Skip to main content

Spin-Polarized Scanning Tunneling Microscopy

  • Chapter
Applied Scanning Probe Methods II

Part of the book series: NanoScience and Technology ((NANO))

Summary

We give an introduction to spin-polarized scanning tunneling microscopy (Sp-STM), a magnetic imaging technique with nanometer lateral resolution. Sp-STM allows to record constant current images which represent the electron density near the sample surface and simultaneously the spin polarization of the electron density which is related to the magnetic moment. It is shown how magnetic and topographic information can be separated using a modulation technique of the magnetization of bulk ferromagnetic tips. It is demonstrated that the out-of-plane component as well as one well-defined in-plane component of the spin polarization can be recorded. Finally, it is shown that with Sp-STM valuable information on the spin-resolved electronic structure and on the fundamental processes of tunneling spins may be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkhausen H (1919) Phys Z 50:401

    Google Scholar 

  2. Hopster H, Oepen HP (2004) Magnetic Microscopy of Nanostructures, Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Tersoff J, Hamann DR (1983) Phys Rev Lett 50:1998

    Article  CAS  Google Scholar 

  4. Tersoff J, Hamann DR (1985) Phys Rev B 31:805

    Article  CAS  Google Scholar 

  5. Müller N, Eckstein W, Heiland W, Zinn W (1972) Phys Rev Lett 29:1651

    Article  Google Scholar 

  6. Landolt M, Yafet Y (1978) Phys Rev Lett 40:1401

    Article  CAS  Google Scholar 

  7. Jullière M (1975) Phys Lett 54A:225

    Google Scholar 

  8. Slonczewski JC (1989) Phys Rev B 39:6995

    Article  Google Scholar 

  9. Miyazaki T, Tezuka N (1995) J Magn Magn Mater 139:L231

    CAS  Google Scholar 

  10. Binning G, Rohrer H, Gerber Ch, Weibel E (1982) Appl Phys Lett 40:178

    Article  Google Scholar 

  11. Binning G, Rohrer H, Gerber Ch, Weibel E (1982) Phys Rev Lett 49:57

    Article  CAS  Google Scholar 

  12. Pierce DT (1988) Physica Scripta 38:291

    CAS  Google Scholar 

  13. Suzuki Y, Nabhan W, Tanaka K (1997) Appl Phys Lett 71:3153

    Article  CAS  Google Scholar 

  14. Heinze S, Kurz P, Wortmann D, Bihlmayer G, Blügel S (2002) Appl Phys A 75:25

    Article  CAS  Google Scholar 

  15. Wiesendanger R, Güntherodt HJ, Güntherodt G, Gambino RJ, Ruf R (1990) Phys Rev Lett 65:247

    Article  CAS  Google Scholar 

  16. Blügel S, Pescia D, Dederichs PH (1989) Phys Rev B 39:1392

    Article  Google Scholar 

  17. Stroscio JA, Pierce DT, Davies A, Celotta RJ, Weinert M (1995) Phys Rev Lett 75:2960

    Article  CAS  Google Scholar 

  18. Bode M, Getzlaff M, Wiesendanger R (1998) Phys Rev Lett 81:4256

    Article  CAS  Google Scholar 

  19. Kubetzka A, Bode M, Pietzsch O, Wiesendanger R (2002) Phys Rev Lett 88:057201

    Article  CAS  Google Scholar 

  20. Yamada TK, Bischoff MMJ, Heijnen GMM, Mizoguchi T, van Kempen H (2003) Phys Rev Lett 90:056803

    Article  CAS  Google Scholar 

  21. Wulfhekel W, Kirschner J (1999) Appl Phys Lett 75:1944

    Article  CAS  Google Scholar 

  22. Johnson M, Clarke J (1990) J Appl Phys 67:6141

    Article  Google Scholar 

  23. Ding HF, Wulfhekel W, Kirschner J (2002) Europhys Lett 57:100

