Skip to main content

Novel Use of a Biologically Active-Prefabricated-Random-Three-Dimensional-Polymer Scaffold of Hyaluronic Acid (HYAFF) to Facilitate Complicated Wound Closure

  • Chapter
  • First Online:
Burns, Infections and Wound Management

Part of the book series: Recent Clinical Techniques, Results, and Research in Wounds ((RCTRRW,volume 2))

  • 1268 Accesses

Abstract

Hyaluronic acid (HA) is a major extracellular matrix (ECM) glycosaminoglycan (GAG) polymer that has been shown to have differential signaling effects on the local cells and surrounding ECM. Hyaluronic acid (HA) is unique among glycosaminoglycans in that it is nonsulfated; forms in the plasma membrane, instead of the Golgi apparatus; and can become very large with its weight often reaching the millions of KDa. In a stabilized form, it provides a 3D-biopolymer scaffold that promotes endothelial cell migration, thus supporting neovascularization, a foundation of granulation tissue and extracellular matrix revitalization. Use of HYAFF, a commercially available stabilized HA scaffold, is presented in four varied case studies both in terms of wounding etiology and complications. The use of HYAFF in complicated integumentary wound closure is a relatively new technique, made available by the stabilization of hyaluronic acid through the use of benzyl esterification. The esterification prevents the rapid breakdown and turnover of HA, which can have a lifetime as short as several minutes.

The effect of the HYAFF is seen as a result of the controlled degradation of the core GAG, HA, and the resulting molecular weight. HA is important in the signaling and direction of wound resolution, with low molecular weight hyaluronic acid (LMWHA) associated with the inflammatory response and high molecular weight hyaluronic acid (HMWHA) associated with proliferation and granulation activity. The wound case studies presented here originate as a result of trauma, severe infection, as in the case of necrotizing fasciitis, or burns. Regardless the resulting full-thickness integumentary deficit poses a significant challenge to acceptable closure with both functional and cosmetic patient goals in mind. Here we present the biological, molecular, and chemical basis for the successful use of HA to complete the inflammatory process or expedite granulation in preparation for final closure. Final closure may include STSG or FTSG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang D, Liang J, Noble PW (2011) Hyaluronan as an immune regulator in human diseases. Physiol Rev 91(1):221–264

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weissmann B, Meyer K, Sampson P, Linker A (1954) Isolation of oligosaccharides enzymatically produced from hyaluronic acid. J Biol Chem 208(1):417–429

    PubMed  Google Scholar 

  3. Coleman PJ, Scott D, Mason RM, Levick JR (1999) Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees. J Physiol 514(Pt 1):265–282

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott JE, Heatley F (1999) Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci U S A 96(9):4850–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bates EJ, Harper GS, Lowther DA, Preston BN (1984) Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates. Biochem Int 8(5):629–637

    CAS  PubMed  Google Scholar 

  6. Bates EJ, Lowther DA, Handley CJ (1984) Oxygen free-radicals mediate an inhibition of proteoglycan synthesis in cultured articular cartilage. Ann Rheum Dis 43(3):462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Weigel PH, Fuller GM, LeBoeuf RD (1986) A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119(2):219–234

    CAS  PubMed  Google Scholar 

  8. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, Noble PW (1996) Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest 98(10):2403–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 4(3):253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McKee CM, Lowenstein CJ, Horton MR, Wu J, Bao C, Chin BY, Choi AM, Noble PW (1997) Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor kappaB-dependent mechanism. J Biol Chem 272(12):8013–8018

    CAS  PubMed  Google Scholar 

  11. Prehm P (1984) Hyaluronate is synthesized at plasma membranes. Biochem J 220(2):597–600

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang M, Osterlund P, Sarin LP, Poranen MM, Bamford DH, Guo D, Julkunen I (2011) Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5′ phosphorylation of RNA molecules. J Immunol 187(4):1713–1721

