Skip to main content

How to Design Both Mechanically Strong and Self-Healable Hydrogels?

  • Chapter
  • First Online:
Self-Healing and Self-Recovering Hydrogels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 285))

Abstract

Several strategies have been developed in the past decade for the fabrication of self-healing or self-recovery hydrogels. Because self-healing and mechanical strength are two antagonistic features, this chapter tries to answer the question “How to design both mechanically strong and self-healable hydrogels?”. Here, I show that although autonomic self-healing could not be achieved in high-strength hydrogels, a significant reversible hard-to-soft or first-order transition in cross-link domains induced by an external trigger creates self-healing function in such hydrogels. I mainly focus on the physical hydrogels prepared via hydrogen-bonding and hydrophobic interactions. High-strength H-bonded hydrogels prepared via self-complementary dual or multiple H-binding interactions between hydrophilic polymer chains having hydrophobic moieties exhibit self-healing capability at elevated temperatures. Hydrophobic interactions between hydrophobically modified hydrophilic polymers lead to physical hydrogels containing hydrophobic associations and crystalline domains acting as weak and strong cross-links, respectively. Semicrystalline self-healing hydrogels exhibit the highest mechanical strength reported so far and a high self-healing efficiency induced by heating above the melting temperature of the alkyl crystals. Research in the field of self-healing hydrogels provided several important findings not only in the field of self-healing but also in other applications, such as injectable gels and smart inks for 3D or 4D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

β o :

CTAB/AAc molar ratio in the gelation solution

η o :

Zero-shear viscosity

ε :

Strain

ε f :

Fracture strain

\( \dot{\varepsilon} \) :

Strain rate

λ :

Deformation ratio

λ biax,max :

Maximum biaxial extension ratio

λ max :

Maximum deformation ratio

ν e dry :

Cross-link density

ξ H :

Hydrodynamic correlation length

σ f :

Fracture stress

σ nom :

Nominal stress

ω :

Frequency

AAc :

Acrylic acid

AAm :

Acrylamide

AMPS :

2-Acrylamido-2-methyl-1-propanesulfonic acid

BAAm :

N,N′-Methylenebis(acrylamide)

C12M :

Dodecyl methacrylate

C17.3M :

Stearyl methacrylate

C18A :

N-Octadecyl acrylate

C22A :

Docosyl acrylate

CNFs :

Cellulose nanofibrils

C o :

Initial monomer concentration

CTAB :

Cetyltrimethylammonium bromide

DAT :

Diaminotriazine

DMAA :

N,N-Dimethylacrylamide

DMSO :

Dimethyl sulfoxide

DNA :

Deoxyribonucleic acid

E :

Young’s modulus

EtBr :

Ethidium bromide

f ν :

Fraction of associations broken during the loading

G′ :

Storage modulus

G″ :

Loss modulus

GO :

Graphene oxide

MAAc :

Methacrylic acid

NAGA :

N-Acryloyl glycinamide

NIPAM :

N-Isopropylacrylamide

PAAc :

Poly(AAc)

PAAm :

Poly(AAm)

PAMPS :

Poly(AMPS)

PDMAA :

Poly(DMAA)

PEG :

Poly(ethylene glycol)

PVP :

Poly(N-vinylpyrrolidone)

SDS :

Sodium dodecyl sulfate

SFS :

Scanning force microscopy

tan δ :

Loss factor (=G/G′)

T m :

Melting temperature

U hys :

Hysteresis energy

UPy :

Ureidopyrimidinone

WLMs :

Worm-like micelles

References

  1. Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756

    CAS  Google Scholar 

  2. Means AK, Grunlan MA (2019) Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels. ACS Macro Lett 8:705–713

    Google Scholar 

  3. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1). pii: E6

    Google Scholar 

  4. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    CAS  Google Scholar 

  5. Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818

    CAS  Google Scholar 

  6. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    CAS  Google Scholar 

  7. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Creton C, Ciccotti M (2016) Fracture and adhesion of soft materials: a review. Rep Prog Phys 79:056601

