Skip to main content

Hyperbolic Systems and Transport Equations in Mathematical Biology

  • Chapter

Summary

The standard models for groups of interacting and moving individuals (from cell biology to vertebrate population dynamics) are reaction-diffusion models. They base on Brownian motion, which is characterized by one single parameter (diffusion coefficient). In particular for moving bacteria and (slime mold) amoebae, detailed information on individual movement behavior is available (speed, run times, turn angle distributions). If such information is entered into models for populations, then reaction-transport equations or hyperbolic equations (telegraph equations, damped wave equations) result.

The goal of this review is to present some basic applications of transport equations and hyperbolic systems and to illustrate the connections between transport equations, hyperbolic models, and reaction-diffusion equations. Applied to chemosensitive movement (chemotaxis) functional estimates for the nonlinearities in the classical chemotaxis model (Patlak-Keller-Segel) can be derived, based on the individual behavior of cells and attractants.

A detailed review is given on two methods of reduction for transport equations. First the construction of parabolic limits (diffusion limits) for linear and non-linear transport equations and then a moment closure method based on energy minimization principles. We illustrate the moment closure method on the lowest non-trivial case (two-moment closure), which leads to Cattaneo systems.

Moreover we study coupled dynamical systems and models with quiescent states. These occur naturally if it is assumed that different processes, like movement and reproduction, do not occur simultaneously. We report on travelling front problems, stability, epidemic modeling, and transport equations with resting phases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Alt. Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biology, 9:147–177, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Alt. Singular perturbation of differential integral equations describing biased random walks. J. reine angew. Math., 322:15–41, 1981.

    MATH  MathSciNet  Google Scholar 

  3. H.C. Berg and D.A. Brown. Chemotaxis in Escherichia coli. Analysis by three-dimensional tracking. Nature, 239:500–504, 1972.

    Article  Google Scholar 

  4. N. Bellomo. Lecture Notes on the Mathematical Theory of the Boltzmann Equation. Advances in Mathematics for Applied Sciences. World Scientific, Singapore, 1995.

    MATH  Google Scholar 

  5. P. Biler. Local and global solvability of some parabolic systems modelling chemotaxis. Advances in Math. Sci. and Appl., 8:715–743, 1998.

    MATH  MathSciNet  Google Scholar 

  6. G. Carrero, D. McDonald, E. Crawford, G. de Vries, and M. Hendzel. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods, 29:14–28, 2003.

    Article  Google Scholar 

  7. C. Cattaneo. Sulla conduzione de calore. Atti del Semin. Mat. e Fis. Univ. Modena, 3:83–101, 1948.

    MathSciNet  Google Scholar 

  8. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Diluted Gases. Springer, New York, 1994.

    Google Scholar 

  9. K.C. Chen, R.M. Ford, and P.T. Cummings. Mathematical models for motile bacterial transport in cylindrical tubes. J. Theor. Biol., 195:481–504, 1998.

    Article  Google Scholar 

  10. K.C. Chen, R.M. Ford, and P.T. Cummings. Perturbation expansion of Alt's cell balance equations reduces to Segel's 1d equation for shallow chemoattractant gradients. SIAM J. Appl. Math., 59:35–57, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Cosner and Y. Lou. Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 277:489–503, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Dickinson. A generalized transport model for biased cell migration in an anisotropic environment. J. Math. Biol., 40:97–135, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.B. Dickinson and R.T. Tranquillo. Transport equations and indices for random and biased cell migration based on single cell properties. SIAM J. Appl. Math., 55:1419–1454, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Dolak and T. Hillen. Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol., 46:153–170, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  15. P.R. Fisher, R. Merkl, and G. Gerisch. Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol., 108:973–984, 1989.

    Article  Google Scholar 

  16. R.M. Ford, B.R. Phillips, J.A. Quinn, and D.A. Lauffenburger. Measurement of bacterial random motility and chemotaxis coefficients: I. stopped-flow diffusion chamber assay. Biotechnol. Bioeng., 37:647–660, 1991.

    Article  Google Scholar 

  17. P.D. Frymier, R.M. Ford, H.C. Berg, and P.T. Cummings. Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci., 92:6195–6199, 1995.

