck W, Geyer W, Stadler V, Weimann T, Hinze P, Grunze M (2001) Chemical nanolithography with electron beams, Adv Mater 13:806–809

    Article  Google Scholar 

  • Harnett CK, Satyalakshmi KM, Craighead G (2000) Low-energy electron-beam patterning of amine-functionalised self-assembled monolayers, Appl Phys Lett. 76:2466–2468

    Article  CAS  Google Scholar 

  • Harnett CK, Satyalakshmi KM, Craighead HG (2001) Bioactive templates fabricated by low-energy electron beam lithography of self-assembled monolayers, Langmuir 17:178–182

    Article  CAS  Google Scholar 

  • Harriott LR (1997) Scattering with angular limitation projection electron beam lithography for suboptical lithography, J Vac Sci Technol B 15:2130–2135

    Article  CAS  Google Scholar 

  • Heister K, Frey S, Ulman A, Grunze M, Zharnikov M (2004) Irradiation sensitivity of self-assembled monolayers with an introduced ‘weak link’, Langmuir 20: 1222–1227

    Article  CAS  Google Scholar 

  • Hutt DA, Leggett GJ (1999) Static secondary ion mass spectrometry studies of self-assembled monolayers: Electron beam degradation of alkanethiols on gold, J Mater Chem 9:923–928

    Article  CAS  Google Scholar 

  • Jung YJ, La Y-H, Kim HJ, Kang T-H, Ihm K, Kim K-J, Kim B, Park JW (2003) Pattern formation through selective chemical transformation of imine group of self-assembled monolayer by low-energy electron beam, Langmuir 19:4512–4518

    Article  CAS  Google Scholar 

  • Kim CO, Jung JW, Kim M, Kang T-H, Ihm K, Kim K-J, Kim B, Park JW, Nam H-W, Hwang K-J (2003) Low energy electron beam irradiation promoted selective cleavage of surface furoxan, Langmuir 19:4504–4508

    Article  CAS  Google Scholar 

  • Krupke R, Malik S, Weber HB, Hampe O, Kappes MM, Löhneysen Hv (2002) Patterning and visualizing self-assembled monolayers with low-energy electrons, Nano Lett. 2:1161–1164

    Article  CAS  Google Scholar 

  • Küller A, Eck W, Stadler V, Geyer W, Gölzhäuser A (2003) Nanostructuring of silicon by electron-beam lithography of self-assembled hydroxybiphenyl monolayers, Appl Phys Lett. 82:3776–3778

    Article  CAS  Google Scholar 

  • La Y-H, Kim HJ, Maeng IS, Jung YJ, Park JW (2002) Differential reactivity of nitro-substituted monolayers to electron beam and x-ray irradiation, Langmuir, 18:301–303

    Article  CAS  Google Scholar 

  • Lercel MJ, Craighead HG, Parikh AN, Seshadri K, Allara DL (1996) Sub-10 nm lithography with self-assembled monolayers, Appl Phys Lett. 68:1504–1506

    Article  CAS  Google Scholar 

  • Lercel MJ, Redinbo GF, Pardo FD, Rooks M, Tiberio RC, Simpson P, Sheen CW, Parikh AN, Allara DL (1994) Electron beam lithography with monolayers of alkylthiols and alkylsiloxanes, J Vac Sci Technol B 12:3663–3667

    Article  CAS  Google Scholar 

  • Lercel MJ, Rooks M, Tiberio RC, Craighead HG, Sheen CW, Parikh AN, Allara DL (1995) Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography, J Vac Sci Technol B 13:1139–1143

    Article  CAS  Google Scholar 

  • Lercel MJ, Tiberio RC, Chapman PF, Craighead HG, Sheen CW, Parikh AN, Allara DL (1993) Self-assembled monolayer electron-beam resists on GaAs and SiO2, J Vac Sci Technol B 11:2823–2828

    Article  CAS  Google Scholar 

  • Lercel MJ, Whelan CS, Craighead HG, Seshadri K, Allara DL (1996) High-resolution silicon patterning with self-assembled monolayer resists, J Vac Sci Tech. B 14:4085–4090

    Article  CAS  Google Scholar 

  • Liu G-Y, Xu S, Qian Y (2000) Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc Chem Res 33:457–466

    Article  CAS  Google Scholar 

  • Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA, Colbert DT, Smalley RE (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalised templates, Chem Phys Lett. 303:125–129

