Skip to main content

Bioanalytical Methods for New Psychoactive Substances

  • Chapter
  • First Online:
New Psychoactive Substances

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 252))

Abstract

Bioanalysis of new psychoactive substances (NPS) is very challenging due to the growing number of compounds with new chemical structures found on the drugs of abuse market. Screening, identification, and quantification in biosamples are needed in clinical and forensic toxicology settings, and these procedures are more challenging than the analysis of seized drug material because of extremely low concentrations encountered in biofluids but also due to diverse metabolic alterations of the parent compounds. This article focuses on bioanalytical single- and multi-analyte procedures applicable to a broad variety of NPS in various biomatrices, such as blood, urine, oral fluid, or hair. Sample preparation, instrumentation, detection modes, and data evaluation are discussed as well as corresponding pitfalls. PubMed-listed and English-written original research papers and review articles published online between 01 October 2012 and 30 September 2017 were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1P-LSD:

1-Propionyl-lysergic acid diethylamide

25B-NBOMe:

2-(4-Bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25C-NBOMe:

2-(4-Chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25E-NBOMe:

2-(4-Ethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25H-NBOMe:

2-(2,5-Dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25I-NBOMe:

2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

2C:

2,5-Dimethoxyphenylethylamine

3-FPM:

3-Fluorophenmetrazine

3-MeO-PCP:

3-Methoxyphencyclidine

3-MMC:

3-Methylmethcathinone

4-MeO-PCP:

4-Methoxyphencyclidine

5F-APINACA:

N-(1-Adamantyl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

5F-MDMB-PICA:

Methyl-N-{[1-(5-fluoropentyl)-1H–indol-3-yl]carbonyl}-3-methylvalinate

5-IT:

5-(2-Aminopropyl)indole

α-PVP:

α-Pyrrolidinopentiophenone

α-PVT:

α-Pyrrolidinopentiothiophenone

AB-FUBINACA:

N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide

AL-LAD:

N 6-Allyl-6-norlysergic acid diethylamide

AMB-FUBINACA:

Methyl-N-[1-(4-fluorobenzyl)-1H-indazole-3-carboxamido]-3-methylbutanoate

APINACA:

N-(1-Adamantyl)-1-pentyl-1H-indazole-3-carboxamide

LSZ:

(2′S,4′S)-Lysergic acid 2,4-dimethylazetidide

MDMB-CHMICA:

Methyl-N-{[1-(cyclohexylmethyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate

MDPV:

3,4-Methylenedioxypyrovalerone

MEC:

Methylethcathinone

MMC:

Methylmethcathinone

MT-45:

1-Cyclohexyl-4-(1,2-diphenylethyl)piperazine

PV8:

α-Pyrrolidinoenanthophenone

U-47700:

3,4-Dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide

UR-144:

1-Pentyl-1H-indol-3-yl-(2,2,3,3-tetramethylcyclo-propyl)methanone

References

  • Adamowicz P, Tokarczyk B (2016) Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug Test Anal 8:652–667

    CAS  PubMed  Google Scholar 

  • Adamowicz P, Gieron J, Gil D, Lechowicz W, Skulska A, Tokarczyk B (2016) 3-Methylmethcathinone-interpretation of blood concentrations based on analysis of 95 cases. J Anal Toxicol 40:272–276

    CAS  PubMed  Google Scholar 

  • Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R (2017) “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N Engl J Med 376:235–242

    CAS  PubMed  Google Scholar 

  • Al-Saffar Y, Stephanson NN, Beck O (2013) Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine-experience from the Swedish population. J Chromatogr B Analyt Technol Biomed Life Sci 930:112–120

    CAS  PubMed  Google Scholar 

  • Alvarez JC, Fabresse N, Larabi IA (2017) Prevalence and surveillance of synthetic cathinones use by hair analysis: an update review. Curr Pharm Des. https://doi.org/10.2174/1381612823666170704124156

  • Ambach L, Hernandez Redondo A, Konig S, Weinmann W (2014) Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug Test Anal 6:367–375