    Google Scholar 

  9. Creton C (2017) 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 50:8297–8316

    CAS  Google Scholar 

  10. Fu J (2018) Strong and tough hydrogels crosslinked by multi-functional polymer colloids. J Polym Sci Part B Polym Phys 56:1336–1350

    CAS  Google Scholar 

  11. Fu J, in het Panhuis M (2019) Hydrogel properties and applications. J Mater Chem B 7:1523–1525

    CAS  PubMed  Google Scholar 

  12. Wu F, Chen L, Li Y, Lee KI, Fei B (2017) Super-tough hydrogels from shape-memory polyurethane with wide-adjustable mechanical properties. J Mater Sci 52:4421–4434

    CAS  Google Scholar 

  13. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    CAS  Google Scholar 

  14. Tuncaboylu DC, Sarı M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    CAS  Google Scholar 

  15. Uzumcu AT, Guney O, Okay O (2018) Highly stretchable DNA/clay hydrogels with self-healing ability. ACS Appl Mater Interfaces 10:8296–8306

    CAS  PubMed  Google Scholar 

  16. Hager MD, van der Zwaag S, Schubert US (eds) (2016) Self-healing materials. Adv Polym Sci 273. 413 pp

    Google Scholar 

  17. Taylor DL, in het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093

    CAS  PubMed  Google Scholar 

  18. Gyarmati B, Szilágyi BA, Szilágyi A (2017) Reversible interactions in self-healing and shape memory hydrogels. Eur Polym J 93:642–669

    CAS  Google Scholar 

  19. Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. Adv Polym Sci 268:101–142

    CAS  Google Scholar 

  20. Okay O (2019) Semicrystalline physical hydrogels with shape-memory and self-healing properties. J Mater Chem B 7:1581–1596

    CAS  PubMed  Google Scholar 

  21. Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi-Pirouz A (2019) Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6:1801664. (1–47)

    Google Scholar 

  22. Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J (2017) The design, mechanism and biomedical application of self-healing hydrogels. Chin Chem Lett 28:1857–1874

    CAS  Google Scholar 

  23. Strandman S, Zhu XX (2016) Self-healing supramolecular hydrogels based on reversible physical interactions. Gels 2:16. (1–31)

    PubMed Central  Google Scholar 

  24. Wang W, Zhang Y, Liu W (2017) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25

    Google Scholar 

  25. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    CAS  PubMed  Google Scholar 

  26. Sun TL, Cui K (2020) Tough and self-healing hydrogels from polyampholytes. Adv Polym Sci (in press), https://doi.org/10.1007/12_2019_56

  27. Bilici C, Can V, Nöchel U, Behl M, Lendlein A, Okay O (2016) Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 49:7442–7449

    CAS  Google Scholar 

  28. Su E, Okay O (2019) A self-healing and highly stretchable polyelectrolyte hydrogel via cooperative hydrogen-bonding as a superabsorbent polymer. Macromolecules 52:3257–3267

    CAS  Google Scholar 

  29. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27:3566–3571

    CAS  PubMed  Google Scholar 

  30. Wang H, Zhu H, Fu W, Zhang Y, Xu B, Gao F, Cao Z, Liu W (2017) A high strength self-healable antibacterial and anti-inflammatory supramolecular polymer hydrogel. Macromol Rapid Commun 38:1600695

    Google Scholar 

  31. Tang L, Liu W, Liu G (2010) High-strength hydrogels with integrated functions of H-bonding and thermoresponsive surface-mediated reverse transfection and cell detachment. Adv Mater 22:2652–2656

    CAS  PubMed  Google Scholar 

  32. Gao H, Wang N, Hu X, Nan W, Han Y, Liu W (2013) Double hydrogen-bonding pH-sensitive hydrogels retaining high-strengths over a wide pH range. Macromol Rapid Commun 34:63–68

    CAS  PubMed  Google Scholar 

  33. Maly KE, Dauphin C, Wuest JD (2006) Self-assembly of columnar mesophases from diaminotriazines. J Mater Chem 16:4695–4700

    CAS  Google Scholar 

  34. Liu B, Liu W (2018) Poly(vinyl diaminotriazine): from molecular recognition to high-strength hydrogels. Macromol Rapid Commun 39:1800190