    CAS  PubMed  Google Scholar 

  13. Toole BP (1990) Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2(5):839–844

    CAS  PubMed  Google Scholar 

  14. Herishanu Y, Gibellini F, Njuguna N, Hazan-Halevy I, Farooqui M, Bern S, Keyvanfar K, Lee E, Wilson W, Wiestner A (2011) Activation of CD44, a receptor for extracellular matrix components, protects chronic lymphocytic leukemia cells from spontaneous and drug induced apoptosis through MCL-1. Leuk Lymphoma 52(9):1758–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ioachim E, Goussia A, Agnantis NJ (1999) Glycoprotein CD44 expression in colorectal neoplasms. An immuno-histochemical study including correlation with cathepsin D, extracellular matrix components, p53, Rb, bcl-2, c-erbB-2, EGFR and proliferation indices. Virchows Arch 434(1):45–50

    CAS  PubMed  Google Scholar 

  16. Radotra B, McCormick D, Crockard A (1994) CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components. Neuropathol Appl Neurobiol 20(4):399–405

    CAS  PubMed  Google Scholar 

  17. Hardwick C, Hoare K, Owens R, Hohn HP, Hook M, Moore D, Cripps V, Austen L, Nance DM, Turley EA (1992) Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117(6):1343–1350

    CAS  PubMed  Google Scholar 

  18. Turley EA (1992) Hyaluronan and cell locomotion. Cancer Metastasis Rev 11(1):21–30

    CAS  PubMed  Google Scholar 

  19. Mohapatra S, Yang X, Wright JA, Turley EA, Greenberg AH (1996) Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression. J Exp Med 183(4):1663–1668

    CAS  PubMed  Google Scholar 

  20. Al-Mulla F, Leibovich SJ, Francis IM, Bitar MS (2011) Impaired TGF-beta signaling and a defect in resolution of inflammation contribute to delayed wound healing in a female rat model of type 2 diabetes. Mol Biosystems 7(11):3006–3020

    CAS  Google Scholar 

  21. Ekholm EC, Ravanti L, Kahari V, Paavolainen P, Penttinen RP (2000) Expression of extracellular matrix genes: transforming growth factor (TGF)-beta1 and ras in tibial fracture healing of lathyritic rats. Bone 27(4):551–557

    CAS  PubMed  Google Scholar 

  22. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N (2012) TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13:31

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heinemeier K, Langberg H, Olesen JL, Kjaer M (2003) Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue. J Appl Physiol (1985) 95(6):2390–2397

    CAS  Google Scholar 

  24. Kihara Y, Tashiro M, Nakamura H, Yamaguchi T, Yoshikawa H, Otsuki M (2001) Role of TGF-beta1, extracellular matrix, and matrix metalloproteinase in the healing process of the pancreas after induction of acute necrotizing pancreatitis using arginine in rats. Pancreas 23(3):288–295

    CAS  PubMed  Google Scholar 

  25. Leask A (2006) Scar wars: is TGFbeta the phantom menace in scleroderma? Arthritis Res Ther 8(4):213

    PubMed  PubMed Central  Google Scholar 

  26. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827

    CAS  PubMed  Google Scholar 

  27. Meyer-ter-Vehn T, Han H, Grehn F, Schlunck G (2011) Extracellular matrix elasticity modulates TGF-beta-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 52(12):9149–9155

    PubMed  Google Scholar 

  28. Ripellino JA, Bailo M, Margolis RU, Margolis RK (1988) Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum. J Cell Biol 106(3):845–855

    CAS  PubMed  Google Scholar 

  29. Tammi R, Ripellino JA, Margolis RU, Tammi M (1988) Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol 90(3):412–414

    CAS  PubMed  Google Scholar 

  30. Batzios SP, Zafeiriou DI, Papakonstantinou E (2013) Extracellular matrix components: an intricate network of possible biomarkers for lysosomal storage disorders? FEBS Lett 587(8):1258–1267

    CAS  PubMed  Google Scholar 

  31. Hamm R (2015) Text and atlas of wound diagnosis and treatment. McGraw Hill, New York, NY

    Google Scholar 

  32. Kazlauskas A (2005) The priming/completion paradigm to explain growth factor-dependent cell cycle progression. Growth Factors 23(3):203–210

    CAS  PubMed  Google Scholar 

  33. Grotendorst GR, Okochi H (1996) Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7(4):469–480

    CAS  PubMed  Google Scholar 

  34. Igarashi A, Okochi H, Bradham DM, Grotendorst GR (1993) Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 4(6):637–645

