Skip to main content

Effects of Mammalian Thioredoxin Reductase Inhibitors

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 264))

Abstract

The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors.

Graphical Abstract

The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson M, Holmgren A, Spyrou G (1996) NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem 271:10116–10120

    Article  CAS  PubMed  Google Scholar 

  • Anestål K, Arnér ESJ (2003) Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. J Biol Chem 278:15966–15972

    Article  PubMed  CAS  Google Scholar 

  • Anestål K, Prast-Nielsen S, Cenas N, Arnér ESJ (2008) Cell death by SecTRAPs – thioredoxin reductase as a prooxidant killer of cells. PLoS One 3:e1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnér ESJ (2009) Focus on mammalian thioredoxin reductases – important selenoproteins with versatile functions. Biochim Biophys Acta 1790:495–526

    Article  PubMed  CAS  Google Scholar 

  • Arnér ESJ (2010) Selenoproteins-what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303

    Article  PubMed  CAS  Google Scholar 

  • Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  CAS  PubMed  Google Scholar 

  • Arnér ESJ, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16:420–426

    Article  PubMed  CAS  Google Scholar 

  • Arnér ESJ, Nordberg J, Holmgren A (1996) Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem Biophys Res Commun 225:268–274

    Article  PubMed  Google Scholar 

  • Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci U S A 94:3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backman E, Bergh AC, Lagerdahl I, Rydberg B, Sundstrom C, Tobin G, Rosenquist R, Linderholm M, Rosen A (2007) Thioredoxin, produced by stromal cells retrieved from the lymph node microenvironment, rescues chronic lymphocytic leukemia cells from apoptosis in vitro. Haematologica 92:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Bacon JR, Plumb GW, Howie AF, Beckett GJ, Wang W, Bao Y (2007) Dual action of sulforaphane in the regulation of thioredoxin reductase and thioredoxin in human HepG2 and Caco-2 cells. J Agric Food Chem 55:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Becker K, Gromer S, Schirmer RH, Müller S (2000) Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem 267:6118–6125

    Article  CAS  PubMed  Google Scholar 

  • Bellisola G, Fracasso G, Ippoliti R, Menestrina G, Rosen A, Solda S, Udali S, Tomazzolli R, Tridente G, Colombatti M (2004) Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 67:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ (2005) Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc Natl Acad Sci U S A 102:15018–15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondareva AA, Capecchi MR, Iverson SV, Li Y, Lopez NI, Lucas O, Merrill GF, Prigge JR, Siders AM, Wakamiya M, Wallin SL, Schmidt EE (2007) Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 43:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigelius-Flohe R (2008) Selenium compounds and selenoproteins in cancer. Chem Biodivers 5:389–395

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Banning A (2006) Part of the series: from dietary antioxidants to regulators in cellular signaling and gene regulation. Sulforaphane and selenium, partners in adaptive response and prevention of cancer. Free Radic Res 40:775–787

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KK, Eriksson SE, Arner ES, Hampton MB (2008) Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic Biol Med 45:494–502

    Article  CAS  PubMed  Google Scholar 

  • Busker S, Qian W, Haraldsson M, Espinosa B, Johansson L, Attarha S, Kolosenko I, Liu J, Dagnell M, Grander D, Arner ESJ, Tamm KP, Page BDG (2020) Irreversible TrxR1 inhibitors block STAT3 activity and induce cancer cell death. Sci Adv 6:eaax7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y, Wu J, Fang J (2012) Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med 52:257–265

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J Biol Chem 283:11913–11923

    Article  CAS  PubMed  Google Scholar 

  • Casini A, Gabbiani C, Sorrentino F, Rigobello MP, Bindoli A, Geldbach TJ, Marrone A, Re N, Hartinger CG, Dyson PJ, Messori L (2008) Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J Med Chem 51:6773–6781

