Skip to main content

The Chemistry of Molecular Recognition — Host Molecules and Guest Molecules

  • Chapter
Book cover Supramolecular Chemistry — Fundamentals and Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

2.1

  1. F.W. Lichtenthaler, “100 Years Schlüssel-Schloss-Prinzip — What Made Emil Fischer Use This Analogy?”, Angew. Chem. Int. Ed., 33, 2364 (1994)

    Google Scholar 

  2. D.E. Koshland, “The Key and Lock Theory and Induced-Fit Theory”, Angew. Chem. Int. Ed., 33, 2375 (1994)

    Google Scholar 

  3. D.J. Cram, J.M. Cram, “Host-Guest Chemistry”, Science, 183, 803 (1974)

    CAS  Google Scholar 

  4. C.J. Pedersen, “The Discovery of Crown Ethers (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 1021 (1988)

    Article  Google Scholar 

  5. J.-M. Lehn, “Supramolecular Chemistry — Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 89 (1988)

    Article  Google Scholar 

  6. D.J. Cram, “The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 1009 (1988)

    Article  Google Scholar 

2.2

  1. N. Yui ed., “Supramolecular Design for Biological Applications”, CRC Press, Boca Raton, 2002

    Google Scholar 

  2. J. Israelachvili, H. Wennerstrom, “Role of Hydration and Water Structure in Biological and Colloidal Interactions”, Nature, 379, 219 (1996)

    Article  CAS  Google Scholar 

  3. J.N. Israelachvili, R.M. Pashley, “Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces”, Nature, 306, 249 (1983)

    Article  CAS  Google Scholar 

  4. K. Kurihara, T. Kunitake, “Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water”, J. Am. Chem. Soc., 114, 10927 (1992)

    Article  CAS  Google Scholar 

  5. M. Sakurai, H. Tamagawa, K. Ariga, T. Kunitake, Y. Inoue, “Molecular Dynamics Simulation of Water between Hydrophobic Surfaces. Implication for the Long-Range Hydrophobic Force”, Chem. Phys. Lett., 289, 567 (1998)

    Article  CAS  Google Scholar 

2.3

  1. C.J. Pedersen, H.K. Frensdor, “Macrocyclic Polyethers and Their Complexes”, Angew. Chem. Int. Ed., 11, 168 (1972)

    Google Scholar 

  2. R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L. Bruening, “Thermodynamic and Kinetic Data for Macrocycle Interaction with Cations and Anions”, Chem. Rev., 91, 1721 (1991)

    Article  CAS  Google Scholar 

  3. I.H. Chu, H. Zhang, D.V. Dearden, “Macrocyclic Chemistry in the Gas-Phase — Intrinsic Cation Affinities and Complexation Rates for Alkali-Metal Cation Complexes of Crown-Ethers and Glymes”, J. Am. Chem. Soc., 115, 5736 (1993)

    Article  CAS  Google Scholar 

  4. J.S. Bradshaw, R.M. Izatt, “Crown Ethers: The Search for Selective Ion Ligating Agents”, Acc. Chem. Res., 30, 338 (1997)

    Article  CAS  Google Scholar 

  5. A.E. Visser, R.P. Swatloski, W.M. Reichert, S.T. Griffin, R.D. Rogers, “Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids”, Ind. Eng. Chem. Res., 39, 3596 (2000)

    Article  CAS  Google Scholar 

  6. F. Vögtle, E. Weber, “Multi-Dentate Acyclic Neutral Ligands and Their Complexation”, Angew. Chem. Int. Ed., 18, 753 (1979)

    Article  Google Scholar 

  7. J.C. Mendina, T.T. Goodnow, M.T. Rojas, J.L. Atwood, B.C. Lynn, A.E. Kaifer, G.W. Gokel, “Ferrocenyl Iron as a Donor Group for Complexed Silver in Ferrocenyldimethyl[2,2]Cryptand — A Redox-Switched Receptor Effective in Water”, J. Am. Chem. Soc., 114, 10583 (1992)