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111

    CAS  PubMed  Google Scholar 

  36. Figg W, Folkman J (2008) Angiogenesis. Springer Science and Business Media, LLC, New York, NY

    Google Scholar 

  37. Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC, Griswold JA (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75:3715–3721

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stout RD, Suttles J (1997) T cell signaling of macrophage function in inflammatory disease. Front Biosci 2:d197–d206

    CAS  PubMed  Google Scholar 

  39. Bhowmick S, Rother S, Zimmermann H, Lee PS, Moeller S, Schnabelrauch M, Koul V, Jordan R, Hintze V, Scharnweber D (2017) Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application—the role of chondroitin sulfate and sulfated hyaluronan. Mater Sci Eng C Mater Biol Appl 79:15–22

    CAS  PubMed  Google Scholar 

  40. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Samà D, Calatroni A (2008) NF-kB and caspases are involved in the hyaluronan and chondroitin-4-sulphate-exerted antioxidant effect in fibroblast cultures exposed to oxidative stress. J Appl Toxicol 28(4):509–517

    CAS  PubMed  Google Scholar 

  41. Morioka Y, Yamasaki K, Leung D, Gallo RL (2008) Cathelicidin antimicrobial peptides inhibit hyaluronan-induced cytokine release and modulate chronic allergic dermatitis. J Immunol 181(6):3915–3922

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ng CK, Handley CJ, Preston BN, Robinson HC (1992) The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage explants. Arch Biochem Biophys 298(1):70–79

    CAS  PubMed  Google Scholar 

  43. Ng CK, Handley CJ, Preston BN, Robinson HC, Bolis S, Parker G (1995) Effect of exogenous hyaluronan and hyaluronan oligosaccharides on hyaluronan and aggrecan synthesis and catabolism in adult articular cartilage explants. Arch Biochem Biophys 316(1):596–606

    CAS  PubMed  Google Scholar 

  44. Rock K, Grandoch M, Majora M, Krutmann J, Fischer JW (2011) Collagen fragments inhibit hyaluronan synthesis in skin fibroblasts in response to ultraviolet B (UVB): new insights into mechanisms of matrix remodeling. J Biol Chem 286(20):18268–18276

    PubMed  PubMed Central  Google Scholar 

  45. Sadeghi N, Camby I, Goldman S, Gabius HJ, Balériaux D, Salmon I, Decaesteckere C, Kiss R, Metens T (2003) Effect of hydrophilic components of the extracellular matrix on quantifiable diffusion-weighted imaging of human gliomas: preliminary results of correlating apparent diffusion coefficient values and hyaluronan expression level. AJR Am J Roentgenol 181(1):235–241

    PubMed  Google Scholar 

  46. Suwiwat S, Ricciardelli C, Tammi R, Tammi M, Auvinen P, Kosma VM, LeBaron RG, Raymond WA, Tilley WD, Horsfall DJ (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10(7):2491–2498

    CAS  PubMed  Google Scholar 

  47. Travis JA, Hughes MG, Wong JM, Wagner WD, Geary RL (2001) Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: role of CD44 and implications for constrictive remodeling. Circ Res 88(1):77–83

    CAS  PubMed  Google Scholar 

  48. Yagi M, Sato N, Mitsui Y, Gotoh M, Hamada T, Nagata K (2010) Hyaluronan modulates proliferation and migration of rabbit fibroblasts derived from flexor tendon epitenon and endotenon. J Hand Surg Am 35(5):791–796

    PubMed  Google Scholar 

  49. Gough MJ, Killeen N, Weinberg AD (2012) Targeting macrophages in the tumour environment to enhance the efficacy of alphaOX40 therapy. Immunology 136(4):437–447

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Herwig R, Pelzer A, Horninger W, Rehder P, Klocker H, Ramoner R, Pinggera GM, Gozzi C, Konwalinka G, Bartsch G (2004) Measurement of intracellular versus extracellular prostate-specific antigen levels in peripheral macrophages: a new approach to noninvasive diagnosis of prostate cancer. Clin Prostate Cancer 3(3):1848