    CAS  PubMed  Google Scholar 

  • Ares AM, Fernandez P, Regenjo M, Fernandez AM, Carro AM, Lorenzo RA (2017) A fast bioanalytical method based on microextraction by packed sorbent and UPLC-MS/MS for determining new psychoactive substances in oral fluid. Talanta 174:454–461

    CAS  PubMed  Google Scholar 

  • Arntson A, Ofsa B, Lancaster D, Simon JR, McMullin M, Logan B (2013) Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. J Anal Toxicol 37:284–290

    CAS  PubMed  Google Scholar 

  • Backberg M, Beck O, Hulten P, Rosengren-Holmberg J, Helander A (2014) Intoxications of the new psychoactive substance 5-(2-aminopropyl)indole (5-IT): a case series from the Swedish STRIDA project. Clin Toxicol (Phila) 52:618–624

    CAS  Google Scholar 

  • Backberg M, Beck O, Helander A (2015a) Phencyclidine analog use in Sweden – intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol (Phila) 53:856–864

    Google Scholar 

  • Backberg M, Beck O, Jonsson KH, Helander A (2015b) Opioid intoxications involving butyrfentanyl, 4-fluorobutyrfentanyl, and fentanyl from the Swedish STRIDA project. Clin Toxicol (Phila) 53:609–617

    Google Scholar 

  • Backberg M, Lindeman E, Beck O, Helander A (2015c) Characteristics of analytically confirmed 3-MMC-related intoxications from the Swedish STRIDA project. Clin Toxicol (Phila) 53:46–53

    Google Scholar 

  • Backberg M, Westerbergh J, Beck O, Helander A (2016) Adverse events related to the new psychoactive substance 3-fluorophenmetrazine – results from the Swedish STRIDA project. Clin Toxicol (Phila) 54:819–825

    Google Scholar 

  • Backberg M, Tworek L, Beck O, Helander A (2017) Analytically confirmed intoxications involving MDMB-CHMICA from the STRIDA project. J Med Toxicol 13:52–60

    PubMed  Google Scholar 

  • Barnes AJ, Spinelli E, Young S, Martin TM, Kleete KL, Huestis MA (2015) Validation of an ELISA synthetic cannabinoids urine assay. Ther Drug Monit 37:661–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck O, Rausberg L, Al-Saffar Y, Villen T, Karlsson L, Hansson T, Helander A (2014) Detectability of new psychoactive substances, ‘legal highs’, in CEDIA, EMIT, and KIMS immunochemical screening assays for drugs of abuse. Drug Test Anal 6:492–499

    CAS  PubMed  Google Scholar 

  • Beck O, Franzen L, Backberg M, Signell P, Helander A (2015) Intoxications involving MDPV in Sweden during 2010-2014: results from the STRIDA project. Clin Toxicol (Phila) 53:865–873

    Google Scholar 

  • Beck O, Franzen L, Backberg M, Signell P, Helander A (2016) Toxicity evaluation of alpha-pyrrolidinovalerophenone (alpha-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 54:568–575

    CAS  Google Scholar 

  • Beck O, Backberg M, Signell P, Helander A (2017) Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats. Clin Toxicol (Phila) 12:1–8

    Google Scholar 

  • Borg D, Tverdovsky A, Stripp R (2017) A fast and comprehensive analysis of 32 synthetic cannabinoids using agilent triple quadrupole LC-MS-MS. J Anal Toxicol 41:6–16

    CAS  PubMed  Google Scholar 

  • Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D (2017) The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int 279:192–202

    CAS  PubMed  Google Scholar 

  • Brandt SD, Elliott SP, Kavanagh PV, Dempster NM, Meyer MR, Maurer HH, Nichols DE (2015) Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines. Rapid Commun Mass Spectrom 29:573–584

    CAS  PubMed  Google Scholar 

  • Cannaert A, Storme J, Franz F, Auwarter V, Stove CP (2016) Detection and activity profiling of synthetic cannabinoids and their metabolites with a newly developed bioassay. Anal Chem 88:11476–11485

    CAS  PubMed  Google Scholar 

  • Cannaert A, Franz F, Auwarter V, Stove CP (2017) Activity-based detection of consumption of synthetic cannabinoids in authentic urine samples using a stable cannabinoid reporter system. Anal Chem 89:9527–9536