    Article  CAS  PubMed  Google Scholar 

  • Cebula M, Moolla N, Capovilla A, Arner ES (2013) The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity. J Biol Chem 288:10002–10011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebula M, Schmidt EE, Arner ES (2015) TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 23:823–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arnér ESJ (2004) Interactions of quinones with thioredoxin reductase – a challenge to the antioxidant role of the mammalian selenoprotein. J Biol Chem 279:2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008

    Article  CAS  PubMed  Google Scholar 

  • Chew EH, Lu J, Bradshaw TD, Holmgren A (2008) Thioredoxin reductase inhibition by antitumor quinols: a quinol pharmacophore effect correlating to antiproliferative activity. FASEB J 22:2072–2083

    Article  CAS  PubMed  Google Scholar 

  • Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, Holmgren A, Westwell AD (2010) Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med 48:98–111

    Article  CAS  PubMed  Google Scholar 

  • Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24:9414–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33

    Article  CAS  PubMed  Google Scholar 

  • Cox AG, Brown KK, Arner ES, Hampton MB (2008) The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochem Pharmacol 76:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Dagnell M, Frijhoff J, Pader I, Augsten M, Boivin B, Xu J, Mandal PK, Tonks NK, Hellberg C, Conrad M, Arner ES, Ostman A (2013a) Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-beta receptor tyrosine kinase signaling. Proc Natl Acad Sci U S A 110:13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagnell M, Frijhoff J, Pader I, Augsten M, Boivin B, Xu J, Mandal PK, Tonks NK, Hellberg C, Conrad M, Arnér ESJ, Östman A (2013b) Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGFβ-receptor tyrosine kinase signaling. Proc Natl Acad Sci U S A 110:13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagnell M, Pace PE, Cheng Q, Frijhoff J, Ostman A, Arner ESJ, Hampton MB, Winterbourn CC (2017) Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H2O2 exposure. J Biol Chem 292:14371–14380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagnell M, Schmidt EE, Arner ESJ (2018) The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med 115:484–496

    Article  CAS  PubMed  Google Scholar 

  • Damdimopoulos AE, Miranda-Vizuete A, Treuter E, Gustafsson JÅ, Spyrou G (2004) An alternative splicing variant of the selenoprotein thioredoxin reductase is a modulator of estrogen signaling. J Biol Chem 279:38721–38729

    Article  CAS  PubMed  Google Scholar 

  • Damdimopoulou PE, Miranda-Vizuete A, Arner ESJ, Gustafsson J-A, Damdimopoulos AE (2009) The human thioredoxin reductase-1 splice variant TXNRD1_v3 is an atypical inducer of cytoplasmic filaments and cell membrane filopodia. BBA-Mol Cell Res 1793:1588–1596

    CAS  Google Scholar 

  • Dammeyer P, Damdimopoulos AE, Nordman T, Jimenez A, Miranda-Vizuete A, Arner ES (2008) Induction of cell membrane protrusions by the N-terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1. J Biol Chem 283:2814–2821

    Article  CAS  PubMed  Google Scholar 

  • Doka E, Pader I, Biro A, Johansson K, Cheng Q, Ballago K, Prigge JR, Pastor-Flores D, Dick TP, Schmidt EE, Arner ES, Nagy P (2016) A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv 2:e1500968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doka E, Ida T, Dagnell M, Abiko Y, Luong NC, Balog N, Takata T, Espinosa B, Nishimura A, Cheng Q, Funato Y, Miki H, Fukuto JM, Prigge JR, Schmidt EE, Arner ESJ, Kumagai Y, Akaike T, Nagy P (2020) Control of protein function through oxidation and reduction of persulfidated states. Sci Adv 6:eaax8358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Zhang H, Zhang X, Lu J, Holmgren A (2013) Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J Biol Chem 288:32241–32247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckenroth B, Harris K, Turanov AA, Gladyshev VN, Raines RT, Hondal RJ (2006) Semisynthesis and characterization of mammalian thioredoxin reductase. Biochemistry 45:5158–5170