    Article  Google Scholar 

  8. F. Kotyzyba-Hibert, J.-M. Lehn, K. Saigo, “Synthesis and Ammonium Cryptates of Triply Bridged Cylindrical Macrotetracycles”, J. Am. Chem. Soc., 103, 4266 (1981)

    Article  Google Scholar 

  9. M. Albrecht, H. Rottele, P. Burger, “Alkali-Metal Cation Binding by Self-Assembled Cryptand-Type Supermolecules”, Chem. Eur. J., 2, 1264 (1996)

    CAS  Google Scholar 

  10. R.B. Davidson, R.M. Izatt, J.J. Christensen, R.A. Shultz, D.M. Dishong, G.W. Gokel, “Stability-Constants, Enthalpies, and Entropies for Metal Ion Liriat Ether Interactions in Methanol Solution”, J. Org. Chem., 49, 5080 (1984)

    Article  CAS  Google Scholar 

  11. D.J. Cram, G.M. Lein, “Host Guest Complexation 36. Spherand and Lithium and Sodium ion Complexation Rates and Equilibria”, J. Am. Chem. Soc., 107, 3657 (1985)

    Article  CAS  Google Scholar 

2.4

  1. T. Nabeshima, T. Inaba, N. Furukawa, T. Hosoya, Y. Yano, “Artificial Allosteric Ionophores — Regulation of Ion Recognition of Polyethers Bearing Bipyridine Moieties by Copper(I)”, Inorg. Chem., 32, 1407 (1993)

    Article  CAS  Google Scholar 

  2. S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe, “Photoresponsive Crown Ether 2. Photocontrol of Ion Extraction and Ion-Transport by a Bis(Crown Ether) with a Butterfly-Like Motion”, J. Am. Chem. Soc., 103, 111 (1981)

    Article  CAS  Google Scholar 

  3. T. Nabeshima, A. Sakiyama, A. Yagyu, H. Furukawa, “Synthesis of Novel Biscrown Ethers with Interconvertible Redox Structures”, Tetrahedron Lett., 30, 5287 (1989)

    Article  CAS  Google Scholar 

  4. T. Nabeshima, H. Furusawa, Y. Yano, “Redox Control for the Recognition of Ag+ Ions in a Macrocycle Containing 2SH-Groups or S-S Bridge Inside the Cavity”, Angew. Chem. Int. Ed., 33, 1750 (1994)

    Article  Google Scholar 

  5. A.P. de Silva, S.A. de Silva, “Fluorescent Signaling Crown Ethers — Switching On of Fluorescence by Alkali-Metal Ion Recognition and Binding In Situ”, J. Chem. Soc., Chem. Commun., 1709 (1986)

    Google Scholar 

  6. A.P. de Silva, H.Q.N. Gunaratne, C.P. McCoy, “A Molecular Photonic AND Gate Based on Fluorescent Signaling”, Nature, 364, 42 (1993)

    Article  Google Scholar 

  7. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, “Signaling Recognition Events with Fluorescent Sensors and Switches”, Chem. Rev., 97, 1515 (1997)

    Article  Google Scholar 

2.5

  1. E.B. Kyba, J. Koga, L.R. Sousa, M.G. Siegel, D.J. Cram, “Chiral Recognition in Molecular Complexing”, J. Am. Chem. Soc., 95, 2692 (1973)

    Article  CAS  Google Scholar 

  2. D.J. Cram, J.M. Cram, “Design of Complexes between Synthetic Hosts and Organic Guest”, Acc. Chem. Res., 11, 8 (1978)

    Article  CAS  Google Scholar 

  3. D.J. Cram, G.D.Y. Sogah, “Chiral Crown Complexes Catalyze Michael Addition-Reactions to Give Adducts in High Optical Yields”, J. Chem. Soc., Chem. Commun., 625 (1981)