    Article  Google Scholar 

  18. T. Gallay and G. Raugel. Scaling variables and stability of hyperbolic fronts. SIAM J. Math. Anal., 32:1–29, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Goldstein. On diffusion by discontinuous movements and the telegraph equation. Quart. J. Mech. Appl. Math., 4:129–156, 1951.

    MATH  MathSciNet  Google Scholar 

  20. J.M. Greenberg and W. Alt. Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. AMS, 300:235–258, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.E. Gurtin and A.C. Pipkin. A general theory of heat conduction with finite wave speed. Arch. Rat. Mech. Anal., 31:113–126, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  22. K.P. Hadeler. Reaction telegraph equations and random walk systems. In S.J. van Strien and S.M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems, pages 133–161. Royal Academy of the Netherlands, 1996.

    Google Scholar 

  23. K.P. Hadeler. Nonlinear propagation in reaction transport systems. In S. Ruan and G. Wolkowicz, editors, Differential Equations with Applications to Biology, pages 251–257. The Fields Institute Lecture Series, AMS, 1999.

    Google Scholar 

  24. K.P. Hadeler. Reaction transport systems. In V. Capasso and O. Diekmann, editors, Mathematics inspired by biology, Lecture Notes in Mathematics 1714, pages 95–150. CIME Letures 1997, Florence, Springer, 1999.

    Google Scholar 

  25. K.P. Hadeler. The role of migration and contact distribution in epidemic spread. In C. Castillo-Chavez and H.T. Banks, editors, Frontiers Appl. Math., 28, Bioterrorism, pages 188–210. SIAM, 2003.

    Google Scholar 

  26. K.P. Hadeler and T. Hillen. Coupled dynamics and quiescent states. 2004. submitted.

    Google Scholar 

  27. K.P. Hadeler, T. Hillen and F. Lutscher. The Langevin or Kramers approach to biological modeling. Math. Models Meth. Appl. Sci., 14:1561–1683, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  28. K.P. Hadeler and M. Lewis. Spatial dynamics of the diffusive logistic equation with sedentary compartment. Canadian Appl. Math. Quart., 10:473–499, 2002.

    MATH  MathSciNet  Google Scholar 

  29. T. Hillen. Qualitative analysis of semilinear Cattaneo systems. Math. Models Meth. Appl. Sci., 8:507–519, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Hillen. On the L 2-closure of transport equations: The general case. Discrete and Cont. Dyn. Syst. Series B, 5(2) 299–318, 2005.

    MATH  MathSciNet  Google Scholar 

  31. T. Hillen. Transport equations with resting phases. Europ. J. Appl. Math., 14:613–636, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Hillen. On L 2-closure of transport equations: The Cattaneo closure. Discrete and Cont. Dyn. Syst. Series B, 4:961–982, 2004.

    MATH  MathSciNet  Google Scholar 

  33. T. Hillen and H.G. Othmer. The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math., 61:751–775, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Hillen and K. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26:280–301, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. Hillen, K. Painter, and C. Schmeiser. Global existence for the classical chemotaxis model with finite sampling radius. 2004. in preparation.

    Google Scholar 

  36. T. Hillen, C. Rohde, and F. Lutscher. Existence of weak solutions for a hyperbolic model for chemosensitive movement. J. Math. Anal. Appl., 260:173–199, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  37. T. Hillen and A. Stevens. Hyperbolic models for chemotaxis in 1-d. Nonlinear Analysis: Real World Applications, 1:409–433, 2001.

    Article  MathSciNet  Google Scholar 

  38. D. Horstmann. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I and II. Jahresberichte der DMV, 105:103–165, 2003, and 106:51–69, 2004.

    MATH  MathSciNet  Google Scholar 

  39. P. Hess and H. Weinberger. Convergence to spatial-temporal clines in Fisher's equation with time-periodic fitnesses. J. Math. Biol., 28:83–98, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  40. H.J. Hwang, K. Kang, and A. Stevens. Global existence of classical solutions for a hyperbolic chemotaxis model and its parabolic limit. MPI Preprint, 34, 2003.