    Article  CAS  PubMed  Google Scholar 

  • Eckenroth BE, Lacey BM, Lothrop AP, Harris KM, Hondal RJ (2007a) Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis. Biochemistry 46:9472–9483

    Article  CAS  PubMed  Google Scholar 

  • Eckenroth BE, Rould MA, Hondal RJ, Everse SJ (2007b) Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases. Biochemistry 46:4694–4705

    Article  CAS  PubMed  Google Scholar 

  • Eriksson SE, Prast-Nielsen S, Flaberg E, Szekely L, Arner ES (2009) High levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy. Free Radic Biol Med 47:1661–1671

    Article  CAS  PubMed  Google Scholar 

  • Espinosa B, Arner ESJ (2019) Thioredoxin-related protein of 14 kDa as a modulator of redox signalling pathways. Br J Pharmacol 176:544–553

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    Article  CAS  PubMed  Google Scholar 

  • Felberbaum-Corti M, Morel E, Cavalli V, Vilbois F, Gruenberg J (2007) The redox sensor TXNL1 plays a regulatory role in fluid phase endocytosis. PLoS One 2:e1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Wolf K, Urig S, Becker K (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J Mol Biol 370:116–127

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846

    Article  CAS  PubMed  Google Scholar 

  • Ganan-Gomez I, Wei Y, Yang H, Boyano-Adanez MC, Garcia-Manero G (2013) Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med 65:750–764

    Article  CAS  PubMed  Google Scholar 

  • Gencheva R, Cheng Q, Arner ESJ (2018) Efficient selenocysteine-dependent reduction of toxoflavin by mammalian thioredoxin reductase. Biochim Biophys Acta Gen Subj 1862:2511–2517

    Google Scholar 

  • Ghosh S, Mukherjee S, Choudhury S, Gupta P, Adhikary A, Baral R, Chattopadhyay S (2015) Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: role of fluoxetine. Cell Signal 27:1398–1412

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev VN, Jeang K-T, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A 93:6146–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  PubMed  Google Scholar 

  • Gromer S, Merkle H, Schirmer RH, Becker K (2002) Human placenta thioredoxin reductase: preparation and inhibitor studies. Methods Enzymol 347:382–394

    Article  CAS  PubMed  Google Scholar 

  • Gromer S, Urig S, Becker K (2004) The thioredoxin system – from science to clinic. Med Res Rev 24:40–89

    Article  CAS  PubMed  Google Scholar 

  • Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brustle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222

    Article  CAS  PubMed  Google Scholar 

  • Hashemy SI, Ungerstedt JS, Zahedi Avval F, Holmgren A (2006) Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem 281:10691–10697

    Article  CAS  PubMed  Google Scholar 

  • Hatfield DL, Yoo MH, Carlson BA, Gladyshev VN (2009) Selenoproteins that function in cancer prevention and promotion. Biochim Biophys Acta 1790:1541–1545

    Google Scholar 

  • Hedstrom E, Eriksson S, Zawacka-Pankau J, Arner ES, Selivanova G (2009) p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA. Cell Cycle 8:3576–3583

    Article  Google Scholar 

  • Higgins LG, Hayes JD (2011) The cap'n'collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chem Biol Interact 192:37–45

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Hirashima M, Ueno M, Matsuda M, Waga S, Tsurufuji S, Yodoi J (1993) Regulation of eosinophil migration by adult T cell leukemia-derived factor. J Immunol 151:5624–5630

    CAS  PubMed  Google Scholar 

  • Hu Y, Urig S, Koncarevic S, Wu X, Fischer M, Rahlfs S, Mersch-Sundermann V, Becker K (2007) Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents. Biol Chem 388:1069–1081

    CAS  PubMed  Google Scholar 

  • Huang J, Hua W, Li J, Hua Z (2015) Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase. Mol Med Rep 12:5787–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arner ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2017) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:409–422.