    Google Scholar 

2.6

  1. B. Dietrich, J. Guilhem, J.M. Lehn, C. Pascard, E. Sonveaux, “Molecular Recognition in Anion Coordination Chemistry — Structure, Binding Constants and Receptor-Substrate Complimentarity of a Series of Anion Cryptates of a Macrobicyclic Receptor Molecule”, Helv. Chim. Acta, 67, 91 (1984)

    Article  CAS  Google Scholar 

  2. Y. Umezawa, M. Kataoka, W. Takami, E. Kimura, T. Koike, H. Nada, “Potentiometric Adenosine-Triphosphate Polyanion Sensor Using a Lipophilic Macrocyclic Polyamine Liquid Membrane”, Anal. Chem., 60, 2392 (1988)

    Article  CAS  Google Scholar 

  3. C.M. Carey, W.B. Riggan, “Cyclic Polyamine Ionophore for Use in a Dibasic Phosphate-Selective Electrode”, Anal. Chem., 66, 3587 (1994)

    Article  CAS  Google Scholar 

  4. M.W. Hossaini, J.-M. Lehn, L. Maggiora, K.B. Mertes, M.P. Mertes, “Supramolecular Catalysis in the Hydrolysis of ATP Facilitated by Macrocyclic Polyamines: Mechanistic Studies”, J. Am. Chem. Soc., 109, 537 (1987)

    Article  Google Scholar 

  5. M.W. Hosseini, J.M. Lehn, “Supramolecular Catalysis of Adenosine-Triphosphate Synthesis in Aqueous-Solution Mediated by a Macrocyclic Polyamine and Divalent Metal-Cations”, J. Chem. Soc., Chem. Commun., 451 (1991)

    Google Scholar 

  6. E. Kimura, “Model Studies for Molecular Recognition of Carbonic Anhydrase and Carboxypeptidase”, Acc. Chem. Res., 34, 171 (2001)

    Article  CAS  Google Scholar 

  7. S.R. Cooper, “Crown Thioether Chemistry”, Acc. Chem. Res., 21, 141 (1988)

    Article  CAS  Google Scholar 

2.7

  1. K.A. Connors, “The Stability of Cyclodextrin Complexes in Solution”, Chem. Rev., 97, 1325 (1997)

    Article  CAS  Google Scholar 

  2. J. Szejtli, “Introduction and General Overview of Cyclodextrin Chemistry”, Chem. Rev., 98, 1743 (1998)

    Article  CAS  Google Scholar 

  3. M.V. Rekharsky, Y. Inoue, “Complexation Thermodynamics of Cyclodextrins”, Chem. Rev., 98, 1875 (1998)

    Article  CAS  Google Scholar 

  4. A. Ueno, T. Kuwabara, A. Nakamura, F. Toda, “A Modified Cyclodextrin as a Guest Responsive Color-Change Indicator”, Nature, 356, 136 (1992)

    Article  CAS  Google Scholar 

  5. S. Minato, T. Osa, M. Morita, A. Nakamura, H. Ikeda, F. Toda, A. Ueno, “Intramolecular Excimer Formation and Molecular Recognition of Modified Cyclodextrins Appended by Two Naphthalene Rings”, Photochem. Photobiol., 54, 593 (1991)

    CAS  Google Scholar 

  6. R. Breslow, “Artificial Enzymes”, Science, 218, 532 (1982)

    CAS  Google Scholar 

  7. R. Breslow, “Biomimetic Chemistry and Artificial Enzymes — Catalysis by Design”, Acc. Chem. Res., 28, 146 (1995)

    Article  CAS  Google Scholar 

  8. K. Takahashi, “Organic Reactions Mediated by Cyclodextrins”, Chem. Rev., 98, 2013(1998)

    Article  CAS  Google Scholar 

  9. V. Luzhkov, J. Åqvist, “Computer Simulation of Phenyl Ester Cleavage by β-Cyclodextrin in Solution”, J. Am. Chem. Soc., 120, 6131 (1998)