    CAS  PubMed  Google Scholar 

  • Caspar AT, Helfer AG, Michely JA, Auwarter V, Brandt SD, Meyer MR, Maurer HH (2015) Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MS(n), and LC-HR-MS/MS. Anal Bioanal Chem 407:6697–6719

    CAS  PubMed  Google Scholar 

  • Caspar AT, Brandt SD, Stoever AE, Meyer MR, Maurer HH (2017a) Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC-MS, LC-MSn, and LC-HR-MS/MS approaches. J Pharm Biomed Anal 134:158–169

    CAS  PubMed  Google Scholar 

  • Caspar AT, Gaab JB, Michely JA, Brandt SD, Meyer MR, Maurer HH (2017b) Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MSn, and LC-HR-MS/MS. Drug Test Anal. https://doi.org/10.1002/dta.2197

    PubMed  Google Scholar 

  • Caspar AT, Westphal F, Meyer MR, Maurer HH (2017c) LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power with further MS techniques. Anal Bioanal Chem. https://doi.org/10.1007/s00216-017-0526-0

    PubMed  Google Scholar 

  • Caspar AT, Kollas AB, Maurer HH, Meyer MR (2018) Development of a quantitative approach in blood plasma for low-dosed hallucinogens and opioids using LC-high resolution mass spectrometry. Talanta 176:635–645

    CAS  PubMed  Google Scholar 

  • Castaneto MS, Barnes AJ, Concheiro M, Klette KL, Martin TA, Huestis MA (2015a) Biochip array technology immunoassay performance and quantitative confirmation of designer piperazines for urine workplace drug testing. Anal Bioanal Chem 407:4639–4648

    CAS  PubMed  Google Scholar 

  • Castaneto MS, Wohlfarth A, Desrosiers NA, Hartman RL, Gorelick DA, Huestis MA (2015b) Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab Rev 47:124–174

    CAS  PubMed  Google Scholar 

  • Concheiro M, Castaneto M, Kronstrand R, Huestis MA (2015) Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching. J Chromatogr A 1397:32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deluca P, Davey Z, Corazza O, Di Furia L, Farre M, Flesland LH, Mannonen M, Majava A, Peltoniemi T, Pasinetti M, Pezzolesi C, Scherbaum N, Siemann H, Skutle A, Torrens M, van der Kreeft P, Iversen E, Schifano F (2012) Identifying emerging trends in recreational drug use; outcomes from the Psychonaut Web Mapping Project. Prog Neuro-Psychopharmacol Biol Psychiatry 39:221–226

    Google Scholar 

  • Ellefsen KN, Concheiro M, Huestis MA (2016) Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev 48:237–265

    CAS  PubMed  Google Scholar 

  • Elliott SP, Brandt SD, Freeman S, Archer RP (2013) AMT (3-(2-aminopropyl)indole) and 5-IT (5-(2-aminopropyl)indole): an analytical challenge and implications for forensic analysis. Drug Test Anal 5:196–202

    CAS  PubMed  Google Scholar 

  • EMCDDA (2017) European drug report 2017: trends and developments. European Monitoring Centre for Drugs and Drug Addiction. http://www.emcdda.europa.eu/system/files/publications/4541/TDAT17001ENN.pdf. Accessed 11 Dec 2017

  • Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL (2014) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to delta(9)-THC: mechanism underlying greater toxicity? Life Sci 97:45–54

    CAS  PubMed  Google Scholar 

  • Favretto D, Pascali JP, Tagliaro F (2013) New challenges and innovation in forensic toxicology: focus on the “new psychoactive substances”. J Chromatogr A 1287:84–95

    CAS  PubMed  Google Scholar 

  • Fleming SW, Cooley JC, Johnson L, Frazee CC, Domanski K, Kleinschmidt K, Garg U (2017) Analysis of U-47700, a novel synthetic opioid, in human urine by LC-MS-MS and LC-QToF. J Anal Toxicol 41:173–180

    CAS  PubMed  Google Scholar 

  • Franz F, Angerer V, Jechle H, Pegoro M, Ertl H, Weinfurtner G, Janele D, Schlogl C, Friedl M, Gerl S, Mielke R, Zehnle R, Wagner M, Moosmann B, Auwarter V (2017a) Immunoassay screening in urine for synthetic cannabinoids – an evaluation of the diagnostic efficiency. Clin Chem Lab Med 55:1375–1384

    CAS  PubMed  Google Scholar 

  • Franz F, Angerer V, Moosmann B, Auwarter V (2017b) Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples. Drug Test Anal 9:744–753

    CAS  PubMed  Google Scholar 

  • Gee P, Schep LJ, Jensen BP, Moore G, Barrington S (2016) Case series: toxicity from 25B-NBOMe – a cluster of N-bomb cases. Clin Toxicol (Phila) 54:141–146

    Google Scholar 

  • Grafinger KE, Hadener M, Konig S, Weinmann W (2017) Study of the in vitro and in vivo metabolism of the tryptamine 5-MeO-MiPT using human liver microsomes and real case samples. Drug Test Anal. https://doi.org/10.1002/dta.2245

    PubMed  Google Scholar 

  • Grapp M, Kaufmann C, Ebbecke M (2017) Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 273:1–9

    CAS  PubMed  Google Scholar 

  • Helander A, Backberg M, Beck O (2014a) MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clin Toxicol (Phila) 52:901–904

    CAS  Google Scholar 

  • Helander A, Backberg M, Hulten P, Al-Saffar Y, Beck O (2014b) Detection of new psychoactive substance use among emergency room patients: results from the Swedish STRIDA project. Forensic Sci Int 243:23–29

    CAS  PubMed  Google Scholar 

  • Helander A, Backberg M, Beck O (2016) Intoxications involving the fentanyl analogs acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: results from the Swedish STRIDA project. Clin Toxicol (Phila) 54:324–332

    CAS  Google Scholar 

  • Helander A, Backberg M, Signell P, Beck O (2017) Intoxications involving acrylfentanyl and other novel designer fentanyls – results from the Swedish STRIDA project. Clin Toxicol (Phila) 55:589–599

    CAS  Google Scholar 

  • Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH (2015) Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening – exemplified for cardiovascular drugs. Anal Chim Acta 891:221–233

    CAS  PubMed  Google Scholar 

  • Hoiseth G, Tuv SS, Karinen R (2016) Blood concentrations of new designer benzodiazepines in forensic cases. Forensic Sci Int 268:35–38

    PubMed  Google Scholar 

  • Huppertz LM, Moosmann B, Auwarter V (2017) Flubromazolam – basic pharmacokinetic evaluation of a highly potent designer benzodiazepine. Drug Test Anal. https://doi.org/10.1002/dta.2203

    PubMed  Google Scholar 

  • Karila L, Benyamina A, Blecha L, Cottencin O, Billieux J (2016) The synthetic cannabinoids phenomenon. Curr Pharm Des 22:6420–6425

    CAS  PubMed  Google Scholar 

  • Karinen R, Tuv SS, Oiestad EL, Vindenes V (2015) Concentrations of APINACA, 5F-APINACA, UR-144 and its degradant product in blood samples from six impaired drivers compared to previous reported concentrations of other synthetic cannabinoids. Forensic Sci Int 246:98–103

    CAS  PubMed  Google Scholar 

  • Kyriakou C, Marinelli E, Frati P, Santurro A, Afxentiou M, Zaami S, Busardo FP (2015) NBOMe: new potent hallucinogens-pharmacology, analytical methods, toxicities, fatalities: a review. Eur Rev Med Pharmacol Sci 19:3270–3281

    CAS  PubMed  Google Scholar 

  • Lee HH, Lee JF, Lin SY, Chen BH (2016) Simultaneous identification of abused drugs, benzodiazepines, and new psychoactive substances in urine by liquid chromatography tandem mass spectrometry. Kaohsiung J Med Sci 32:118–127

    PubMed  Google Scholar 

  • Lehmann S, Kieliba T, Beike J, Thevis M, Mercer-Chalmers-Bender K (2017) Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1064:124–138

    CAS  PubMed  Google Scholar 

  • Lendoiro E, Jimenez-Morigosa C, Cruz A, Paramo M, Lopez-Rivadulla M, de Castro A (2017) An LC-MS/MS methodological approach to the analysis of hair for amphetamine-type-stimulant (ATS) drugs, including selected synthetic cathinones and piperazines. Drug Test Anal 9:96–105