    Google Scholar 

  • Iverson SV, Eriksson S, Xu J, Prigge JR, Talago EA, Meade TA, Meade ES, Capecchi MR, Arner ES, Schmidt EE (2013) A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification. Free Radic Biol Med 63:369–380

    Article  CAS  PubMed  Google Scholar 

  • Jakubikova J, Sedlak J, Bod'o J, Bao Y (2006) Effect of isothiocyanates on nuclear accumulation of NF-kappaB, Nrf2, and thioredoxin in caco-2 cells. J Agric Food Chem 54:1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Jeong W, Yoon HW, Lee SR, Rhee SG (2004) Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J Biol Chem 279:3142–3150

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Oko R, Gustafsson JA, Spyrou G, Pelto-Huikko M, Miranda-Vizuete A (2002) Cloning, expression and characterization of mouse spermatid specific thioredoxin-1 gene and protein. Mol Hum Reprod 8:710–718

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson JA, Oko R, Miranda-Vizuete A (2004) Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J Biol Chem 279:34971–34982

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Pelto-Huikko M, Gustafsson JA, Miranda-Vizuete A (2006) Characterization of human thioredoxin-like-1: potential involvement in the cellular response against glucose deprivation. FEBS Lett 580:960–967

    Article  CAS  PubMed  Google Scholar 

  • Johansson C, Lillig CH, Holmgren A (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279:7537–7543

    Article  CAS  PubMed  Google Scholar 

  • Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins – properties and biotechnological use. Biochim Biophys Acta 1726:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johansson K, Cebula M, Rengby O, Dreij K, Carlstrom KE, Sigmundsson K, Piehl F, Arner ES (2017) Cross talk in HEK293 cells between Nrf2, HIF, and NF-kappaB activities upon challenges with redox therapeutics characterized with single-cell resolution. Antioxid Redox Signal 26:229–246

    Google Scholar 

  • Kipp AP, Deubel S, Arner ESJ, Johansson K (2017) Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-kappaB activities in 3D spheroids enriched for cancer stem cells. Redox Biol 12:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy D, Karver MR, Fiorillo E, Orru V, Stanford SM, Bottini N, Barrios AM (2008) Gold(I)-mediated inhibition of protein tyrosine phosphatases: a detailed in vitro and cellular study. J Med Chem 51:4790–4795

    Article  CAS  PubMed  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES, Williams DL (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4:e206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lea WA, Jadhav A, Rai G, Sayed AA, Cass CL, Inglese J, Williams DL, Austin CP, Simeonov A (2008) A 1,536-well-based kinetic HTS assay for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase. Assay Drug Dev Technol 6:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KK, Murakawa M, Takahashi S, Tsubuki S, Kawashima S, Sakamaki K, Yonehara S (1998) Purification, molecular cloning, and characterization of TRP32, a novel thioredoxin-related mammalian protein of 32 kDa. J Biol Chem 273:19160–19166

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG (1999) Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem 274:4722–4734

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG (2000) Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci U S A 97:2521–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Cha KH, Selenge D, Solongo A, Nho CW (2007) The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation. Biol Pharm Bull 30:1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arner ES (2016) Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev 96:307–364

    Article  CAS  PubMed  Google Scholar 

  • Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM (2003) The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res 23:2425–2433

    CAS  PubMed  Google Scholar 

  • Liu Z, Du ZY, Huang ZS, Lee KS, Gu LQ (2008a) Inhibition of thioredoxin reductase by curcumin analogs. Biosci Biotechnol Biochem 72:2214–2218

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Huang S, Li M, Huang Z, Lee KS, Gu L (2008b) Inhibition of thioredoxin reductase by mansonone F analogues: implications for anticancer activity. Chem Biol Interact 177:48–57