    Article  CAS  Google Scholar 

  24. Schlickum U, Wulfhekel W, Kirschner J (2003) Appl Phys Lett 83:2016

    Article  CAS  Google Scholar 

  25. Wulfhekel W, Hertel R, Ding HF, Steierl G, Kirschner J (2002) J Magn Magn Mater 249:368

    Article  CAS  Google Scholar 

  26. Schlickum U, Janke-Gilman N, Wulfhekel W, Kirschner J (2004) Phys Rev Lett 92:107203

    Article  CAS  Google Scholar 

  27. Unguris J, Scheinfein MR, Celotta RC, Pierce DT (1989) Appl Phys Lett 55:2553

    Article  CAS  Google Scholar 

  28. Hubert A, Schäfer R (1998) Magnetic Domains, Springer-Verlag, Berlin, pp 315

    Google Scholar 

  29. Scheinfein MR, Unguris J, Blue JL, Coakley KJ, Pierce DT, Celotta RJ (1991) Phys Rev B 43:3395

    Article  CAS  Google Scholar 

  30. Heinrich B, Arrott AS, Liu C, Purcell ST (1987) J Vac Sci Technol A 5:1935

    Article  CAS  Google Scholar 

  31. Purcell ST, Johnson MT, McGee NWE, Coehoorn R, Hoving W (1992) Phys Rev B 45:13064

    Article  CAS  Google Scholar 

  32. Kim SK, Tian Y, Montesano M, Jona F, Marcus PM (1996) Phys Rev B 54:5081

    Article  CAS  Google Scholar 

  33. Andrieu S, Foy E, Fischer H, Alnot M, Chevrier F, Krill G, Piecuch M (1998) Phys Rev B 58:8210

    Article  CAS  Google Scholar 

  34. Tulchinsky DA, Unguris J, Celotta RJ (2000) J Magn Magn Mater 212:91

    Article  CAS  Google Scholar 

  35. Pfandzelter R, Igel T, Winter H (1997) Surf Sci 389:317

    Article  CAS  Google Scholar 

  36. Pierce DT, Davies AD, Stroscio JA, Tulchinsky DA, Unguris J, Celotta RJ (2000) J Magn Magn Mater 222:13

    Article  CAS  Google Scholar 

  37. Yamada TK, Bischoff MMJ, Mizoguchi T, van Kempen H (2002) Surf Sci 516:179

    Article  CAS  Google Scholar 

  38. Walker TG, Hopster H (1993) Phys Rev B 48:3563

    Article  CAS  Google Scholar 

  39. Bischoff MMJ, Yamada T, Quinn AJ, van Kempen H (2002) Surf Sci 501:155

    Article  CAS  Google Scholar 

  40. Berger A, Hopster H (1994) Phys Rev Lett 73:193

    Article  CAS  Google Scholar 

  41. Berger A, Fullerton EE (1997) J Magn Magn Mater 165:471

    Article  CAS  Google Scholar 

  42. Pierce DT, Unguris J, Celotta RJ, Stiles MD (1999) J Magn Magn Mater 200:290

    Article  CAS  Google Scholar 

  43. Lang ND (1986) Phys Rev B 34:5947

    Article  Google Scholar 

  44. Boeve H, Girgis E, Schelten J, De Boeck J, Borghs G (2000) Appl Phys Lett 76:1048

    Article  CAS  Google Scholar 

  45. Zhang J, White R (1998) J Appl Phys 83:6512

    Article  CAS  Google Scholar 

  46. Moodera JS, Nowak J, van de Veerdonk RJM (1998) Phys Rev Lett 80:2941

    Article  CAS  Google Scholar 

  47. Ding HF, Wulfhekel W, Henk J, Bruno P, Kirschner J (2003) Phys Rev Lett 90:116603

    Article  CAS  Google Scholar 

  48. Math C et al (2001) Surf Sci 482–485:556

    Article  Google Scholar 

  49. Kleiber M, Bode M, Ravlic R, Wiesendanger R (2000) Phys Rev Lett 85:4606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wulfhekel, W., Schlickum, U., Kirschner, J. (2006). Spin-Polarized Scanning Tunneling Microscopy. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods II. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27453-7_4

Download citation

Publish with us

Policies and ethics