    Google Scholar 

  51. Joshi AD, Oak SR, Hartigan AJ, Finn WG, Kunkel SL, Duffy KE, Das A, Hogaboam CM (2010) Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol 11:52

    PubMed  PubMed Central  Google Scholar 

  52. Katschke KJ, Rottman JB, Ruth JH, Qin S, Wu L, LaRosa G, Ponath P, Park CC, Pope RM, Koch AE (2001) Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum 44:1022–1032

    CAS  PubMed  Google Scholar 

  53. Kawamura H, Kawamura T, Kanda Y, Kobayashi T, Abo T (2012) Extracellular ATP-stimulated macrophages produce macrophage inflammatory protein-2 which is important for neutrophil migration. Immunology 136(4):448–458

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kessler L, Tritschler S, Bohbot A, Sigrist S, Karsten V, Boivin S, Dufour P, Belcourt A, Pinget M (2001) Macrophage activation in type 1 diabetic patients with catheter obstruction during peritoneal insulin delivery with an implantable pump. Diabetes Care 24(2):302–307

    CAS  PubMed  Google Scholar 

  55. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    CAS  PubMed  Google Scholar 

  56. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    CAS  PubMed  Google Scholar 

  58. Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P (2016) Arnica montana stimulates extracellular matrix gene expression in a macrophage cell line differentiated to wound-healing phenotype. PLoS One 11(11):e0166340

    PubMed  PubMed Central  Google Scholar 

  59. Minton K (2011) Macrophages: a transcription factor to call their own. Nat Rev Immunol 11(2):74

    CAS  PubMed  Google Scholar 

  60. Papatriantafyllou M (2011) Macrophages: support from the locals. Nat Rev Immunol 11(7):442

    PubMed  Google Scholar 

  61. Patterson AM, Schmutz C, Davis S, Gardner L, Ashton BA, Middleton J (2002) Differential binding of chemokines to macrophages and neutrophils in the human inflamed synovium. Arthritis Res 4:209–214

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Reece P, Baatjes AJ, Cyr MM, Sehmi R, Denburg JA (2013) Toll-like receptor-mediated eosinophil-basophil differentiation: autocrine signalling by granulocyte-macrophage colony-stimulating factor in cord blood haematopoietic progenitors. Immunology 139(2):256–264

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodero MP, Khosrotehrani K (2010) Skin wound healing modulation by macrophages. Int J Clin Exp Pathol 3(7):643–653

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruth JH, Shahrara S, Park CC, Morel JC, Kumar P, Qin S, Koch AE (2003) Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Lab Investig 83:579–588

    CAS  PubMed  Google Scholar 

  65. St Pierre BA, Tidball JG (1994) Macrophage activation and muscle remodeling at myotendinous junctions after modifications in muscle loading. Am J Pathol 145(6):1463–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stout RD (2010) Editorial: macrophage functional phenotypes: no alternatives in dermal wound healing? J Leukoc Biol 87(1):19–21

    CAS  PubMed  Google Scholar 

  67. Stout RD, Bottomly K (1989) Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. J Immunol 142(3):760–765

    CAS  PubMed  Google Scholar 

  68. Stout RD, Suttles J (1987) Functional characteristics of in vitro generated macrophages: a transient refractory state precedes reinducibility of a spatially restricted, possibly contact-dependent, cytostatic mechanism. Cell Immunol 105(1):33–44

    CAS  PubMed  Google Scholar 

  69. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86(5):1105–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Scott A, Lian O, Roberts CR, Cook JL, Handley CJ, Bahr R, Samiric T, Ilic MZ, Parkinson J, Hart DA, Duronio V, Khan KM (2008) Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand J Med Sci Sports 18(4):427–435

    CAS  PubMed  Google Scholar 

  71. Chang MY, Tanino Y, Vidova V, Kinsella MG, Chan CK, Johnson PY, Wight TN, Frevert CW (2014) A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol 34:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kramer RH, Rosen SD, McDonald KA (1988) Basement-membrane components associated with the extracellular matrix of the lymph node. Cell Tissue Res 252(2):367–375

    CAS  PubMed  Google Scholar 

  73. Miyata K, Takaya K (1981) Elastic fibers associated with collagenous fibrils surrounded by reticular cells in lymph nodes of the rat as revealed by electron microscopy after orcein staining. Cell Tissue Res 220:445–448