    Article  PubMed  CAS  Google Scholar 

  • Locy ML, Rogers LK, Prigge JR, Schmidt EE, Arner ES, Tipple TE (2012) Thioredoxin reductase inhibition elicits Nrf2-mediated responses in Clara cells: implications for oxidant-induced lung injury. Antioxid Redox Signal 17:1407–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A (2006) Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 66:4410–4418

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Chew EH, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci U S A 104:12288–12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundström-Ljung J, Birnbach U, Rupp K, Soling HD, Holmgren A (1995) Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett 357:305–308

    Article  PubMed  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maggioli G, Silveira F, Martin-Alonso JM, Salinas G, Carmona C, Parra F (2011) A recombinant thioredoxin-glutathione reductase from Fasciola hepatica induces a protective response in rabbits. Exp Parasitol 129:323–330

    Article  CAS  PubMed  Google Scholar 

  • Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS (2015) The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 5:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal PK, Schneider M, Kolle P, Kuhlencordt P, Forster H, Beck H, Bornkamm GW, Conrad M (2010) Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation. Cancer Res 70:9505–9514

    Article  CAS  PubMed  Google Scholar 

  • Martin JL (1995) Thioredoxin-a fold for all reasons. Structure 3:245–250

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gonzalez JJ, Guevara-Flores A, Rendon JL, Arenal IPD (2015) Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci. Mol Biochem Parasitol 201:16–25

    Article  CAS  PubMed  Google Scholar 

  • Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42:872–881

    Article  CAS  PubMed  Google Scholar 

  • May JM, Mendiratta S, Hill KE, Burk RF (1997) Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 272:22607–22610

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G (1999) Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 261:405–412

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Vizuete A, Sadek CM, Jimenez A, Krause WJ, Sutovsky P, Oko R (2004) The mammalian testis-specific thioredoxin system. Antioxid Redox Signal 6:25–40

    Article  CAS  PubMed  Google Scholar 

  • Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Mougiakakos D, Okita R, Ando T, Durr C, Gadiot J, Ichikawa J, Zeiser R, Blank C, Johansson CC, Kiessling R (2012) High expression of GCLC is associated with malignant melanoma of low oxidative phenotype and predicts a better prognosis. J Mol Med (Berl) 90:935–944

    Article  CAS  Google Scholar 

  • Nalvarte I, Damdimopoulos AE, Spyrou G (2004) Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic Biol Med 36:1270–1278

    Article  CAS  PubMed  Google Scholar 

  • Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Omata Y, Folan M, Shaw M, Messer RL, Lockwood PE, Hobbs D, Bouillaguet S, Sano H, Lewis JB, Wataha JC (2006) Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol In Vitro 20:882–890

    Article  CAS  PubMed  Google Scholar 

  • Osborne SA, Tonissen KF (2001) Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes. BMC Genomics 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659:31–39

    Article  CAS  PubMed  Google Scholar 

  • Otero L, Bonilla M, Protasio AV, Fernandez C, Gladyshev VN, Salinas G (2010) Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths. BMC Genomics 11:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pader I, Sengupta R, Cebula M, Xu J, Lundberg JO, Holmgren A, Johansson K, Arner ES (2014) Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci U S A 111:6964–6969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquet V, Bisio H, Lopez GV, Romanelli-Cedrez L, Bonilla M, Saldana J, Salinas G (2015) Inhibition of tapeworm thioredoxin and glutathione pathways by an oxadiazole N-oxide leads to reduced mesocestoides vogae infection burden in mice. Molecules 20:11793–11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekkari K, Holmgren A (2004) Truncated thioredoxin: physiological functions and mechanism. Antioxid Redox Signal 6:53–61

    Article  CAS  PubMed  Google Scholar 

  • Pekkari K, Goodarzi MT, Scheynius A, Holmgren A, Avila-Carino J (2005) Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood 105:1598–1605