    Google Scholar 

  35. Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun:5–16

    Google Scholar 

  36. Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136:6969–6977

    CAS  PubMed  Google Scholar 

  37. Jeon I, Cui J, Illeperuma WRK, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683

    CAS  PubMed  Google Scholar 

  38. Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45:1991–2000

    CAS  Google Scholar 

  39. Mihajlovic M, Wyss HM, Sijbesma RP (2018) Effects of surfactant and urea on dynamics and viscoelastic properties of hydrophobically assembled supramolecular hydrogel. Macromolecules 51:4813–4820

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang X, Geng Y, Cao H, Zhou J, Tian Y, Shan G, Bao Y, Wu ZL, Pan P (2018) Dual-crosslink physical hydrogels with high toughness based on synergistic hydrogen bonding and hydrophobic interactions. Macromol Rapid Commun 39:e1700806

    PubMed  Google Scholar 

  41. Hu X, Vatankhah-Varnoosfaderani M, Zhou J, Li Q, Sheiko SS (2015) Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater 27:6899–6905

    CAS  PubMed  Google Scholar 

  42. Ding H, Zhang XN, Zheng SY, Song Y, Wu ZL, Zheng Q (2017) Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH responsiveness. Polymer 131:95–103

    CAS  Google Scholar 

  43. Zhang XN, Wang YJ, Sun S, Hou L, Wu P, Wu ZL, Zheng Q (2018) A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules 51:8136–8146

    CAS  Google Scholar 

  44. Song G, Zhang L, He C, Fang D-C, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435

    CAS  Google Scholar 

  45. Kriz J, Dybal J, Brus J (2006) Cooperative hydrogen bonds of macromolecules. 2. Two-dimensional cooperativity in the binding of poly(4-vinylpyridine) to poly(4-vinylphenol). J Phys Chem B 110:18338–18346

    CAS  PubMed  Google Scholar 

  46. Kriz J, Dybal J (2007) Cooperative hydrogen bonds of macromolecules. 3. A model study of the proximity effect. J Phys Chem B 111:6118–6126

    CAS  PubMed  Google Scholar 

  47. Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methyl propane sulfonic acid sodium salt -based hydrogels: synthesis and characterization. Polymer 41:3693–3704

    CAS  Google Scholar 

  48. Xing A, Li L, Wang T, Ding Y, Liu G, Zhang G (2014) A self-healing polymeric material: from gel to plastic. J Mater Chem A 2:11049–11053

    CAS  Google Scholar 

  49. Su E, Okay O (2018) Hybrid cross-linked poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels with tunable viscoelastic, mechanical and self-healing properties. React Funct Polym 123:70–79

    CAS  Google Scholar 

  50. Weng L, Gouldstone A, Wu Y, Chen W (2008) Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials 29:2153–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang F, Yong X, Deng J, Wu Y (2018) Poly(N,N-dimethylacrylamide-octadecyl acrylate)-clay hydrogels with high mechanical properties and shape memory ability. RSC Adv 8:16773–16780

    CAS  Google Scholar 

  52. Li W, Li J, Gao J, Li B, Xia Y, Meng Y, Yu Y, Chen H, Dai J, Wang H, Guo Y (2011) The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32:3832–3844

    CAS  PubMed  Google Scholar 

  53. Babic M, Horak D, Jendelova P, Glogarova K, Herynek V, Trchova M, Likavcanova K, Lesny P, Pollert E, Hajek M, Sykova E (2009) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjug Chem 20:283–294

    CAS  PubMed  Google Scholar 

  54. De Queiroz AAA, Castro SC, Higa OZ (1997) Adsorption of plasma proteins to DMAA hydrogels obtained by ionizing radiation and its relationship with blood compatibility. J Biomater Sci Polym Edn 8:335–347

    Google Scholar 

  55. Yang D, Peng S, Hartman MR, Gupton-Campolongo T, Rice EJ, Chang AK, Gu Z, Lu GQ, Luo D (2013) Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Sci Rep 3:3165

    PubMed  PubMed Central  Google Scholar 

  56. Cai P, Huang Q-Y, Zhang X-W (2006) Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. Environ Sci Technol 40:2971–2976