    CAS  PubMed  Google Scholar 

  74. Xu H, Guan H, Zu G, Bullard D, Hanson J (2001) The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunol 31:3085–3093

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Erdelyi I, van Asten AJ, van Dijk JE, Nederbragt H (2005) Expression of versican in relation to chondrogenesis-related extracellular matrix components in canine mammary tumors. Histochem Cell Biol 124(2):139–149

    CAS  PubMed  Google Scholar 

  76. Nara Y, Kato Y, Torii Y, Tsuji Y, Nakagaki S, Goto S, Isobe H, Nakashima N, Takeuchi J (1997) Immunohistochemical localization of extracellular matrix components in human breast tumours with special reference to PG-M/versican. Histochem J 29(1):21–30

    CAS  PubMed  Google Scholar 

  77. Merrilees MJ, Falk BA, Zuo N, Dickinson ME, May BC, Wight TN (2017) Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin. J Tissue Eng Regen Med 11(1):295–305

    CAS  PubMed  Google Scholar 

  78. Wight TN, Kang I, Merrilees MJ (2014) Versican and the control of inflammation. Matrix Biol 35:152–161

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wight TN, Kinsella MG, Evanko SP, Potter-Perigo S, Merrilees MJ (2014) Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta 1840(8):2441–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Andersson-Sjoland A, Hallgren O, Rolandsson S, Weitoft M, Tykesson E, Larsson-Callerfelt AK, Rydell-Törmänen K, Bjermer L, Malmström A, Karlsson JC, Westergren-Thorsson G (2015) Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 25(3):243–251

    PubMed  Google Scholar 

  81. Chang MY, Tanino Y, Vidova V, Kinsella MG, Chan CK, Johnson PY, Wight TN, Frevert CW (2014) Reprint of: a rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol 35:162–173

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Akhtar S, Meek KM, James V (1999) Immunolocalization of elastin, collagen type I and type III, fibronectin, and vitronectin in extracellular matrix components of normal and myxomatous mitral heart valve chordae tendineae. Cardiovasc Pathol 8(4):203–211

    CAS  PubMed  Google Scholar 

  83. Brasselet C, Durand E, Addad F, Al Haj Zen A, Smeets MB, Laurent-Maquin D, Bouthors S, Bellon G, de Kleijn D, Godeau G, Garnotel R, Gogly B, Lafont A (2005) Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol 289(5):H2228–H2233

    CAS  PubMed  Google Scholar 

  84. Finlay GA, O’Donnell MD, O’Connor CM, Hayes JP, FitzGerald MX (1996) Elastin and collagen remodeling in emphysema. A scanning electron microscopy study. Am J Pathol 149(4):1405–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lamme EN, de Vries HJ, van Veen H, Gabbiani G, Westerhof W, Middelkoop E (1996) Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 44(11):1311–1322

    CAS  PubMed  Google Scholar 

  86. Steed MM, Tyagi N, Sen U, Schuschke DA, Joshua IG, Tyagi SC (2010) Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS-/-, and iNOS-/- mice. Am J Physiol Lung Cell Mol Physiol 299(3):L301–L311

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162

    PubMed  Google Scholar 

  88. Schultz GS, Barillo DJ, Mozingo DW, Chin GA, Wound Bed Advisory Board Members (2004) Wound bed preparation and a brief history of TIME. Int Wound J 1(1):19–32

    PubMed  Google Scholar 

  89. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–S28

    PubMed  Google Scholar 

  90. Pacilli A, Pasquinelli G (2009) Vascular wall resident progenitor cells: a review. Exp Cell Res 315(6):901–914

    CAS  PubMed  Google Scholar 

  91. Pasquinelli G, Vinci MC, Gamberini C, Orrico C, Foroni L, Guarnieri C, Parenti A, Gargiulo M, Ledda F, Caldarera CM, Muscari C (2009) Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold. Tissue Eng Part A 15(9):2751–2762

    CAS  PubMed  Google Scholar 

  92. Cheshire PA, Herson MR, Cleland H, Akbarzadeh S (2016) Artificial dermal templates: a comparative study of NovoSorb biodegradable temporising matrix (BTM) and Integra((R)) dermal regeneration template (DRT). Burns 42(5):1088–1096