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Zhang MQ, Conserva F, Hosny G, Selivanova G, Bykov VJ, Arner ES, Wiman KG (2013) APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis 4:e881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Gimenez-Cassina A, Petrus P, Conrad M, Ryden M, Arner ES (2016) Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness. Sci Rep 6:28080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poerschke RL, Franklin MR, Bild AH, Moos PJ (2012) Major differences among chemopreventive organoselenocompounds in the sustained elevation of cytoprotective genes. J Biochem Mol Toxicol 26:344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, Arner ES, Bulleid NJ (2017) Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J 36:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prast-Nielsen S, Cebula M, Pader I, Arner ES (2010) Noble metal targeting of thioredoxin reductase – covalent complexes with thioredoxin and thioredoxin-related protein of 14 kDa triggered by cisplatin. Free Radic Biol Med 49:1765–1778

    Article  CAS  PubMed  Google Scholar 

  • Prast-Nielsen S, Dexheimer TS, Schultz L, Stafford WC, Cheng Q, Xu J, Jadhav A, Arnér ES, Simeonov A (2011) Inhibition of thioredoxin reductase 1 by porphyrins and other small molecules identified by a high-throughput screening assay. Free Radic Biol Med 50:1114–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arner ES, Schmidt EE (2012a) Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med 52:803–810

    Article  CAS  PubMed  Google Scholar 

  • Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arnér ESJ, Schmidt EE (2012b) Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med 52:803–810

    Article  CAS  PubMed  Google Scholar 

  • Prigge JR, Coppo L, Martin SS, Ogata F, Miller CG, Bruschwein MD, Orlicky DJ, Shearn CT, Kundert JA, Lytchier J, Herr AE, Mattsson A, Taylor MP, Gustafsson TN, Arner ESJ, Holmgren A, Schmidt EE (2017) Hepatocyte hyperproliferation upon liver-specific co-disruption of thioredoxin-1, thioredoxin reductase-1, and glutathione reductase. Cell Rep 19:2771–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rackham O, Shearwood AM, Thyer R, McNamara E, Davies SM, Callus BA, Miranda-Vizuete A, Berners-Price SJ, Cheng Q, Arnér ES, Filipovska A (2011) Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: implications for development of specific inhibitors. Free Radic Biol Med 50:689–699

    Article  CAS  PubMed  Google Scholar 

  • Rai G, Sayed AA, Lea WA, Luecke HF, Chakrapani H, Prast-Nielsen S, Jadhav A, Leister W, Shen M, Inglese J, Austin CP, Keefer L, Arner ES, Simeonov A, Maloney DJ, Williams DL, Thomas CJ (2009) Structure mechanism insights and the role of nitric oxide donation guide the development of oxadiazole-2-oxides as therapeutic agents against schistosomiasis. J Med Chem 52:6474–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841

    Google Scholar 

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Rigobello MP, Callegaro MT, Barzon E, Benetti M, Bindoli A (1998) Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic Biol Med 24:370–376

    Article  CAS  PubMed  Google Scholar 

  • Rigobello MP, Folda A, Baldoin MC, Scutari G, Bindoli A (2005) Effect of auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase. Free Radic Res 39:687–695

    Article  CAS  PubMed  Google Scholar 

  • Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R D 15:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins MF, van der Heide DM, Weisend CM, Kundert JA, Comstock KM, Suvorova ES, Capecchi MR, Merrill GF, Schmidt EE (2010) Hepatocytes lacking thioredoxin reductase 1 have normal replicative potential during development and regeneration. J Cell Sci 123:2402–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross F, Hernandez P, Porcal W, Lopez GV, Cerecetto H, Gonzalez M, Basika T, Carmona C, Flo M, Maggioli G, Bonilla M, Gladyshev VN, Boiani M, Salinas G (2012) Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites. PLoS One 7:e35033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundlöf A-K, Arnér ESJ (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth and signaling events. Antioxid Redox Signal 6:41–52

    Article  PubMed  CAS  Google Scholar 

  • Rundlof AK, Arner ES (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 6:41–52

