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Preface

Sputtering phenomena have become of great importance in physics and
technology within the last 25 years. This is demonstrated by the inclusion of
sputtering in a large number of national and international conferences dealing
with topics such as vacuum physics, surface physics, surface analysis, thin films,
electron microscopy, atomic collisions, radiation damage, ion implantation
and plasma physics. However, there have been very few conferences dealing
with sputtering alone and today’s knowledge about this process is widely
distributed in the scientific and technical literature.

In the three volumes of this Topics in Applied Physics series, an attempt has
been made to collect most of today’s information about the experimental and
theoretical knowledge on sputtering phenomena as well as to show the
applications of this process. This task was not possible in a monograph, but
only by the contribution of several experts in this field. Every contribution
represents the personal view of each author, but an effort was made to get the
articles to fit together in a coherent way. Mostly the symbols are used and cross
references between the articles are given.

This first volume deals with the physical basis for sputtering of single
element solids. After a general overview, two chapters deal with the theoretical
basis for understanding sputtering phenomena in amorphous, polycrystalline
and single crystal solids followed by two chapters presenting a collection of the
experimental results.

Chapter 2 by P. Sigmund starts with a historical survey about the different
models developed for the sputtering process. For knockon sputtering caused by
a collision cascade, first-order analytical formulas are derived for the sputtering
yield in amorphous materials as well as for the angular and energy distributions
of the emitted particles. These are valid for the linear cascade regime, 1.e., heavy
ions at keV energies. Further, corrections for other regimes are presented.

In Chap. 3, Mark T. Robinson discusses the influence of the crystalline
structure of the solid as well as the selvage, i.e., the surface layer, and the
surface binding energies on the sputtering process. The ideas of crystal
transparency and channeling give a basis for understanding the orientation
dependence of the sputtering yields. However, for a comprehensive description
of the sputtering process, computer models have to be applied and several
examples are given.

In chapter 4, H. H. Andersen and H. L. Bay present an overview of all
results reported in the literature about measured sputtering yields and their
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dependence on different parameters. This contribution shows that there are
very few measurements of sputtering yields for the systems other than metals
bombarded by particles other than noble gas ions.

The last chapter by H. E. Roosendaal deals with sputtering yield measure-
ments for single crystals, especially their dependence on orientation. These
effects can only be observed at low fluences or, if the annealing of defects in the
crystal is larger than amorphization due to the radiation damage within the
range of the incident ions.

In each chapter the references are numbered consecutively as they appear in
the text. In order to facilitate search for the work of one author, an alphabetical
author index has been provided and is added, together with the subject index at
the end of the book.

The second volume will deal with the sputtering of multicomponent targets
such as alloys and compounds, chemical sputtering and sputtering by electrons
and neutrons. Two chapters will deal with the surface structures which are
developed for heavy and light ion bombardment.

In the third volume, today’s knowledge about the angular, energy, mass and
charge-state distribution of sputtered particles will be presented. Finally the
large variety of applications for the sputtering process will be outlined.

It is a great pleasure to thank the Springer Verlag and all authors for the
pleasant collaboration and especially Peter Sigmund and Mark T. Robinson for
their encouragement and advice in starting this book.

Garching, March 1981 Rainer Behrisch
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