    CAS  PubMed  Google Scholar 

  • Logan BK, Mohr ALA, Friscia M, Krotulski AJ, Papsun DM, Kacinko SL, Ropero-Miller JD, Huestis MA (2017) Reports of adverse events associated with use of novel psychoactive substances, 2013-2016: a review. J Anal Toxicol 41:573–610

    CAS  PubMed  Google Scholar 

  • Maas A, Sydow K, Madea B, Hess C (2017) Separation of ortho, meta and para isomers of methylmethcathinone (MMC) and methylethcathinone (MEC) using LC-ESI-MS/MS: application to forensic serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 1051:118–125

    CAS  PubMed  Google Scholar 

  • Manchester KR, Lomas EC, Waters L, Dempsey FC, Maskell PD (2017) The emergence of new psychoactive substance (NPS) benzodiazepines: a review. Drug Test Anal. https://doi.org/10.1002/dta.2211

    PubMed  Google Scholar 

  • Maurer HH, Meyer MR (2016) High-resolution mass spectrometry in toxicology: current status and future perspectives. Arch Toxicol 90:2161–2172

    CAS  PubMed  Google Scholar 

  • Menzies EL, Hudson SC, Dargan PI, Parkin MC, Wood DM, Kicman AT (2014) Characterizing metabolites and potential metabolic pathways for the novel psychoactive substance methoxetamine. Drug Test Anal 6:506–515

    CAS  PubMed  Google Scholar 

  • Mercolini L, Protti M (2016) Biosampling strategies for emerging drugs of abuse: towards the future of toxicological and forensic analysis. J Pharm Biomed Anal 130:202–219

    CAS  PubMed  Google Scholar 

  • Meyer MR (2016) New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Arch Toxicol 90:2421–2444

    CAS  PubMed  Google Scholar 

  • Meyer MR, Maurer HH (2016) Review: LC coupled to low- and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices – where do we stand today? Anal Chim Acta 927:13–20

    CAS  PubMed  Google Scholar 

  • Meyer MR, Bergstrand MP, Helander A, Beck O (2016) Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes. Anal Bioanal Chem 408:3571–3591

    CAS  PubMed  Google Scholar 

  • Michely JA, Helfer AG, Brandt SD, Meyer MR, Maurer HH (2015) Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS-MS. Anal Bioanal Chem 407:7831–7842

    CAS  Google Scholar 

  • Michely JA, Brandt SD, Meyer MR, Maurer HH (2017) Biotransformation and detectability of the new psychoactive substances N,N-diallyltryptamine (DALT) derivatives 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MSn, and LC-HR-MS/MS. Anal Bioanal Chem 409:1681–1695

    CAS  PubMed  Google Scholar 

  • Mogler L, Franz F, Rentsch D, Angerer V, Weinfurtner G, Longworth M, Banister SD, Kassiou M, Moosmann B, Auwarter V (2017) Detection of the recently emerged synthetic cannabinoid 5F-MDMB-PICA in ‘legal high’ products and human urine samples. Drug Test Anal. https://doi.org/10.1002/dta.2201

    PubMed  Google Scholar 

  • Mohr AL, Ofsa B, Keil AM, Simon JR, McMullin M, Logan BK (2014) Enzyme-linked immunosorbent assay (ELISA) for the detection of use of the synthetic cannabinoid agonists UR-144 and XLR-11 in human urine. J Anal Toxicol 38:427–431

    CAS  PubMed  Google Scholar 

  • Mollerup CB, Dalsgaard PW, Mardal M, Linnet K (2017) Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition. Drug Test Anal 9:1052–1061

    CAS  PubMed  Google Scholar 

  • Montesano C, Vannutelli G, Gregori A, Ripani L, Compagnone D, Curini R, Sergi M (2016) Broad screening and identification of novel psychoactive substances in plasma by high-performance liquid chromatography-high-resolution mass spectrometry and post-run library matching. J Anal Toxicol 40:519–528

    CAS  PubMed  Google Scholar 

  • Montesano C, Vannutelli G, Massa M, Simeoni MC, Gregori A, Ripani L, Compagnone D, Curini R, Sergi M (2017) Multi-class analysis of new psychoactive substances and metabolites in hair by pressurized liquid extraction coupled to HPLC-HRMS. Drug Test Anal 9:798–807

    CAS  PubMed  Google Scholar 

  • Moosmann B, Huppertz LM, Hutter M, Buchwald A, Ferlaino S, Auwarter V (2013) Detection and identification of the designer benzodiazepine flubromazepam and preliminary data on its metabolism and pharmacokinetics. J Mass Spectrom 48:1150–1159

    CAS  PubMed  Google Scholar 

  • Moosmann B, Bisel P, Auwarter V (2014) Characterization of the designer benzodiazepine diclazepam and preliminary data on its metabolism and pharmacokinetics. Drug Test Anal 6:757–763

    CAS  PubMed  Google Scholar 

  • Moosmann B, Bisel P, Franz F, Huppertz LM, Auwarter V (2016) Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines – an update comprising adinazolam, cloniprazepam, fonazepam, 3-hydroxyphenazepam, metizolam, and nitrazolam. J Mass Spectrom 51:1080–1089

    CAS  PubMed  Google Scholar 

  • Nelson ME, Bryant SM, Aks SE (2014) Emerging drugs of abuse. Emerg Med Clin North Am 32:1–28

    PubMed  Google Scholar 

  • NIDA (2016) Hallucinogens. https://www.drugabuse.gov/publications/drugfacts/hallucinogens. Accessed 11 Dec 2017

  • Nieddu M, Burrai L, Baralla E, Pasciu V, Varoni MV, Briguglio I, Demontis MP, Boatto G (2016) ELISA detection of 30 new amphetamine designer drugs in whole blood, urine and oral fluid using Neogen® “amphetamine” and “methamphetamine/MDMA” kits. J Anal Toxicol 40:492–497

    CAS  PubMed  Google Scholar 

  • Noble C, Dalsgaard PW, Johansen SS, Linnet K (2017a) Application of a screening method for fentanyl and its analogues using UHPLC-QTOF-MS with data-independent acquisition (DIA) in MSE mode and retrospective analysis of authentic forensic blood samples. Drug Test Anal. https://doi.org/10.1002/dta.2263

    PubMed  Google Scholar 

  • Noble C, Mardal M, Bjerre Holm N, Stybe Johansen S, Linnet K (2017b) In vitro studies on flubromazolam metabolism and detection of its metabolites in authentic forensic samples. Drug Test Anal 9:1182–1191

    CAS  PubMed  Google Scholar 

  • O’Connor LC, Torrance HJ, McKeown DA (2016) ELISA detection of phenazepam, etizolam, pyrazolam, flubromazepam, diclazepam and delorazepam in blood using Immunalysis® benzodiazepine kit. J Anal Toxicol 40:159–161

    PubMed  Google Scholar 

  • Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S (2015) High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 1000:57–68

    CAS  PubMed  Google Scholar 

  • Olesti E, Pujadas M, Papaseit E, Perez-Mana C, Pozo OJ, Farre M, de la Torre R (2017) GC-MS quantification method for mephedrone in plasma and urine: application to human pharmacokinetics. J Anal Toxicol 41:100–106

    CAS  PubMed  Google Scholar 

  • Papsun D, Krywanczyk A, Vose JC, Bundock EA, Logan BK (2016) Analysis of MT-45, a novel synthetic opioid, in human whole blood by LC-MS-MS and its identification in a drug-related death. J Anal Toxicol 40:313–317

    CAS  PubMed  Google Scholar 

  • Peters FT (2014) Recent developments in urinalysis of metabolites of new psychoactive substances using LC-MS. Bioanalysis 6:2083–2107

    PubMed  Google Scholar 

  • Pettersson Bergstrand M, Helander A, Beck O (2016) Development and application of a multi-component LC-MS/MS method for determination of designer benzodiazepines in urine. J Chromatogr B Analyt Technol Biomed Life Sci 1035:104–110

    CAS  PubMed  Google Scholar 

  • Pettersson Bergstrand M, Helander A, Hansson T, Beck O (2017a) Detectability of designer benzodiazepines in CEDIA, EMIT II Plus, HEIA, and KIMS II immunochemical screening assays. Drug Test Anal 9:640–645

    CAS  PubMed  Google Scholar 

  • Pettersson Bergstrand M, Meyer MR, Beck O, Helander A (2017b) Human urinary metabolic patterns of the designer benzodiazepines flubromazolam and pyrazolam studied by liquid chromatography-high resolution mass spectrometry. Drug Test Anal. https://doi.org/10.1002/dta.2243

    PubMed  Google Scholar 

  • Poklis JL, Clay DJ, Poklis A (2014) High-performance liquid chromatography with tandem mass spectrometry for the determination of nine hallucinogenic 25-NBOMe designer drugs in urine specimens. J Anal Toxicol 38:113–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Protti M, Rudge J, Sberna AE, Gerra G, Mercolini L (2017) Dried haematic microsamples and LC-MS/MS for the analysis of natural and synthetic cannabinoids. J Chromatogr B Analyt Technol Biomed Life Sci 1044–1045:77–86

    PubMed  Google Scholar 

  • Richter LHJ, Maurer HH, Meyer MR (2017) New psychoactive substances: studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-alpha-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicol Lett 280:142–150

    CAS  PubMed  Google Scholar 

  • Salomone A, Luciano C, Di Corcia D, Gerace E, Vincenti M (2014) Hair analysis as a tool to evaluate the prevalence of synthetic cannabinoids in different populations of drug consumers. Drug Test Anal 6:126–134

    CAS  PubMed  Google Scholar 

  • Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vincenti M (2016) Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem 408:2035–2042

    CAS  PubMed  Google Scholar 

  • Schaefer N, Wojtyniak JG, Kettner M, Schlote J, Laschke MW, Ewald AH, Lehr T, Menger MD, Maurer HH, Schmidt PH (2016) Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology. Toxicol Lett 253:7–16

    CAS  PubMed  Google Scholar 

  • Shulgin A, Shulgin A (1997) Tihkal: the continuation. Transform Press, Berkley

    Google Scholar 

  • Stephanson NN, Signell P, Helander A, Beck O (2017) Use of LC-HRMS in full scan-XIC mode for multi-analyte urine drug testing – a step towards a ‘black-box’ solution? J Mass Spectrom 52:497–506

    CAS  PubMed  Google Scholar 

  • Steuer AE, Williner E, Staeheli SN, Kraemer T (2017) Studies on the metabolism of the fentanyl-derived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Drug Test Anal 9:1085–1092

    CAS  PubMed  Google Scholar 

  • Strano-Rossi S, Odoardi S, Fisichella M, Anzillotti L, Gottardo R, Tagliaro F (2014) Screening for new psychoactive substances in hair by ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1372C:145–156

    PubMed  Google Scholar 

  • Sundstrom M, Pelander A, Ojanpera I (2015) Comparison between drug screening by immunoassay and ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry in post-mortem urine. Drug Test Anal 7:420–427

    PubMed  Google Scholar 

  • Sundstrom M, Pelander A, Ojanpera I (2017) Comparison of post-targeted and pre-targeted urine drug screening by UHPLC-HR-QTOFMS. J Anal Toxicol 41:623–630

    CAS  PubMed  Google Scholar 

  • SWGDRUG (2016) Recommendations for the analysis of seized drugs. http://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%207-0.pdf. Accessed 11 Dec 2017

  • Swortwood MJ, Hearn WL, DeCaprio AP (2014) Cross-reactivity of designer drugs, including cathinone derivatives, in commercial enzyme-linked immunosorbent assays. Drug Test Anal 6:716–727

    CAS  PubMed  Google Scholar 

  • Swortwood MJ, Carlier J, Ellefsen KN, Wohlfarth A, Diao X, Concheiro-Guisan M, Kronstrand R, Huestis MA (2016a) In vitro, in vivo and in silico metabolic profiling of alpha-pyrrolidinopentiothiophenone, a novel thiophene stimulant. Bioanalysis 8:65–82