    Article  PubMed  CAS  Google Scholar 

  • Rundlof AK, Carlsten M, Giacobini MM, Arner ES (2000) Prominent expression of the selenoprotein thioredoxin reductase in the medullary rays of the rat kidney and thioredoxin reductase mRNA variants differing at the 5′ untranslated region. Biochem J 347(Pt 3):661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundlof AK, Janard M, Miranda-Vizuete A, Arner ES (2004) Evidence for intriguingly complex transcription of human thioredoxin reductase 1. Free Radic Biol Med 36:641–656

    Article  CAS  PubMed  Google Scholar 

  • Rundlof AK, Fernandes AP, Selenius M, Babic M, Shariatgorji M, Nilsonne G, Ilag LL, Dobra K, Bjornstedt M (2007) Quantification of alternative mRNA species and identification of thioredoxin reductase 1 isoforms in human tumor cells. Differentiation 75:123–132

    Article  PubMed  CAS  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  • Saiz C, Castillo V, Fontan P, Bonilla M, Salinas G, Rodriguez-Haralambides A, Mahler SG (2014) Discovering Echinococcus granulosus thioredoxin glutathione reductase inhibitors through site-specific dynamic combinatorial chemistry. Mol Divers 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G (2001) Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc Natl Acad Sci U S A 98:9533–9538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt EE (2015) Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochem Soc Trans 43:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahabi V, Postow MA, Tuck D, Wolchok JD (2015) Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. Am J Clin Oncol 38:90–97

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Nikulenkov F, Zawacka-Pankau J, Li H, Gabdoulline R, Xu J, Eriksson S, Hedstrom E, Issaeva N, Kel A, Arner ES, Selivanova G (2014) ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ 21:612–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla R, Shukla H, Kalita P, Tripathi T (2018) Structural insights into natural compounds as inhibitors of Fasciola gigantica thioredoxin glutathione reductase. J Cell Biochem 119:3067–3080

    Google Scholar 

  • Silvestri I, Lyu H, Fata F, Boumis G, Miele AE, Ardini M, Ippoliti R, Bellelli A, Jadhav A, Lea WA, Simeonov A, Cheng Q, Arner ESJ, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F (2018) Fragment-based discovery of a regulatory site in thioredoxin glutathione reductase acting as "Doorstop" for NADPH entry. ACS Chem Biol 13:2190–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeonov A, Jadhav A, Sayed AA, Wang Y, Nelson ME, Thomas CJ, Inglese J, Williams DL, Austin CP (2008) Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade. PLoS Negl Trop Dis 2:e127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Li J, Xie S, Qian C, Wang J, Zhang W, Yin X, Hua Z, Yu C (2012) Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum. PLoS One 7:e31456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Tresaugues L, Dexheimer TS, Coussens NP, Augsten M, Ahlzen HM, Orwar O, Ostman A, Stone-Elander S, Maloney DJ, Jadhav A, Simeonov A, Linder S, Arner ESJ (2018) Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med 10:eaaf7444

    Google Scholar 

  • Su D, Gladyshev VN (2004) Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1. Biochemistry 43:12177–12188

    Article  CAS  PubMed  Google Scholar 

  • Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN (2005) Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem 280:26491–26498

    Article  CAS  PubMed  Google Scholar 

  • Sun QA, Kirnarsky L, Sherman S, Gladyshev VN (2001a) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci U S A 98:3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL, Gladyshev VN (2001b) Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing. J Biol Chem 276:3106–3114

    Article  CAS  PubMed  Google Scholar 

  • Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL, Gladyshev VN (2001c) Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing. J Biol Chem 276:3106–3114

    Article  CAS  PubMed  Google Scholar 

  • Sun QA, Su D, Novoselov SV, Carlson BA, Hatfield DL, Gladyshev VN (2005) Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase. Biochemistry 44:14528–14537