    Article  CAS  Google Scholar 

2.8

  1. C.D. Gutsche, “Calixarenes”, Acc. Chem. Res., 16, 161 (1983)

    Article  CAS  Google Scholar 

  2. A. Ikeda, S. Shinkai, “Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding”, Chem. Rev., 97, 1713 (1997)

    Article  CAS  Google Scholar 

  3. M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, “Molecular Design of Artificial Molecular and Ion Recognition Systems with Allosteric Guest Responses”, Acc. Chem. Res., 34, 865 (2001)

    Article  CAS  Google Scholar 

  4. A.F.D. de Namor, R.M. Cleverley, M.L. Zapata-Ormachea, “Thermodynamics of Calixarene Chemistry”, Chem. Rev., 98, 2495 (1998)

    Article  Google Scholar 

  5. P.D. Beer, “Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species”, Acc. Chem. Res., 31, 71 (1998)

    Article  CAS  Google Scholar 

  6. T. Suzuki, K. Nakashima, S. Shinkai, “Very Convenient and Efficient Purification Method for Fullerene (C60) with 5,11,17,23,29,35,41,47-Octa-Tert-Butylcalix[8]arene-49,50,51,52,53,54,55,56-Octol”, Chem. Lett., 699 (1994)

    Google Scholar 

  7. J.L. Atwood, G.A. Koutsantonis, C.L. Raston, “Purification of C60 and C70 by Selective Complexation with Calixarenes”, Nature, 368, 229 (1994)

    Article  CAS  Google Scholar 

  8. H. Yamamoto, S. Shinkai, “Molecular Design of Calix[4]arene-Based Sodium-Selective Electrodes Which Show Remarkably High 105.0–105.3 Sodium/Potassium Selectivity”, Chem. Lett., 1115 (1994)

    Google Scholar 

  9. Y. Kubo, S. Maeda, S. Tokita, M. Kubo, “Colorimetric Chiral Recognition by a Molecular Sensor”, Nature, 382, 522 (1996)

    Article  CAS  Google Scholar 

2.9

  1. F. Diederich, “Complexation of Neutral Molecules by Cyclophane Hosts”, Angew. Chem. Int. Ed., 27, 362 (1988)

    Article  Google Scholar 

  2. K. Odashima, A. Itai, Y. Iitaka, K. Koga, “Host-Guest Complex Formation between a Water-Soluble Polyparacyclophane and a Hydrophobic Guest Molecule”, J. Am. Chem. Soc., 102, 2504 (1980)

    Article  CAS  Google Scholar 

  3. L.R. MacGillivray, J.L. Atwood, “Structural Classification and General Principles for the Design of Spherical Molecular Hosts”, Angew. Chem. Int. Ed., 38, 1018 (1999)

    Article  CAS  Google Scholar 

  4. K. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, J. Kikuchi, “Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air-Water Interface”, J. Am. Chem. Soc., 122, 7835 (2000)

    Article  CAS  Google Scholar 

  5. K. Ariga, R. Tanaka, N. Takagi, J. Kikuchi, “Molecular Recognition by Cyclophane/Guanidinium Supramolecular Receptor Embedded at the Air-Water Interface”, Supramol. Chem., 15, 87 (2003)

    Article  CAS  Google Scholar 

  6. K. Ariga, D. Sakai, T. Ogata, J. Kikuchi, “Molecular Recognition by Wall-Assembling-Type Nanocavity in Aqueous Media”, J. Nanosci. Nanotech., 2, 41 (2002).