    Article  CAS  Google Scholar 

  • Liu J-F, Cruchon-Dupeyrat S, Garno JC, Frommer J, Liu G-Y (2002) Three-dimensional nanostructure construction via nanografting: positive and negative pattern transfer, Nano Lett, 2:937–940

    Article  CAS  Google Scholar 

  • Maeng IS, Park JW (2003) Patterning on self-assembled monolayers by low-energy electron-beam irradiation and its vertical amplification with atom transfer radical polymerisation, Langmuir 19:4519–4522

    Article  CAS  Google Scholar 

  • Mendes PM, Chen Y, Palmer RE, Nikitin K, Fitzmaurice D, Preece JA (2003) Nanostructures from nanoparticles, J Phys: Condens Matter, 15:S3047–63

    Article  CAS  Google Scholar 

  • Mendes PM, Jacke S, Kritchley K, Plaza J, Chen Y, Nikitin K, Palmer RE, Preece JA, Evans SD, Fitzmaurice D (2004) Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography, Langmuir 20:3766–3768

    Article  CAS  Google Scholar 

  • Mendes PM, Preece JA (2004) Precision chemical engineering: Integrating nanolithography and nanoassembly, Curr Opin Colloid 9:236–248

    Article  CAS  Google Scholar 

  • Müller HU, Zharnikov M, Völkel B, Schertel A, Harder P, Grunze M (1998) Low-energy electron-induced damage in hexadecanethiolate monolayers, J Phys Chem B 102:7949–7959

    Google Scholar 

  • Olsen C, Rowntree PA (1998) Bond-selective dissociation of alkanethiol based self-assembled monolayers adsorbed on gold substrates, using low-energy electron beams, J Chem Phys 108:3750–3764

    Article  CAS  Google Scholar 

  • Pei Z, McCarthy J, Berglund CN, Chang TPH, Mankos M, Lee KY, Yu ML (1999) Thin-film gated photocathodes for electron-beam lithography, J Vac Sci Technol B 17:2814–2818

    Article  CAS  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip-pen nanolithography, Science 283:661–663

    Article  CAS  Google Scholar 

  • Rai-Choudhury P (1997) (ed) Handbook of microlithography: Micromachining and icrofabrication. IEE London, vol. 1

    Google Scholar 

  • Rieke PC, Baer DR, Fryxell GE, Engelhard MH, Porter MS (1993) Beam damage of self-assembled monolayers, J Vac Sci Technol A 11:2292–2297

    Article  CAS  Google Scholar 

  • Roberts ED (1987) The chemistry of the semiconductor industry. In: Moss SJ (ed), Ledwith, Pub. Blackie, London, p 198

    Google Scholar 

  • Roberts ED (1987) The chemistry of the semiconductor Industry. Blackie and Sons Ltd., London

    Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Allen MT, Preece JA, Harris KDM (1999) 10 nm scale electron beam lithography using a triphenylene derivative as a negative/positive tone resist, J Phy D: Appl Phys 32:L75–78

    Article  CAS  Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Allen MT, Preece JA, Harris KDM (2000) Polysubstituted derivatives of triphenylene as high resolution electron beam resists for nanolithography, J Vac Sci Technol B 18:2730–276

    Article  CAS  Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Allen MT, Preece JA, Harris KDM (2000) A triphenylene derivative as a novel negative/positive tone resist of 10 nanometer resolution, Microelectronic Engineering 53:425–428

    Article  Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Preece JA (1998) A Fullerene derivative as an electron beam resist for nanolithography, Appl Phys Lett. 72:1302–1304

    Article  CAS  Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Shelley EJ, Philp D, Preece JA (1999) Exposure mechanism of fullerene derivative electron beam resists, Chem Phys Lett. 312:469–474

    Article  CAS  Google Scholar 

  • Robinson APG, Palmer RE, Tada T, Kanayama T, Shelley EJ, Preece JA (1999) Fullerene derivatives as novel resist materials for fabrication of MEMS devices by electron beam lithography. Mat Res Soc Symp Proc., vol.546, pp 219–24

    CAS  Google Scholar 

  • Robinson APG, Hunt MRC, Palmer RE, Tada T, Kanayama T, Preece JA, Philp D, Jonas U, Diederich F (1998) Electron beam induced fragmentation of fullerene derivatives, Chem Phys Lett. 289:586–590

    Article  CAS  Google Scholar 

  • Sailer H, Ruderisch A, Kern D.P., Schurig V (2004) A chemically amplified calix[4]arene-based electron-beam resist, Microelectronic Engineering 73-74:228–232