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539

    Article  CAS  PubMed  Google Scholar 

  • Suvorova ES, Lucas O, Weisend CM, Rollins MF, Merrill GF, Capecchi MR, Schmidt EE (2009) Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 4:e6158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A 93:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  • Urig S, Becker K (2006) On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin Cancer Biol 16:452–465

    Article  CAS  PubMed  Google Scholar 

  • Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35(Suppl):S185–S198

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang J, Xu T (2008) Thioredoxin reductase inactivation as a pivotal mechanism of ifosfamide in cancer therapy. Eur J Pharmacol 579:66–73

    Article  CAS  PubMed  Google Scholar 

  • Williams CH Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase – a family of flavoenzyme transhydrogenases. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 3. CRC Press, Boca Raton, FL, pp 121–211

    Google Scholar 

  • Williams DL, Bonilla M, Gladyshev VN, Salinas G (2013) Thioredoxin glutathione reductase-dependent redox networks in platyhelminth parasites. Antioxid Redox Signal 19:735–745

    Google Scholar 

  • Wipf P, Lynch SM, Birmingham A, Tamayo G, Jimenez A, Campos N, Powis G (2004) Natural product based inhibitors of the thioredoxin-thioredoxin reductase system. Org Biomol Chem 2:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Witte AB, Anestål K, Jerremalm E, Ehrsson H, Arnér ESJ (2005) Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic Biol Med 39:696–703

    Article  CAS  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo JR, Kim SJ, Jeong W, Cho YH, Lee SC, Chung YJ, Rhee SG, Ryu SE (2004) Structural basis of cellular redox regulation by human TRP14. J Biol Chem 279:48120–48125

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Nordman T, Olsson JM, Damdimopoulos A, Björkhem-Bergman L, Nalvarte I, Eriksson LC, Arnér ESJ, Spyrou G, Björnstedt M (2003) The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146

    Article  CAS  PubMed  Google Scholar 

  • Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  CAS  PubMed  Google Scholar 

  • Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Ye SF, Li J, Ji SM, Zeng HH, Lu W (2017) Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model. Acta Pharmacol Sin 38:223–232

    Article  CAS  PubMed  Google Scholar 

  • Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL (2006) Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells. J Biol Chem 281:13005–13008

    Article  CAS  PubMed  Google Scholar 

  • Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN, Hatfield DL (2007) Targeting thioredoxin reductase 1 reduction in cancer cells inhibits self-sufficient growth and DNA replication. PLoS One 2:e1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang J, Peng S, Liu R, Li X, Hou Y, Han X, Fang J (2016) Thioredoxin reductase inhibitors: a patent review. Expert Opin Ther Pat:1–10

    Google Scholar 

  • Zhang B, Liu Y, Li X, Xu J, Fang J (2018) Small molecules to target the selenoprotein thioredoxin reductase. Chem Asian J 13:3593–3600

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Li X, Han X, Liu R, Fang J (2019) Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: an update. Med Res Rev 39:5–39

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Gillette DD, Li X, Zhang Z, Wen H (2014) Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem 289:17020–17029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Holmgren A (2000) Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 275:18121–18128

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Arnér ESJ, Ljung J, Åslund F, Holmgren A (1998) Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 273:8581–8591

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Arnér ESJ, Holmgren A (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U S A 97:5854–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author wishes to thank his many talented group members and collaborators. Funding from Karolinska Institutet, the Swedish Cancer Society, the Swedish Research Council, the Hungarian National Institute of Oncology, the Hungarian Ministry of Human Capacities, and the Knut and Alice Wallenberg Foundations is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias S. J. Arnér .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnér, E.S.J. (2020). Effects of Mammalian Thioredoxin Reductase Inhibitors. In: Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A. (eds) Reactive Oxygen Species . Handbook of Experimental Pharmacology, vol 264. Springer, Cham. https://doi.org/10.1007/164_2020_393

Download citation

Publish with us

Policies and ethics