    Article  CAS  Google Scholar 

  7. K. Ariga, T. Nakanishi, Y. Terasaka, H. Tsuji, D. Sakai, J. Kikuchi, “Piezoluminescence at the Air-Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application”, Langmuir, 21, 976 (2005)

    Article  CAS  Google Scholar 

  8. D. Whang, J. Heo, J.H. Park, K. Kim, “A Molecular Bowl with Metal Ion as Bottom: Reversible Inclusion of Organic Molecules in Cesium Ion Complexed Cucurbituril”, Angew. Chem. Int. Ed., 37, 78 (1998)

    Article  CAS  Google Scholar 

  9. P.A. Gale, J.L. Sessler, A. Král, “Calixpyrroles”, Chem. Commun., 1 (1998)

    Google Scholar 

  10. R.C. Helgeson, C.B. Knobler, D.J. Cram, “Correlations of Structure with Binding Ability Involving Nine Hemicarcerand Hosts and Twenty-Four Guests”, J. Am. Chem. Soc., 119, 3229 (1997)

    Article  CAS  Google Scholar 

  11. Y. Murakami, O. Hayashida, “Supramolecular Effects and Molecular Discrimination by Macrocyclic Hosts Embedded in Synthetic Bilayer Membranes”, Proc. Natl. Acad. Sci. USA, 90, 1140 (1993)

    Article  CAS  Google Scholar 

  12. A.E. Rowan, J. A.A.W. Elemans, R.J.M. Nolte, “Molecular and Supramolecular Objects from Glycoluril”, Acc. Chem. Res., 32, 995 (1999)

    Article  CAS  Google Scholar 

  13. F. Hof, S.L. Craig, C. Nuckolls, J. Rebek, Jr., “Molecular Encapsulation”, Angew. Chem. Int. Ed., 41, 1488 (2002)

    Article  CAS  Google Scholar 

  14. J. Rebek, Jr., “Reversible Encapsulation and Its Consequences in Solution”, Acc. Chem. Res., 32, 278 (1999)

    Article  CAS  Google Scholar 

  15. R. Warmuth, “o-Benzyne: Strained Alkyne or Cumulene? NMR Characterization in a Molecular Container”, Angew. Chem. Int. Ed., 36 1347 (1997)

    Article  CAS  Google Scholar 

2.10

  1. J.-M. Lehn, “Supramolecular Chemistry — Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 89 (1988)

    Article  Google Scholar 

  2. J. Rebek, B. Askew, M. Killoran, D. Nemeth, F.T. Lin, “Convergent Functional Groups 3. A Molecular Cleft Recognizes Substrates of Complementary Size, Shape, and Functionality”, J. Am. Chem. Soc., 109, 2426 (1987)

    Article  CAS  Google Scholar 

  3. A. Galan, D. Andreu, A. M. Echavareen, P. Pradosp, P. Prados, J. de Mendoza, “A Receptor for the Enantioselective Recognition of Phenylalanine and Tryptophan under Neutral Conditions”, J. Am. Chem. Soc., 114, 1511 (1992)

    Article  CAS  Google Scholar 

  4. J.J. Lavigne, E.V. Anslyn, “Sensing a Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors”, Angew. Chem. Int. Ed., 40, 3119 (2001)

    Article  Google Scholar 

  5. P.D. Beer, P.A. Gale, “Anion Recognition and Sensing: The State of the Art and Future Perspectives”, Angew. Chem. Int. Ed., 40, 487 (2001)

    Article  Google Scholar 

  6. H. Furuta, D. Magda, J.L. Sessler, “Molecular Recognition via Base Pairing: Amine-Containing, Cytosine-Based Ditopic Receptors That Complex Guanosine Monophosphate”, J. Am. Chem. Soc., 113, 978 (1991)

    Article  CAS  Google Scholar 

  7. T.D. James, K. R.A.S. Sandanayake, S. Shinkai, “Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor”, Nature, 374, 345 (1995)

    Article  CAS  Google Scholar 

  8. M.W. Peczuh, A.D. Hamilton, “Peptide and Protein Recognition by Designed Molecules”, Chem. Rev., 100, 2479 (2000)

    Article  CAS  Google Scholar 

  9. K. Ariga, E.V. Anslyn, “Manipulating the Stoichiometry and Strength of Phosphodiester Binding to a Bisguanidine Cleft in DMSO/Water Solutions”, J. Org. Chem., 57, 417 (1992)

    Article  CAS  Google Scholar 

  10. D.M. Kneeland, K. Ariga, V.M. Lynch, C.Y. Huang, E.V. Anslyn, “Bis(alkylguanidinium) Receptors for Phosphodiesters: Effect of Counterions, Solvent Mixtures, and Cavity Flexibility on Complexation”, J. Am. Chem. Soc., 115, 10042 (1993)

    Article  CAS  Google Scholar 

  11. J. Smith, K. Ariga, E.V. Anslyn, “Enhanced Imidazole-Catalyzed RNA Cleavage Induced by a Bis-Alkylguanidinium Receptor”, J. Am. Chem. Soc., 115, 362 (1993)

    Article  CAS  Google Scholar 

  12. J. Rebek, Jr., “Molecular Recognition and Biophysical Organic Chemistry”, Acc. Chem. Res., 23, 399 (1990)

    Article  CAS  Google Scholar 

  13. E.A. Wintner, M.M. Conn, J. Rebek, Jr., “Studies in Molecular Replication”, Acc. Chem. Res., 27, 198 (1994)

    Article  CAS  Google Scholar 

2.11

  1. K. Ariga, T. Kunitake, “Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction”, Acc. Chem. Res, 31(6), 371 (1998)

    Article  CAS  Google Scholar 

  2. R.U. Lemieux, “How Water Provides the Impetus for Molecular Recognition in Aqueous Solution”, Acc. Chem. Res., 29, 373 (1996)

    Article  CAS  Google Scholar 

  3. M. Sakurai, H. Tamagawa, Y. Inoue, K. Ariga, T. Kunitake, “Theoretical Study of Intermolecular Interaction at the Lipid-Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory”, J. Phys. Chem. B, 101, 4810 (1997)

    Article  CAS  Google Scholar 

  4. H. Tamagawa, M. Sakurai, Y. Inoue, K. Ariga, T. Kunitake, “Theoretical Study of Intermolecular Interaction at the Lipid-Water Interface. 2. Analysis Based on the Poisson-Boltzmann Equation”, J. Phys. Chem. B, 101, 4817 (1997)

    Article  CAS  Google Scholar 

  5. D.Y. Sasaki, K. Kurihara, T. Kunitake, “Specific Multi-Point Binding of ATP and AMP to a Guanidinium-Functionalized Monolayer”, J. Am. Chem. Soc., 113, 9685 (1991)

    Article  CAS  Google Scholar 

  6. M. Onda, K. Yoshihara, H. Koyano, K. Ariga, T. Kunitake, “Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces”, J. Am. Chem. Soc., 118, 8524 (1996)

    Article  CAS  Google Scholar 

  7. C.M. Paleos, D. Tsiourvas, “Molecular Recognition of Organized Assemblies via Hydrogen Bonding in Aqueous Media”, Adv. Mater., 9, 695 (1997)

    Article  CAS  Google Scholar 

2.12

  1. H. Kitano, H. Ringsdorf, “Surface Behaviors of Nucleic Acid Base-Containing Lipids in Monolayer and Bilayer Systems”, Bull. Chem. Soc. Jpn., 58, 2826 (1985)

    Article  CAS  Google Scholar 

  2. K. Kurihara, K. Ohto, Y. Honda, T. Kurihara, “Efficient, Complementary Binding of Nucleic-Acid Bases to Diaminotriazine-Functionalized Monolayers on Water”, J. Am. Chem. Soc., 113, 5077 (1991)

    Article  CAS  Google Scholar 

  3. T. Kawahara, K. Kurihara, T. Kunitake, “Cooperative Binding of Adenine via Complementary Hydrogen-Bonding to an Imide Functionalized Monolayer at the Air-Water Interface”, Chem. Lett., 1839 (1992)

    Google Scholar 

  4. Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, “Kinetic Measurements of DNA Hybridisation on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance”, Anal. Chem., 70, 1288 (1998)

    Article  CAS  Google Scholar 

  5. M. Shimomura, F. Nakamura, K. Ijiro, H. Taketsuna, M. Tanaka, H. Nakamura, K. Hasebe, “Two-Dimensional DNA-Mimetic Molecular Organizations at the Air-Water Interface”, J. Am. Chem. Soc., 119, 2341 (1997)

    Article  CAS  Google Scholar 

  6. W.G. Miao, X.Z. Du, Y.Q. Liang, “Molecular Recognition of Nucleolipid Monolayers of 1-(2-Octadecyloxycarbonylethyl)cytosine to Guanosine at the Air-Water Interface and Langmuir-Blodgett Films”, Langmuir, 19, 5389 (2003)

    Article  CAS  Google Scholar 

  7. Y. Ikeura, K. Kurihara, T. Kunitake, “Molecular Recognition at the Air-Water Interface. Specific Binding of Nitrogen Aromatics and Amino Acids by Monolayers of Long-Chain Derivatives of Kemp Acid”, J. Am. Chem. Soc., 113, 7342 (1991)

    Article  CAS  Google Scholar 

  8. K. Kurihara, K. Ohto, Y. Tanaka, Y. Aoyama, T. Kunitake, “Molecular Recognition of Sugars by Monolayers of Resorcinol Dodecanal Cyclotetramer”, J. Am. Chem. Soc., 113, 444 (1991)

    Article  CAS  Google Scholar 

  9. H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, T. Kumitake, “Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid”, Chem. Eur. J., 3, 1077 (1997)

    CAS  Google Scholar 

  10. Q. Huo, K.C. Russell, R.M. Reblanc, “Effect of Complementary Hydrogen Bonding Additives in Subphase on the Structure and Properties of the 2-Amino-4,6-Dioctadecylamino-1,3,5-Triazine Amphiphile at the Air-Water Interface: Studies by Ultraviolet-Visible Absorption Spectroscopy and Brewster Angle Microscopy”, Langmuir, 14, 2174 (1998)

    Article  CAS  Google Scholar 

  11. X. Cha, K. Ariga, M. Onda, T. Kunitake, “Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface”, J. Am. Chem. Soc., 117, 11833 (1995)

    Article  CAS  Google Scholar 

  12. X. Cha, K. Ariga, T. Kunitake, “Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers”, J. Am. Chem. Soc., 118, 9545 (1996)

    Article  CAS  Google Scholar 

  13. K. Ariga, A. Kamino, X. Cha, T. Kunitake, “Multisite Recognition of Aqueous Dipeptides by Oligoglycine Arrays Mixed with Guanidinium and Other Receptor Units at the Air-Water Interface”, Langmuir, 15, 3875 (1999)

    Article  CAS  Google Scholar 

  14. D.Y. Sasaki, K. Kurihara, T. Kunitake, “Self-Assembled Miltifunctional Receptors for Nucleotides at the Air-Water Interface”, J. Am. Chem. Soc., 114, 10994 (1992)

    Article  CAS  Google Scholar 

  15. K. Taguchi, K. Ariga, T. Kunitake, “Multi-Site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water”, Chem. Lett., 701 (1995)

    Google Scholar 

  16. K. Ariga, A. Kamino, H. Koyano, T. Kunitake, “Recognition of Aqueous Flavin Mononucleotide on the Surface of Binary Monolayers of Guanidinium and Melamine Amphiphiles”, J. Mater. Chem., 7, 1155 (1997)

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). The Chemistry of Molecular Recognition — Host Molecules and Guest Molecules. In: Supramolecular Chemistry — Fundamentals and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26185-0_2

Download citation

Publish with us

Policies and ethics