    CAS  Google Scholar 

  • Swortwood MJ, Ellefsen KN, Wohlfarth A, Diao X, Concheiro-Guisan M, Kronstrand R, Huestis MA (2016b) First metabolic profile of PV8, a novel synthetic cathinone, in human hepatocytes and urine by high-resolution mass spectrometry. Anal Bioanal Chem 408:4845–4856

    CAS  Google Scholar 

  • Tang MH, Ching CK, Lee CY, Lam YH, Mak TW (2014) Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 969:272–284

    CAS  PubMed  Google Scholar 

  • Temporal KH, Scott KS, Mohr ALA, Logan BK (2017) Metabolic profile determination of NBOMe compounds using human liver microsomes and comparison with findings in authentic human blood and urine. J Anal Toxicol 41:646–657

    CAS  PubMed  Google Scholar 

  • Tynon M, Homan J, Kacinko S, Ervin A, McMullin M, Logan BK (2017) Rapid and sensitive screening and confirmation of thirty-four aminocarbonyl/carboxamide (NACA) and arylindole synthetic cannabinoid drugs in human whole blood. Drug Test Anal 9:924–934

    CAS  PubMed  Google Scholar 

  • Tyrkko E, Andersson M, Kronstrand R (2016) The toxicology of new psychoactive substances: synthetic cathinones and phenylethylamines. Ther Drug Monit 38:190–216

    PubMed  Google Scholar 

  • Vaiano F, Busardo FP, Palumbo D, Kyriakou C, Fioravanti A, Catalani V, Mari F, Bertol E (2016) A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC-MS/MS and application to real cases. J Pharm Biomed Anal 129:441–449

    CAS  PubMed  Google Scholar 

  • Vikingsson S, Green H, Brinkhagen L, Mukhtar S, Josefsson M (2016) Identification of AB-FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry. Drug Test Anal 8:950–956

    CAS  PubMed  Google Scholar 

  • Vikingsson S, Wohlfarth A, Andersson M, Green H, Roman M, Josefsson M, Kugelberg FC, Kronstrand R (2017) Identifying metabolites of meclonazepam by high-resolution mass spectrometry using human liver microsomes, hepatocytes, a mouse model, and authentic urine samples. AAPS J 19:736–742

    CAS  PubMed  Google Scholar 

  • Wagmann L, Brandt SD, Kavanagh PV, Maurer HH, Meyer MR (2017) In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks. Toxicol Lett 272:84–93

    CAS  PubMed  Google Scholar 

  • Watanabe S, Vikingsson S, Roman M, Green H, Kronstrand R, Wohlfarth A (2017) In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. AAPS J 19:1102–1122

    CAS  PubMed  Google Scholar 

  • Welter-Luedeke J, Maurer HH (2016) New psychoactive substances: chemistry, pharmacology, metabolism, and detectability of amphetamine derivatives with modified ring systems. Ther Drug Monit 38:4–11

    CAS  PubMed  Google Scholar 

  • Williams M, Martin J, Galettis P (2017) A validated method for the detection of 32 bath salts in oral fluid. J Anal Toxicol 41:659–669

    CAS  PubMed  Google Scholar 

  • Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Development of the first metabolite-based LC-MS(n) urine drug screening procedure-exemplified for antidepressants. Anal Bioanal Chem 400:79–88

    CAS  PubMed  Google Scholar 

  • Wohlfarth A, Roman M, Andersson M, Kugelberg FC, Diao X, Carlier J, Eriksson C, Wu X, Konradsson P, Josefsson M, Huestis MA, Kronstrand R (2017) 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test Anal 9:680–698

    CAS  PubMed  Google Scholar 

  • Zamengo L, Frison G, Bettin C, Sciarrone R (2014) Understanding the risks associated with the use of new psychoactive substances (NPS): high variability of active ingredients concentration, mislabelled preparations, multiple psychoactive substances in single products. Toxicol Lett 229:220–228

    CAS  PubMed  Google Scholar 

  • Zawilska JB (2014) Methoxetamine-a novel recreational drug with potent hallucinogenic properties. Toxicol Lett 230:402–407

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Maurer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagmann, L., Maurer, H.H. (2018). Bioanalytical Methods for New Psychoactive Substances. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2017_83

Download citation

Publish with us

Policies and ethics