    Article  CAS  Google Scholar 

  • Schmelmer U, Jordan R, Geyer W, Eck W, Gölzhäuser A, Grunze M, Ulman A (2003) Surface-initiated polymerisation on self-assembled monolayers: Amplification of patterns on the micrometer and nanometer scale. Angew Chem Int ed, vol. 42, pp 559–563

    Article  CAS  Google Scholar 

  • Schock K-D, Prins FE, Strahle S, Kern DP (1997) Resist processes for low-energy electron-beam lithography, J Vac Sci Technol B 15:2323–2326

    CAS  Google Scholar 

  • Seshadri K, Froyd K, Parikh AN, Allara DL, Lercel MJ (1996) Craighead, Electron-beam-induced damage in self-assembled monolayers, J Phys Chem 100:15900–15909

    Article  CAS  Google Scholar 

  • Silverman JP (1997) X-ray lithography: Status, challenges, and outlook for 0.13 µm, J Vac Sci Technol B 15:2117–2124

    Article  CAS  Google Scholar 

  • Sugimura H, Hanji T, Hayashi K, Takai O (2002) Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: Scanning probe electrochemistry toward nanolithography, Ultramicroscopy 91:221–26

    Article  CAS  Google Scholar 

  • Tada T, Kanayama T (1996) Nanolithography using fullerene films as an electron beam resist, Jpn J Appl Phys 35:L63–65

    Article  CAS  Google Scholar 

  • Tada T, Kanayama T (1997) C60-Incorporated nanocomposite resist system, J Photopolym Sci Technol 10:651–656

    Google Scholar 

  • Tada T, Uekusu K, Kananyama T, Nakayama T, Chapman R, Cheung WY, Eden L, Hussain I, Jennings M, Perkins J, Philips M, Preece JA, Shelley EJ (2001) Improved sensitivity of multi-adduct derivatives of fullerene, J Photopolym Sci Techn 14:543–546

    CAS  Google Scholar 

  • Tada T, Uekusu K, Kanayama T, Nakayama T, Chapman R, Cheung WY, Eden L, Hussain I, Jennings M, Perkins J, Philips M, Preece JA, Shelley EJ (2002) Multi-adduct derivatives of C60 for electron beam nano-resists, Microelectronic Engineering 61:737–743

    Article  Google Scholar 

  • Ulman A (1996) Formation and structure of self-assembled monolayers, Chem Rev. 95:1533–1554

    Article  Google Scholar 

  • Ulman A (1991) An Introduction to Ultrathin Organic Films. Academic Press Ltd., UK

    Google Scholar 

  • Wang X, Hu W, Ramasubramaniam R, Bernstein GH, Snider G and Lieberman M (2003) Formation, characterisation, and sub-50-nm patterning of organosilane monolayers with embedded disulfide bonds: An engineered self-assembled monolayer resist for electron-beam lithography, Langmuir 19:9748–9758

    Article  CAS  Google Scholar 

  • Weimann T, Geyer W, Hinze P, Volker S, Eck W, Gölzhäuser A (2001) Nanoscale patterning of self-assembled monolayers by e-beam lithography, Microelectron Eng. 57-58:903–907

    CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-Assembly at all scales, Science 295:2418–21

    Article  CAS  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed, vol. 37, pp 550–575

    Article  CAS  Google Scholar 

  • Xu S, Liu G-y (1997) Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13:127–129

    Article  Google Scholar 

  • Yoshiiwa M, Kageyama H, Shirota Y, Wakaya F, Gamo K, Takai M (1996) Novel class of low molecular-weight organic resists for nanometer lithography, Appl Phys Lett. 69:2605–2607

    Article  CAS  Google Scholar 

  • Zharnikov M, Frey S, Heister K, Grunze M (2000) Modification of alkanethiolate monolayers by low energy electron irradiation: Dependence on the substrate material and on the length and isotopic composition of the alkyl chains, Langmuir 16:2697–2705

    Article  CAS  Google Scholar 

  • Zharnikov M, Geyer W, Gölzhäuser A, Frey S, Grunze M (1999) Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface, Phys Chem Chem Phys. 1:3163–3171

    Article  CAS  Google Scholar 

  • Zharnikov M, Grunze M (2002) Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects, J Vac Sci Technol B 20:1793–1807 and references there in

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendes, P.M., Preece, J.A. (2006). e-Beam Nanolithography Integrated with Nanoassembly: Precision Chemical Engineering. In: Micromanufacturing and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29339-6_16

Download citation

Publish with us

Policies and ethics