    Google Scholar 

  41. K. Jörgens. An asymptotic expansion in the theory of neutron transport. Comm. Pure Appl. Math., 11:219–242, 1958.

    MATH  MathSciNet  Google Scholar 

  42. D.D. Joseph and L. Preziosi. Heat waves. Reviews of Modern Physics, 61:41–73, 1988.

    Article  MathSciNet  Google Scholar 

  43. M. Kac. A stochastic model related to the telegrapher`s equation. Rocky Mountain J. Math., 4:497–509, 1956.

    Article  MathSciNet  Google Scholar 

  44. E.F. Keller and L.A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biology, 26:399–415, 1970.

    Article  Google Scholar 

  45. M.A. Lewis and G. Schmitz. Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis. Forma, 11:1–25, 1996.

    MATH  MathSciNet  Google Scholar 

  46. S. Maier-Paape and T. Wanner. Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. part I: probability and wavelength estimate. Comm. Math. Phys., 195:435–464, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  47. P.A. Markovich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, New York, 1990.

    Google Scholar 

  48. D. Mihalas and B. Weibel-Mihalas. Foundations of Radiation Hydrodynamics. Oxford University Press, 1983.

    Google Scholar 

  49. I. Müller and T. Ruggeri. Rational Extended Thermodynamics. Springer, New, York, 2nd edition, 1998.

    MATH  Google Scholar 

  50. J.D. Murray. Mathematical Biology. Springer, 1989.

    Google Scholar 

  51. M.G. Neubert, P. Klepac, and P. van den Driessche. Stabilizing dispersal delays in predator-prey metapopulation models. Theor. Popul. Biol., 61:339–347, 2002.

    Article  MATH  Google Scholar 

  52. H.G. Othmer, S.R. Dunbar, and W. Alt. Models of dispersal in biological systems. J. Math. Biol., 26:263–298, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  53. H.G. Othmer and T. Hillen. The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math., 62:1122–1250, 2002.

    Article  MathSciNet  Google Scholar 

  54. H.G. Othmer and A. Stevens. Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks. SIAM J. Appl. Math., 57:1044–1081, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  55. E. Pachepsky, F. Lutscher, R.M. Nisbet, and M. Lewis. Persistence, spread and the drift paradox. Theor. Pop. Bio., 2004. in print.

    Google Scholar 

  56. K. Painter and T. Hillen. Volume-filling and quorum-sensing in models for chemosensitive movement. Canadian Appl. Math. Quart., 10:501–543, 2002.

    MATH  MathSciNet  Google Scholar 

  57. C.S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15:311–338, 1953.

    Article  MathSciNet  Google Scholar 

  58. K. Pearson. The problem of the random walk. Nature, 72:294 and 342, 1905.

    Google Scholar 

  59. M.A. Rivero, R.T. Tranquillo, H.M. Buettner, and D.A. Lauffenburger. Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci., 44:1–17, 1989.

    Article  Google Scholar 

  60. M.J. Schnitzer. Theory of continuum random walks and applications to chemotaxis. Physical Rev. E, 48:2553–2568, 1993.

    Article  MathSciNet  Google Scholar 

  61. H. Schwetlick. Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. Henri Poincaré, Ana. Nonlin., 17:523–550, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  62. H. Schwetlick. Limit sets for multidimensional nonlinear transport equations. J. Diff. Equ., 179:356–368, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  63. L.A. Segel. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math., 32:653–665, 1977.

    Article  MATH  Google Scholar 

  64. D.R. Soll and D. Wessels. Motion Analysis of Living Cells. Wiley and Sons, New York, Toronto, 1998.

    Google Scholar 

  65. D.W. Stroock. Some stochastic processes which arise from a model of the motion of a bacterium. Probab. Theory Rel. Fields, 28:305–315, 1974.

    MATH  Google Scholar 

  66. H.F. Weinberger. Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat. Rom, 8:295–310, 1975.

    MATH  MathSciNet  Google Scholar 

  67. D.D. Woodward, R. Tyson, M.R. Myerscough, J.D. Murray, E. Budrene, and H.C. Berg. Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J., 68:2181–2189, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillen, T., Hadeler, K. (2005). Hyperbolic Systems and Transport Equations in Mathematical Biology. In: Warnecke, G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27907-5_11

Download citation

Publish with us

Policies and ethics