    CAS  PubMed  Google Scholar 

  57. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    CAS  Google Scholar 

  58. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    CAS  Google Scholar 

  59. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    CAS  Google Scholar 

  60. Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA−clay nanocomposite hydrogels. Macromolecules 38:3482–3490

    CAS  Google Scholar 

  61. Klein A, Whitten PG, Resch K, Pinter G (2015) Nanocomposite hydrogels: fracture toughness and energy dissipation mechanisms. J Polym Sci Part B Polym Phys 53:1763–1773

    CAS  Google Scholar 

  62. Okay O, Oppermann W (2007) Polyacrylamide – clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387

    CAS  Google Scholar 

  63. Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258

    CAS  PubMed  Google Scholar 

  64. Mongondry P, Tassin J-F, Nicolai T (2005) Revised state diagram of Laponite dispersions. J Colloid Interface Sci 283:397–405

    CAS  PubMed  Google Scholar 

  65. Mongondry P, Nicolai T, Tassin J-F (2004) Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous Laponite dispersions. J Colloid Interface Sci 275:191–196

    CAS  PubMed  Google Scholar 

  66. Topuz F, Okay O (2009) Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. Biomacromolecules 10:2652–2661

    CAS  PubMed  Google Scholar 

  67. Karacan P, Okay O (2013) Ethidium bromide binding to DNA cryogels. React Funct Polym 73:442–450

    CAS  Google Scholar 

  68. Pan W, Wen H, Niu L, Su C, Liu C, Zhao J, Mao C, Liang D (2016) Effects of chain flexibility on the properties of DNA hydrogels. Soft Matter 12:5537–5541

    CAS  PubMed  Google Scholar 

  69. Topuz F, Okay O (2008) Rheological behavior of responsive DNA hydrogels. Macromolecules 41:8847–8854

    CAS  Google Scholar 

  70. Zhang Y, Li Y, Liu W (2015) Dipole-dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Adv Funct Mater 25:471–480

    CAS  Google Scholar 

  71. Wang YJ, Li CY, Wang ZJ, Zhao Y, Chen L, Wu ZL, Zheng Q (2018) Hydrogen bond-reinforced double-network hydrogels with ultrahigh elastic modulus and shape memory property. J Polym Sci B 56:1281–1286

    CAS  Google Scholar 

  72. Yuan T, Cui X, Liu X, Qu X, Sun J (2019) Highly tough, stretchable, self-healing, and recyclable hydrogels reinforced by in situ-formed polyelectrolyte complex nanoparticles. Macromolecules 52:3141–3149

    CAS  Google Scholar 

  73. Yang J, Xu F, Han CR (2017) Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: mechanistic insight into morphology and dynamics. Biomacromolecules 18:1019–1028

    CAS  PubMed  Google Scholar 

  74. Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605

    CAS  Google Scholar 

  75. Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059

    CAS  PubMed  Google Scholar 

  76. Zhong M, Liu X-Y, Shi F-K, Zhang L-Q, Wang X-P, Cheetham AG, Cui H, Xie X-M (2015) Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter 11:4235–4241

    CAS  PubMed  Google Scholar 

  77. Shao C, Chang H, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318

    CAS  PubMed  Google Scholar 

  78. Pan C, Liu L, Chen Q, Zhang Q, Guo G (2017) Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl Mater Interfaces 9:38052–38061

    CAS  PubMed  Google Scholar 

  79. Ghoorchian A, Simon JR, Bharti B, Han W, Zhao X, Chilkoti A, López GP (2015) Bioinspired reversibly cross-linked hydrogels comprising polypeptide micelles exhibit enhanced mechanical properties. Adv Funct Mater 25:3122–3130

    CAS  Google Scholar 

  80. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    CAS  PubMed  Google Scholar 

  81. Sun Y, Liu S, Du G, Gao G, Fu J (2015) Multi-responsive and tough hydrogels based on triblock copolymer micelles as multifunctional macro-crosslinkers. Chem Commun 51:8512–8515

    CAS  Google Scholar 

  82. Fu J (2020) Triblock copolymer micelle-crosslinked hydrogels. Adv Polym Sci (in press), https://doi.org/10.1007/12_2019_55

  83. Hao J, Weiss RA (2011) Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 44:9390–9398

    CAS  Google Scholar 

  84. Vogt BD, Weiss RA (2020) Hydrophobically associating hydrogels with microphase-separated morphologies. Adv Polym Sci (in press)

    Google Scholar 

  85. Miquelard-Garnier G, Demoures S, Creton C, Hourdet D (2006) Synthesis and rheological behavior of new hydrophobically modified hydrogels with tunable properties. Macromolecules 39:8128–8139

    CAS  Google Scholar 

  86. Hill A, Candau F, Selb J (1993) Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules 26:4521–4532

    CAS  Google Scholar 

  87. Volpert E, Selb J, Francoise C (1998) Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide. Polymer 39:1025–1033

    CAS  Google Scholar 

  88. Regalado EJ, Selb J, Candau F (1999) Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules 32:8580–8588

    CAS  Google Scholar 

  89. Candau F, Selb J (1999) Hydrophobically-modified polyacrylamides prepared by micellar polymerization. Adv Colloid Interface Sci 79:149–172

    CAS  Google Scholar 

  90. Gao B, Guo H, Wang J, Zhang Y (2008) Preparation of hydrophobic association polyacrylamide in a new micellar copolymerization system and its hydrophobically associative property. Macromolecules 41:2890–2897

    CAS  Google Scholar 

  91. Bilici C, Okay O (2013) Shape memory hydrogels via micellar copolymerization of acrylic acid and n-octadecyl acrylate in aqueous media. Macromolecules 46:3125–3131

    CAS  Google Scholar 

  92. Candau F, Regalado EJ, Selb J (1998) Scaling behavior of the zero shear viscosity of hydrophobically modified poly(acrylamide)s. Macromolecules 31:5550–5552

    CAS  Google Scholar 

  93. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2004) Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J Polym Sci B 42:1640–1655

    CAS  Google Scholar 

  94. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules 39:384–392

    CAS  Google Scholar 

  95. Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455

    CAS  Google Scholar 

  96. Abdurrahmanoglu S, Cilingir M, Okay O (2011) Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer 52:694–699

    CAS  Google Scholar 

  97. Jiang G, Liu C, Liu X, Zhang G, Yang M, Liu F (2009) Construction and properties of hydrophobic association hydrogels with high mechanical strength and reforming capability. Macromol Mater Eng 294:815–820

    CAS  Google Scholar 

  98. Jiang G, Liu C, Liu X, Chen Q, Zhang G, Yang M, Liu F (2010) Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength. Polymer 51:1507–1515

    CAS  Google Scholar 

  99. Jiang H, Duan L, Ren X, Gao G (2019) Hydrophobic association hydrogels with excellent mechanical and self healing properties. Eur Polym J 112:660–669

    CAS  Google Scholar 

  100. Lv X, Sun S, Yang H, Gao G, Liu F (2017) Effect of the sodium dodecyl sulfate/monomer ratio on the network structure of hydrophobic association hydrogels with adjustable mechanical properties. J Appl Polym Sci 134:45196

    Google Scholar 

  101. Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53:5513–5522

    CAS  Google Scholar 

  102. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP, Ballauff M, Okay O (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49:2281–2287

    CAS  Google Scholar 

  103. Molchanov VS, Philippova OE, Khokhlov AR, Kovalev YA, Kuklin AI (2007) Self-assembled networks highly responsive to hydrocarbons. Langmuir 23:105–111

    CAS  PubMed  Google Scholar 

  104. Argun A, Algi MP, Tuncaboylu DC, Okay O (2014) Surfactant-induced healing of tough hydrogels formed via hydrophobic interactions. Colloid Polym Sci 292:511–517

    CAS  Google Scholar 

  105. Gordievskaya YD, Rumyantsev AM, Kramarenko EY (2016) Polymer gels with associating side chains and their interaction with surfactants. J Chem Phys 144:184902

    PubMed  Google Scholar 

  106. Wang C, Wiener CG, Cheng Z, Vogt BD, Weiss RA (2016) Modulation of the mechanical properties of hydrophobically modified supramolecular hydrogels by surfactant-driven structural rearrangement. Macromolecules 49:9228–9238

    CAS  Google Scholar 

  107. Liu C, Liu X, Yu J, Gao G, Liu F (2015) Network structure and mechanical properties of hydrophobic association hydrogels: surfactant effect I. J Appl Polym Sci 132:41222

    Google Scholar 

  108. Algi MP, Okay O (2014) Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121

    CAS  Google Scholar 

  109. Gulyuz U, Okay O (2015) Self-healing poly(N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22

    CAS  Google Scholar 

  110. Shang S, Huang SC, Weiss RA (2009) Synthesis and characterization of itaconic anhydride and stearyl methacrylate copolymers. Polymer 50:3119–3127

    CAS  Google Scholar 

  111. Chen J, Ao Y, Lin T, Yang X, Peng J, Huang W, Li J, Zhai M (2016) High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer 87:73–80

    CAS  Google Scholar 

  112. Xu K, An H, Lu C, Tan Y, Li P, Wang P (2013) Facile fabrication method of hydrophobic-associating cross-linking hydrogel with outstanding mechanical performance and self-healing property in the absence of surfactants. Polymer 54:5665–5672

    CAS  Google Scholar 

  113. Gao TT, Niu N, Liu YD, Liu XL, Gao G, Liu FQ (2016) Synthesis and characterization of hydrophobic association hydrogels with tunable mechanical strength. RSC Adv 6:43463–43469

    CAS  Google Scholar 

  114. Akay G, Hassan-Raeisi A, Tuncaboylu DC, Orakdogen N, Abdurrahmanoglu S, Oppermann W, Okay O (2013) Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter 9:2254–2261

    CAS  Google Scholar 

  115. Thomas BH, Fryman JC, Liu K, Mason J (2009) Hydrophilic–hydrophobic hydrogels for cartilage replacement. J Mech Behav Biomed Mater 2:588–595

    PubMed  Google Scholar 

  116. Tuncaboylu DC, Argun A, Algi MP, Okay O (2013) Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer 54:6381–6388

    CAS  Google Scholar 

  117. Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899

    CAS  Google Scholar 

  118. Lim PFC, Chee LY, Chen SB, Chen B-H (2003) Study of interaction between cetyltrimethylammonium bromide and poly(acrylic acid) by rheological measurements. J Phys Chem B 107:6491–6496

    CAS  Google Scholar 

  119. Yoshida K, Dubin PL (1999) Complex formation between polyacrylic acid and cationic/nonionic mixed micelles: effect of pH on electrostatic interaction and hydrogen bonding. Colloids Surf A Physicochem Eng Asp 147:161–167

    CAS  Google Scholar 

  120. Ilekti P, Piculell L, Tournilhac F, Cabane B (1998) How to concentrate an aqueous polyelectrolyte/surfactant mixture by adding water. J Phys Chem B 102:344–351

    CAS  Google Scholar 

  121. Fundin J, Hansson P, Brown W, Lidegran I (1997) Poly(acrylic acid)−cetyltrimethylammonium bromide interactions studied using dynamic and static light scattering and time-resolved fluorescence quenching. Macromolecules 30:1118–1126

    CAS  Google Scholar 

  122. Carnali JO (1993) (Polymer/polymer)-like phase behavior in the system tetradecyltrimethylammonium bromide/sodium polyacrylate/water. Langmuir 9:2933–2941

    CAS  Google Scholar 

  123. Chiappisi L, Hoffmann I, Gradzielski M (2013) Complexes of oppositely charged polyelectrolytes and surfactants – recent developments in the field of biologically derived polyelectrolytes. Soft Matter 9:3896–3909

    CAS  Google Scholar 

  124. Hansson P (1998) Self-assembly of ionic surfactant in cross-linked polyelectrolyte gel of opposite charge. A physical model for highly charged systems. Langmuir 14:2269–2277

    CAS  Google Scholar 

  125. Wang C, Tam KC (2002) New insights on the interaction mechanism within oppositely charged polymer/surfactant systems. Langmuir 18:6484–6490

    CAS  Google Scholar 

  126. Magny B, Iliopoulos I, Zana R, Audebert R (1994) Mixed micelles formed by cationic surfactants and anionic hydrophobically modified polyelectrolytes. Langmuir 10:3180–3187

    CAS  Google Scholar 

  127. Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1996) Interaction of hydrophobically modified poly(acrylic acid) hydrogels with ionic surfactants. Macromolecules 29:2822–2830

    CAS  Google Scholar 

  128. Bilici C, Ide S, Okay O (2017) Yielding behavior of tough semicrystalline hydrogels. Macromolecules 50:3647–3654

    CAS  Google Scholar 

  129. Matsuda A, Sato J, Yasunaga H, Osada Y (1994) Order-disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules 27:7695–7698

    CAS  Google Scholar 

  130. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219–219

    CAS  PubMed  Google Scholar 

  131. Tanaka Y, Kagami Y, Matsuda A, Osada Y (1995) Thermoreversible transition of the tensile modulus of a hydrogel with ordered aggregates. Macromolecules 28:2574–2576

    CAS  Google Scholar 

  132. Uchida M, Kurosawa M, Osada Y (1995) Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28:4583–4586

    CAS  Google Scholar 

  133. Platé NA, Shibaev VP (1974) Comb-like polymers. Structure and properties. J Polym Sci D Macromol Rev 8:117–253

    Google Scholar 

  134. Alig I, Jarek M, Hellmann GP (1998) Restricted segmental mobility in side-chain crystalline comblike polymers, studied by dielectric relaxation measurements. Macromolecules 31:2245–2251

    CAS  Google Scholar 

  135. Kurt B, Gulyuz U, Demir DD, Okay O (2016) High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur Polym J 81:12–23

    CAS  Google Scholar 

  136. Geng Y, Lin XY, Pan P, Shan G, Bao Y, Song Y, Wu ZL, Zheng Q (2016) Hydrophobic association mediated physical hydrogels with high strength and healing ability. Polymer 100:60–68

    CAS  Google Scholar 

  137. Zhang H, Han D, Yan Q, Fortin D, Xia H, Zhao Y (2014) Light-healable hard hydrogels through photothermally induced melting–crystallization phase transition. J Mater Chem A 2:13373–13379

    CAS  Google Scholar 

  138. Nitta K-H, Takayanagi M (2003) Novel proposal of lamellar clustering process for elucidation of tensile yield behavior of linear polyethylenes. J Macromol Sci B Phys B42:107–126

    CAS  Google Scholar 

  139. Nitta K-H, Takayanagi M (1999) Role of tie molecules in the yielding deformation of isotactic polypropylene. J Polym Sci B 37:357–368

    CAS  Google Scholar 

  140. Nitta K-H, Takayanagi M (2000) Tensile yield of isotactic polypropylene in terms of a lamellar-cluster model. J Polym Sci B 38:1037–1044

    CAS  Google Scholar 

  141. Argun A, Gulyuz U, Okay O (2018) Interfacing soft and hard materials with triple-shape-memory and self-healing functions. Macromolecules 51:2437–2446

    CAS  Google Scholar 

  142. Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43:1017–1030

    PubMed  PubMed Central  Google Scholar 

  143. Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS (2013) Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J 13:243–264

    PubMed  PubMed Central  Google Scholar 

  144. Shaw HM, Benjamin M (2007) Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315

    CAS  PubMed  Google Scholar 

  145. Argun A, Gulyuz U, Okay O (2019) Semi-crystalline, three-segmented hybrid gels with multiple shape memory effect. Macromol Symp 385:1800164

    Google Scholar 

Download references

Acknowledgment

Work was partially supported by the Turkish Academy of Sciences (TUBA). The author would like to thank all collaborators and graduate students for their contributions in the development of hydrophobically modified and H-bonded physical hydrogels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Okay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okay, O. (2020). How to Design Both Mechanically Strong and Self-Healable Hydrogels?. In: Creton, C., Okay, O. (eds) Self-Healing and Self-Recovering Hydrogels. Advances in Polymer Science, vol 285. Springer, Cham. https://doi.org/10.1007/12_2019_53

Download citation

Publish with us

Policies and ethics