    PubMed  Google Scholar 

  93. Fourman MS, Phillips BT, Fritz JR, Conkling N, McClain SA, Simon M, Dagum AB (2014) Laser-assisted indocyanine green dye angiography accurately predicts the split-thickness graft timing of integra artificial dermis. Ann Plast Surg 73(2):150–155

    CAS  PubMed  Google Scholar 

  94. Guldberg RE, Oest M, Lin AS, Ito H, Chao X, Gromov K, Goater JJ, Koefoed M, Schwarz EM, O’Keefe RJ, Zhang X (2004) Functional integration of tissue-engineered bone constructs. J Musculoskelet Neuronal Interact 4(4):399–400

    CAS  PubMed  Google Scholar 

  95. Kim PJ, Attinger CE, Steinberg JS, Evans KK (2014) Integra(R) bilayer wound matrix application for complex lower extremity soft tissue reconstruction. Surg Technol Int 24:65–73

    PubMed  Google Scholar 

  96. Lee SM, Stewart CL, Miller CJ, Chu EY (2015) The histopathologic features of Integra(R) dermal regeneration template. J Cutan Pathol 42(5):368–369

    PubMed  Google Scholar 

  97. Vithlani G, Santos Jorge P, Brizman E, Mitsimponas K (2017) Integra((R)) as a single-stage dermal regeneration template in reconstruction of large defects of the scalp. Br J Oral Maxillofac Surg 55(8):844–846

    CAS  PubMed  Google Scholar 

  98. Wosgrau AC, Jeremias Tda S, Leonardi DF, Pereima MJ, Di Giunta G, Trentin AG (2015) Comparative experimental study of wound healing in mice: Pelnac versus Integra. PLoS One 10(3):e0120322

    PubMed  PubMed Central  Google Scholar 

  99. Harding K, Sumner M, Cardinal M (2013) A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int Wound J 10(2):132–137

    PubMed  Google Scholar 

  100. Hart CE, Loewen-Rodriguez A, Lessem J (2012) Dermagraft: use in the treatment of chronic wounds. Adv Wound Care 1(3):138–141

    Google Scholar 

  101. Marston WA (2004) Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices 1(1):21–31

    CAS  PubMed  Google Scholar 

  102. Browne AC, Vearncombe M, Sibbald RG (2001) High bacterial load in asymptomatic diabetic patients with neurotrophic ulcers retards wound healing after application of Dermagraft. Ostomy Wound Manage 47(10):44–49

    CAS  PubMed  Google Scholar 

  103. Edmonds ME, Foster AV, McColgan M (1997) ‘Dermagraft’: a new treatment for diabetic foot ulcers. Diabet Med 14(12):1010–1011

    CAS  PubMed  Google Scholar 

  104. Spielvogel RL (1997) A histological study of Dermagraft-TC in patients’ burn wounds. J Burn Care Rehabil 18(1 Pt 2):S16–S18

    CAS  PubMed  Google Scholar 

  105. Purdue GF (1997) Dermagraft-TC pivotal efficacy and safety study. J Burn Care Rehabil 18(1 Pt 2):S13–S14

    CAS  PubMed  Google Scholar 

  106. Purdue GF, Hunt JL, Still JM Jr, Law EJ, Herndon DN, Goldfarb IW, Schiller WR, Hansbrough JF, Hickerson WL, Himel HN, Kealey GP et al (1997) A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 18(1 Pt 1):52–57

    CAS  PubMed  Google Scholar 

  107. Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD (1997) Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 18(1 Pt 1):43–51

    CAS  PubMed  Google Scholar 

  108. Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, Steed DP, Lipkin S (1996) Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 19(4):350–354

    CAS  PubMed  Google Scholar 

  109. Economou TP, Rosenquist MD, Lewis RW 2nd, Kealey GP (1995) An experimental study to determine the effects of Dermagraft on skin graft viability in the presence of bacterial wound contamination. J Burn Care Rehabil 16(1):27–30

