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Preface to the Second Edition

In the four years that have elapsed between the first and second editions of
this book, much progress has been made in understanding hydrodynamic
instabilities and the transition to turbulence. For example, the strange attractors
discussed theoretically by Lanford in Chap. 2 have been convincingly observed
in experiments on weakly turbulent flows, and several “‘universal” routes to
chaos have been identified in theoretical and experimental studies. Many other
noteworthy advances have been made using quite different theoretical methods.
For example, the evolution of convection patterns has been studied using two-
dimensional model equations.

Brief descriptions of these and other developments, along with numerous
added references, are included in this second edition. We hope that the reduced
cost of this edition in paperback will make it accessible to many additional
scientists and students in the various fields to which it is relevant, especially
physics, mathematics, and engineering.

We appreciate the assistance of our contributors, and the support of the
National Science Foundation Fluid Mechanics Program.

We dedicate this book to the memory of our colleague and friend, Richard
C. DiPrima (9 August 1927-10 September 1984), whose contributions to hydro-
dynamic stability theory will long be remembered.

Austin and Haverford, February 1985 H. L. Swinney - J. P. Gollub



Preface to the First Edition

Although much of the universe is filled with fluids in turbulent motion, the
processes by which turbulence develops are poorly understood. When a fluid is
driven away from thermal and mechanical equilibrium, it will often undergo a
sequence of instabilities, each of which leads to a change in the spatial or
temporal structure of the flow. The nature of these instabilities, which sometimes
lead to turbulence, is the subject of this volume.

Hydrodynamic instabilities and turbulence have been extensively studied for
more than a century, but the research has been primarily concerned with either
the first instability that occurs with increasing Reynolds number or with
turbulence at very large Reynolds number. The transition from laminar to
turbulent flow has until recently been largely beyond the reach of both theory
and experiment. This situation has been changed dramatically by the use of
computers in laboratory experiments and in numerical analyses of nonlinear
systems. While past experiments were primarily photographic or measured
time-averaged quantities, recent experiments using computers and modern
optical and cryogenic techniques have distinguished between many different
dynamical regimes of flows undergoing transition. Numerical studies of
nonlinear models have also revealed entirely unexpected results, such as chaotic
behavior in a system with only three variables. Another development of great
potential importance is the application of new mathematical concepts from the
qualitative theory of differential equations, sometimes known as dynamical
systems theory, to the transition to turbulence problem. More traditional
methods such as bifurcation theory and stability analysis also continue to
contribute major new insights.

This book is a collaboration between physicists, mathematicians, and fluid
dynamicists, each of whom is a recognized leader in the field. The various
chapters include: introductions to the relationship between dynamical systems
theory and turbulence (Chaps. 2 and 4); a review of hydrodynamic stability and
bifurcation theory (Chap. 3); three case studies — convection, rotating fluids, and
shear flows (Chaps. 5-7); a review of the many types of instabilities that occur in
geophysics (Chap. 8); and a discussion of instabilities and chaotic behavior in
nonhydrodynamic systems (Chap. 9).

Although not all of the book is strictly introductory, the authors have tried to

make the majority of it accessible to physicists, mathematicians, engineers, and
graduate students who do not have significant background in fluid dynamics



VI Preface

and advanced mathematics. It is our hope that it will provide an introduction to
the literature of this rapidly developing field.

We owe special thanks to D. D. Joseph for his encouragement and advice in
this endeavor, and to our contributors for their efforts to communicate with
clarity to a new audience. We also acknowledge the support of the National
Science Foundation.

Austin and Haverford, October 1980 H. L. Swinney - J. P. Gollub
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