    CAS  PubMed  Google Scholar 

  110. Burlew CC, Moore EE, Cuschieri J, Jurkovich GJ, Codner P, Crowell K, Nirula R, Haan J, Rowell SE, Kato CM, MacNew H, Ochsner MG et al (2011) Sew it up! A western trauma association multi-institutional study of enteric injury management in the postinjury open abdomen. J Trauma 70(2):273–277

    PubMed  Google Scholar 

  111. Diaz JJ Jr, Cullinane DC, Dutton WD, Jerome R, Bagdonas R, Bilaniuk JW, Collier BR, Como JJ, Cumming J, Griffen M, Gunter OL, Kirby J, Lottenburg L et al (2010) The management of the open abdomen in trauma and emergency general surgery: part 1-damage control. J Trauma 68(6):1425–1438

    PubMed  Google Scholar 

  112. Diaz JJ Jr, Cullinane DC, Khwaja KA, Tyson GH, Ott M, Jerome R, Kerwin AJ, Collier BR, Pappas PA, Sangosanya AT et al (2013) Eastern association for the surgery of trauma: management of the open abdomen, part III-review of abdominal wall reconstruction. J Trauma Acute Care Surg 75(3):376–386

    PubMed  Google Scholar 

  113. Diaz JJ Jr, Dutton WD, Ott MM, Cullinane DC, Alouidor R, Armen SB, Bilanuik JW, Collier BR, Gunter OL et al (2011) Eastern Association for the Surgery of trauma: a review of the management of the open abdomen – part 2 “Management of the open abdomen”. J Trauma 71(2):502–512

    PubMed  Google Scholar 

  114. Johnston M, Safcsak K, Cheatham ML, Smith CP (2015) Management of the open abdomen in obese trauma patients. Am Surg 81(11):1134–1137

    PubMed  Google Scholar 

  115. Abstracts of the Annual Congress of the British Society for Immunology. December 5-8, 2011, Liverpool, United Kingdom (2011). Immunology, 135(Suppl 1):1–228

    Google Scholar 

  116. Anas A, Paul S, Jayaprakash NS, Philip R, Bright Singh IS (2005) Antimicrobial activity of chitosan against vibrios from freshwater prawn Macrobrachium rosenbergii larval rearing systems. Dis Aquatic Organ 67(1–2):177–179

    CAS  Google Scholar 

  117. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    PubMed  Google Scholar 

  118. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    CAS  PubMed  Google Scholar 

  119. Larraneta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF (2018) Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym 181:1194–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Law N, Doney B, Glover H, Qin Y, Aman ZM, Sercombe TB, Liew LJ, Dilley RJ, Doyle BJ (2018) Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. J Mech Behav Biomed Mater 77:389–399

    CAS  PubMed  Google Scholar 

  121. Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222

    CAS  PubMed  Google Scholar 

  122. Ma X, Xu T, Chen W, Qin H, Chi B, Ye Z (2018) Injectable hydrogels based on the hyaluronic acid and poly (gamma-glutamic acid) for controlled protein delivery. Carbohydr Polym 179:100–109

    CAS  PubMed  Google Scholar 

  123. Payne WM, Svechkarev D, Kyrychenko A, Mohs AM (2018) The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr Polym 182:132–141

    CAS  PubMed  Google Scholar 

  124. Westbrook AW, Ren X, Moo-Young M, Chou CP (2018) Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 115(1):216–231

    CAS  PubMed  Google Scholar 

  125. Loos MS, Freeman BG, Lorenzetti A (2010) Zone of injury: a critical review of the literature. Ann Plast Surg 65(6):573–577

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy Luttrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luttrell, T., Rosenberry, S., Estacado, N., Coates, J. (2018). Novel Use of a Biologically Active-Prefabricated-Random-Three-Dimensional-Polymer Scaffold of Hyaluronic Acid (HYAFF) to Facilitate Complicated Wound Closure. In: Shiffman, M., Low, M. (eds) Burns, Infections and Wound Management. Recent Clinical Techniques, Results, and Research in Wounds, vol 2. Springer, Cham. https://doi.org/10.1007/15695_2018_114

Download citation

  • DOI: https://doi.org/10.1007/15695_2018_114

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10685-0

  • Online ISBN: 978-3-030-10686-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics