Skip to main content

Polyelectrolyte Complexes in Flocculation Applications

  • Chapter
  • First Online:
Polyelectrolyte Complexes in the Dispersed and Solid State II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 256))

Abstract

This review concentrates on the interactions between oppositely charged polyelectrolytes and on the formation of complexes, which can be used for different applications such as paper retention or water treatment. Three different possibilities for the appearance of polyelectrolyte complexes (PECs) in flocculation applications are described. Starting with the “classical” dual system (step-by-step addition of polycation and polyanion to a negatively charged suspension of fibers or particles), the interaction between a “soluble polyanion” (such as anionic trash) with polycation is described as well as the formation of well-defined pre-mixed PECs and their application as flocculants.

The influence of several parameters related to the characteristics of the solid materials (e.g., charge, particle size), the polyelectrolyte (e.g., type of charge, charge density, molar mass, hydrophobicity) and the flocculation regime (e.g., order of addition, pH, ionic strength) are discussed.

Research in this area shows great potential. Over the past 30 years, dual systems have been applied mainly in the paper industry. The application of PECs, described as particle-forming flocculants, provides new possibilities in solid–liquid separation processes. For an effective system, the application parameters have to be optimized (e.g. polymer type, concentration, charge, molecular weight). Therefore, direct and efficient methods for the characterization of the flocculation behavior (sedimentation velocity, packing density of the sludge, particle size distribution) are necessary and will be described.

Finally, the most advanced applications for PECs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

CD:

Charge density

CMC:

Carboxymethylcellulose

cmc:

Critical micelle concentration

CNT:

Carbon nanotubes

CPR:

Carboxylated phenolic resin

DCS:

Dissolved colloidal substances

DLS:

Dynamic light scattering

DMAPAA:

N,N-Dimethylaminopropylacrylamide

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

GPE:

Short-chained guest PEL

HA:

Humic acid

HCS:

Highly cationic starches

HMW:

High molecular weight

HPE:

Long-chained host PEL

LCST:

Lower critical solution temperature

LMW:

Low molecular weight

MMW:

Medium molecular weight

NaPA:

Poly(sodium acrylate)

NaPAMPS:

Poly(sodium 2-acrylamido-2-methylpropanesulfonate)

NaPSS:

Poly(styrene-p-sodium sulfonate-sodium salt)

NIPEC:

Nonstoichiometric interpolyelectrolyte complex dispersion

NPEC:

Nonstoichiometric polyelectrolyte complex

OM-PEI:

Oligo-maltose-modified PEI

P(MSP):

Poly(maleic acid-co-propylene)

P(MS-α-MeSty):

Poly(maleic acid-co-α-methylstyrene)

PA:

Polyanion

PAA:

Poly(acrylamide)

PAC:

Poly(acrylic acid)

PAE:

Polyamideamine epichlorohydrine condensate

PAMPS:

Poly(sodium 2-acrylamido-2-methylpropanesulfonate)

PC:

Polycation

PC/D/PA:

Polycation/dye/polyanion complexes

PCA5:

Polycations containing N,N-dimethyl-2-hydroxypropylene ammonium chloride

PCA5D1:

Polycations containing N,N-dimethyl-2-hydroxypropylene ammonium chloride with different hydrophobic units

PDADMAC:

Poly(N,N-diallyl-N,N-dimethyl-ammonium chloride)

PEC:

Polyelectrolyte complex

PEI:

Poly(ethyleneimine)

PEL:

Polyelectrolytes

PEO:

Poly(ethylene oxide)

PI:

Polydispersity index

PMADAMBQ:

Copolymer of N-methacryloyloxyethyl–N-benzyl-N,N-dimethyl-ammonium chloride

PNIAA:

Poly(isopropylacrylamide-co-acrylic acid)

PNIPAAM:

Poly(N-isopropylacrylamide)

PNVCL:

Poly(N-vinylcaprolactam)

PPEI:

Phosphonomethylated derivative of PEI

PR2540:

Poly(acrylamide-co-sodium acrylate)

PSC:

Polyelectrolyte–surfactant complex

PSS:

Poly(styrene sulfonate)

PTMMAC:

Poly[NNN-trimethyl-N-(2-methacryloxyethyl) ammonium chloride]

PVA:

Poly(vinyl alcohol)

Quartolan:

Dodecyl-amidoethyl-dimethylbencyl-ammonium chloride

SDS:

Sodium dodecylsulfate

siRNA:

Small interfering RNA

TC:

Trash content

TOC:

Total organic carbon content

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

Polycation:
Polyanion:
Negatively charged particle:
Polyelectrolyte complex:
Micelle:
Negatively charged waste:
Surfactant:
Star-like polymer:

References

  1. Ringqvist L, Igsell P (1994) Dual polymer system in peat dewatering. Energy Fuel 8:953

    CAS  Google Scholar 

  2. Kulicke WM, Lenk S, Detzner D et al (1993) Anwendung von Polyelektrolyten bei der mechanischen Fest/Flüssig-Trennung. Chem Ing Technol 65:541

    CAS  Google Scholar 

  3. Böhm N, Kulicke WM (1997) Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins. Colloid Polym Sci 275:73

    Google Scholar 

  4. Zhang X (1992) A new polymer flocculant for dyes. Water Treat 7:33

    CAS  Google Scholar 

  5. Arno J, Frankle W, Sheridan J (1974) Zeta potential and its application to filler retention. Tappi 57:97

    CAS  Google Scholar 

  6. Britt KW, Unbehend J (1974) Electrophoresis in paper stock suspensions as measured by mass transport analysis. Tappi 57:81

    CAS  Google Scholar 

  7. Hagedorn R (1988) The combination of highly charged polyelectrolytes with retention agents: retention in the presence of interfering substances. Tappi 71:131

    CAS  Google Scholar 

  8. Andersson K, Sandström A, Ström K, Barla P (1986) The use of cationic starch and colloidal silica to improve the drainage characteristics of kraft pulp. Nordic Pulp Paper Res J 2:26

    Google Scholar 

  9. Swerin A, Ödberg L (1996) An extended model for the estimation of flocculation efficiency factors in multicomponent flocculant systems. Colloids Surf A 113:25

    CAS  Google Scholar 

  10. Eklund D, Lindström T (1991) Paper chemistry. DT Paper Science Publications, Grankulla

    Google Scholar 

  11. Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci 169:1

    CAS  Google Scholar 

  12. Dragan ES (2007) New trends in ionic (co)polymers and hybrids. Nova Science, New York

    Google Scholar 

  13. Moore E (1976) Charge relationship of dual polymer retention aids. Tappi 59:120

    CAS  Google Scholar 

  14. Müller F, Beck U (1978) Dual-Produktsysteme zur Retention und Entwässerung in der Papierindustrie. Das Papier 32:V25

    Google Scholar 

  15. Petäjä T (1980) Fundamental mechanisms of retention with retention agents. Kemia-Kemi 5:261

    Google Scholar 

  16. Wagberg L, Lindström T (1987) Some fundamental aspects on dual component retention aid systems. Nordic Pulp Paper Res J 2:49

    Google Scholar 

  17. Gill RI (1991) Development in retention aid technology. Paper Technol 32:34

    CAS  Google Scholar 

  18. Krogerus B (1993) Dynamic flocculation studies on fibre fines and filler clay. Nordic Pulp Paper Res J 8:135

    CAS  Google Scholar 

  19. Hedborg F, Lindström T (1996) Some aspects on the reversibility of flocculation of paper stocks. Nordic Pulp Paper Res J 4:254

    Google Scholar 

  20. Petzold G (1999) Dual addition schemes. In: Farinato RS, Dubin P (eds) Colloid-polymer interactions: from fundamentals to practice. Wiley, New York, pp 83–100

    Google Scholar 

  21. Petzold G, Buchhammer HM, Lunkwitz K (1996) The use of oppositely charged polyelectrolytes as flocculants and retention aids. Colloids Surf A 119:87

    CAS  Google Scholar 

  22. Sang Y, Xiao H (2008) Clay flocculation improved by cationic poly(vinyl alcohol)/anionic polymer dual-component system. J Colloid Interface Sci 326:420

    CAS  Google Scholar 

  23. Barany S, Meszaros R et al (2011) Effect of polyelectrolyte mixtures on the electrokinetic potential and kinetics of flocculation of clay mineral particles. Colloids Surf A 383:48

    CAS  Google Scholar 

  24. Oelmeyer G, Krentz O, Kulicke WM (2001) Kombinierte Flockungshilfsmittelsysteme mit kationischen Stärken in der Fest/Flüssig-Trennung von Hafenschlick. Chem Ing Technol 73:546

    CAS  Google Scholar 

  25. Petzold G, Lunkwitz K (1995) The interaction between polyelectrolyte complexes made from poly(dimethyldiallylammoniumchloride) (PDMDAAC) and poly(maleic acid-co-α-methylstyrene) (P(MS-α-MeSty)) and cellulosic materials. Colloids Surf A 98:225

    CAS  Google Scholar 

  26. Petzold G, Schwarz S, Geißler U, Smolka N (2004) Influence of humic acid on the flocculation of clay. Colloid Polym Sci 282:670

    CAS  Google Scholar 

  27. Glover S, Yan D, Jameson G, Biggs S (2004) Dewatering properties of dual-polymer flocculated systems. Int J Min Process 73:145

    CAS  Google Scholar 

  28. Fan A, Turro N, Somasundaran P (2000) A study of dual polymer flocculation. Colloids Surf A 162:141

    CAS  Google Scholar 

  29. Navarro R, Wada S, Tatsumi K (2005) Heavy metal precipitation by polycation–polyanion complex of PEI and its phosphonomethylated derivative. J Hazard Mater B 123:203

    CAS  Google Scholar 

  30. Gohlke U (2000) Separation of heavy metal ions from aqueous solutions. German Patent DE19829827

    Google Scholar 

  31. Lemanowicz M, Jach Z, Kilian E (2011) Dual-polymer flocculation with unmodified and ultrasonically conditioned flocculant. Chem Eng J 168:159

    CAS  Google Scholar 

  32. Haack V, Heinze T, Oelmeyer G (2002) Starch derivatives of high degree of functionalization, 8 – synthesis and flocculation behaviour of cationic starch polyelectrolytes. Macromol Mater Eng 287:495

    CAS  Google Scholar 

  33. Li J, Modak PR, Xiao HN (2006) Novel flocculation system based on 21-arm cationic star polymer. Colloids Surf A 289:172

    CAS  Google Scholar 

  34. Lee CH, Liu JC (2001) Sludge dewaterability and floc structure in dual polymer conditioning. Adv Environ Res 5:129

    CAS  Google Scholar 

  35. Lee CH, Liu JC (2000) Enhanced sludge dewaterability by dual polyelectrolytes conditioning. Water Res 34:4430

    CAS  Google Scholar 

  36. Yukselen MA, Gregory J, Soyer E (2006) Formation and breakage of flocs using dual systems. Water Sci Technol 53:217

    CAS  Google Scholar 

  37. Wang J, Liu J, Lee DJ (2005) Dual conditioning of sludge utilizing polyampholyte. J Environ Eng 131:1659

    CAS  Google Scholar 

  38. Wei JC, Gao B, Yue Q (2009) Comparison of coagulation behaviour and floc structure characteristic of different polyferric-cationic polymer dual coagulants in humic acid solution. Water Res 43:724

    CAS  Google Scholar 

  39. Petzold G, Schwarz S, Lunkwitz K (2003) Combinations of flocculants for the improvement in the efficiency of flocculation processes. Chem Eng Technol 26:48

    CAS  Google Scholar 

  40. Pelton R (1999) Polymer-colloid interactions in pulp and paper manufacture. In: Farinato RS, Dubin P (eds) Colloid-polymer interactions: from fundamentals to practice. Wiley, New York

    Google Scholar 

  41. Wu M, van de Veen T (2009) Flocculation and reflocculation: interplay between the adsorption behavior of the components of a dual flocculant. Colloids Surf A 341:40

    CAS  Google Scholar 

  42. Buchhammer HM, Petzold G, Lunkwitz K (1993) The interaction between oppositely charged polyelectrolytes in the presence of solid surfaces. Colloids Surf A 76:81

    CAS  Google Scholar 

  43. Oertel U, Petzold G, Buchhammer HM (1991) Introduction of surface charge into polymers by polyelectrolyte complexes. Colloids Surf A 57:375

    CAS  Google Scholar 

  44. Petzold G, Schwarz S, Buchhammer HM, Lunkwitz K (1997) A very effective method for the cationic modification of cellulose. Die Angew Makromol Chem 253:1

    CAS  Google Scholar 

  45. Schmidt S, Buchhammer HM, Lunkwitz K (1997) Surface modification of glass and viscose fiber with non-stoichiometric surfactant/polyelectrolyte complexes and polyelectrolyte/polyelectrolyte complexes. Tenside Surf Det 34:267

    CAS  Google Scholar 

  46. Lukaszczyk J, Lekawska E, Lunkwitz K, Petzold G (2004) Sorbents for removal surfactants from aqueous solutions. Surface modification of natural solids to enhance sorption ability. J Polym Sci 92:1510

    CAS  Google Scholar 

  47. Schwarz S, Ponce-Vargas S, Licea-Claverie A, Steinbach C (2012) Chitosan and mixtures with aqueous biocompatible temperature sensitive polymer as flocculants. Colloids Surf A 413:7–12. doi:10.1016/j.colsurfa.2012.03.048

    Google Scholar 

  48. Sakohara S, Hinago R, Ueda H (2008) Compaction of TiO2 suspension by using dual ionic thermosensitive polymers. Sep Purif Technol 63:319

    CAS  Google Scholar 

  49. Sakohara S, Yagi S, Lizawa T (2011) Dewatering of inorganic sludge using dual ionic thermosensitive polymers. Sep Purif Technol 80:148

    CAS  Google Scholar 

  50. Ström G, Barla P, Stenius P (1982) The effect of pine xylan on the use of some polycations as retention and drainage aids. Svensk Papperstidning 85:R100

    Google Scholar 

  51. Ström G, Barla P, Stenius P (1985) The formation of polyelectrolyte complexes between pine xylan and cationic polymers. Colloids Surf 13:193

    Google Scholar 

  52. Kötz J (1993) Phase behavior of polyanion–polycation aggregates. Nordic Pulp Paper Res J 8:11

    Google Scholar 

  53. Hubbe MA, Rojas O, Venditti RA (2006) Control of tacky deposits on paper machines – a review. Nordic Pulp Paper Res J 21:154

    CAS  Google Scholar 

  54. Blanco A, Miranda R (2007) Full characterization of stickies in a newsprint mill: the need for a complementary approach. Tappi J 6:19

    CAS  Google Scholar 

  55. Putz HJ, Hamann A, Gruber E (2003) Examination of sticky origin and sticky removal. Wochenbl Papierfabrikat 131:883

    CAS  Google Scholar 

  56. Putz HJ, Hamann A (2003) Comparison of sticky test methods. Wochenbl Papierfabrikat 131:218

    Google Scholar 

  57. Glazer JA (1991) Overview of deposit control. Tappi J 74:72

    CAS  Google Scholar 

  58. Strauß J, Großmann H (1997) Kreislaufwasserreinigung unter besonderer Berücksichtigung klebender Verunreinigungen. Wochenbl Papierfabrikat 125:468

    Google Scholar 

  59. Richardson PF (1995) New technology for pitch and stickies control. In: Proceedings papermakers conference. TAPPI Press, Atlanta, p 205

    Google Scholar 

  60. Fink MR, Greer CS, Ramesh M (1993) Hydrophobic polyelectrolyte coagulants for the control of pitch in pulp and paper systems. US Patent 5,246,547

    Google Scholar 

  61. Murray G, Stack K, McLean D, Shen W, Garnier G (2009) Mechanism of pitch adsorption on carboxy methyl dextran surfaces. Appita J 1:64

    Google Scholar 

  62. Meixner H, Auhorn W, Gercke M (1998) Tailor-made cationic polymers for fixing detrimental substances of primary and secondary origin. Das Papier 52(10A):36–41

    Google Scholar 

  63. Knubb S, Zetter C (2002) Deposit study of alkylether dimer dispersions. Nordic Pulp Paper Res J 17:164

    CAS  Google Scholar 

  64. Huo X, Venditti RA, Chang HM (2001) Effect of cationic polymers, salts and fibres on the stability of model micro-stickies. J Pulp Paper Sci 27:207

    CAS  Google Scholar 

  65. Luo LZ, Wang LJ (2010) DCS controlling and paper strengthening effects of highly cationic starches with different branching degrees and molecular weights. Appita J 63:37

    CAS  Google Scholar 

  66. Glittenberg D, Hemmes JL, Bergh NO (1993) Synergism between synthetic agents and cationic starches in wood-containing systems. Wochenbl Papierfabrikat 121:1000

    CAS  Google Scholar 

  67. Petzold G, Schönberger L, Schwarz S (2011) Die Bindung von Stickies mit kationischen Stärken unterschiedlicher Hydrophobie. Wochenbl Papierfabrikat 139:592

    Google Scholar 

  68. Petzold G, Schönberger L, Genest S, Schwarz S (2012) Interaction of cationic starch and dissolved colloidal substances from paper recycling, characterized by dynamic surface measurements. Colloids Surf A 413:162

    CAS  Google Scholar 

  69. Petzold G, Petzold-Welcke K, Qi H, Stengel K, Schwarz S, Heinze T (2012) Sticky removal with natural based polymers – highly cationic and hydrophobic types compared with unmodified ones. Carbohydr Polym 90:1712

    CAS  Google Scholar 

  70. Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes. Adv Polym Sci (Springer, Berlin) 45:1

    Google Scholar 

  71. Li Y, Dubin PL, Spindler R, Tomalia T (1995) Complex formation between poly(dimethyldiallylammonium chloride) and carboxylated starbust dendrimers. Macromolecules 28:8426

    CAS  Google Scholar 

  72. Philipp B, Dautzenberg H, Linow K (1991) Formation and structure of polyelectrolyte complexes. Prog Polym Sci 14:91

    Google Scholar 

  73. Dautzenberg H, Jaeger W, Kötz J, Philipp B (1994) Polyelectrolytes: formation, characterization and application. Carl Hanser, München

    Google Scholar 

  74. Müller M, Starchenko V, Lebovka N, Ouyang W, Keßler B (2010) Preparation and life science applications of polyelectrolyte complex nanoparticles. Curr Trends Polym Sci 13:1

    Google Scholar 

  75. Müller M, Kessler B, Fröhlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly(ethyleneinine) and poly(acrylic acid): preparation and applications. Polymers 3:762

    Google Scholar 

  76. Müller M (2012) Sizing, shaping and pharmaceutical applications of polyelectrolyte complex nanoparticles. Adv Polym Sci. doi:10.1007/12_2012_170

    Google Scholar 

  77. Schacher F, Betthausen E, Walther A, Schmalz A, Pergushov D, Müller A (2009) Interpolyelectrolyte complexes of dynamic multicompartment micells. ACS Nano 3:2095

    CAS  Google Scholar 

  78. Kabanov VA, Zezin AB, Izumrudov VA (1985) Cooperative interpolyelectrolyte reactions. Makromol Chem Macromol Chem Phys 13:137

    CAS  Google Scholar 

  79. Zezin AB, Izumrudov VA, Kabanov VA (1989) Interpolyelctrolyte complexes as new family of enzyme carriers. Makromol Chem Macromol Symp 26:249

    CAS  Google Scholar 

  80. Jaeger W, Bohrisch J, Laschewsky A (2010) Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog Polym Sci 35:511

    CAS  Google Scholar 

  81. Mende M, Schwarz S, Zschoche S, Petzold G, Janke A (2011) Influence of the hydrophobicity of polyelectrolytes on polyelectrolyte complex formation and complex particle structure and shape. Polymers 3:1363

    Google Scholar 

  82. Petzold G, Nebel A, Buchhammer HM, Lunkwitz K (1998) Preparation and characterization of different polyelectrolyte complexes and their application as flocculants. Colloid Polym Sci 276:125

    CAS  Google Scholar 

  83. Xiang Y, Somasundaran P (1993) Enhanced flocculation with double flocculants. Colloids Surf A 81:17

    Google Scholar 

  84. Onabe F (1983) Effect of the polyion-complex formation on the drainage behavior of pulp suspensions: an interpretation of the dual-polymer system. Mokuzai Gakkaishi 29:60

    CAS  Google Scholar 

  85. Gernandt R, Wagberg L, Gärlund L (2003) Polyelectrolyte complexes for surface modification of wood fibres. Colloids Surf A 213:15

    CAS  Google Scholar 

  86. Uematsu T, Matsui Y, Kakiuchi S, Isogai A (2011) Cellulose wet wiper sheets prepared with cationic polymer and carboxymethyl cellulose using a papermaking technique. Cellulose 18:1129

    CAS  Google Scholar 

  87. Champ S, Auweter H, Leduc M (2004) Method for the production of aqueous polyelectrolyte complex dispersions, and use thereof for increasing the water resistance. Patent WO2004096895

    Google Scholar 

  88. Buchhammer HM, Petzold G, Lunkwitz K (1999) Salt effect on formation and properties of interpolyelectrolyte complexes and their interactions with silica particles. Langmuir 15:4306

    CAS  Google Scholar 

  89. Schwarz S, Dragan ES (2004) Nonstoichiometric interpolyelectrolyte complexes as colloidal dispersions based on NaPAMPS and their interaction with colloidal silica particles. Macromol Symp 210:185

    CAS  Google Scholar 

  90. Mende M, Buchhammer HM, Schwarz S, Petzold G, Jaeger W (2004) The stability of polyelectrolyte complex systems of PDADMAC with different polyanions. Macromol Symp 211:121

    CAS  Google Scholar 

  91. Mende M, Schwarz S, Petzold G, Jaeger W (2007) Destabilization of model silica dispersions by polyelectrolyte complex particles with different charge excess, hydrophobicity, and particle size. J Appl Polym Sci 103:3776

    CAS  Google Scholar 

  92. Nyström RS, Rosenholm JB, Nurmi K (2003) Flocculation of semidilute calcite dispersion induced by anionic sodium polyacrylate-cationic starch complexes. Langmuir 19:3981

    Google Scholar 

  93. Nyström R, Hedström G, Gustafsson J, Rosenholm JB (2004) Mixtures of cationic starch and anionic polyacrylate used for flocculation of calcium carbonate-influence of electrolytes. Colloids Surf A 234:85

    Google Scholar 

  94. Dragan ES, Ghimici L, Cristea M (1999) Polyelectrolyte complexes III. Binding characteristics of some polycations. Acta Polym 50:260

    CAS  Google Scholar 

  95. Dragan ES, Cristea M (2003) Polyelectrolyte complexes. Formation, characterizationand application. In: Gayathri A (ed) Recent research developments in polymer science, vol 7. Research Signpost, Trivandrum, pp 149–181

    Google Scholar 

  96. Dragan ES, Mihai M (2007) Polyanion structure and mixing conditions-useful tool to tailor the characteristics of PEC particles. J Optoelectron Adv Mater 9:3927

    CAS  Google Scholar 

  97. Dragan ES, Dragan D, Christea M (1999) Polyelectrolyte complexes. II. Specific aspects of the formation of polycation/dye/polyanion complexes. J Polym Sci A 37:409

    CAS  Google Scholar 

  98. Zemaitaitiene RJ, Zliobaite E, Klimaviciute R, Zemaitaitis A (2003) The role of anionic substances in removal of textile dyes from solutions using cationic flocculant. Colloids Surf A 214:37

    CAS  Google Scholar 

  99. Zliobaite E (1998) Binding of dyes with cationic polyelectrolytes in textile wastewater. Ph.D. Thesis, Kaunas University of Technology, Lithuania

    Google Scholar 

  100. Buchhammer HM, Oelmann M, Petzold G (2001) Flocculation of disperse dyes in effluents with polyelectrolyte complexes. Melliand Engl 82:E104

    CAS  Google Scholar 

  101. Zhao HZ, Luan ZK, Gao BY, Yue QY (2002) J Appl Polym Sci 84:335

    CAS  Google Scholar 

  102. Schwarz S, Lunkwitz K, Kessler B, Spiegler U, Killmann E, Jaeger W (2000) Adsorption and stability of colloidal silica. Colloids Surf A 163:17

    CAS  Google Scholar 

  103. Schwarz S, Bratskaya S, Jaeger W, Paulke BR (2006) Effect of charge density, molecular weight and hydrophobicity on adsorption and flocculation. J Appl Polym Sci 101:3422

    CAS  Google Scholar 

  104. Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. CRC, Boca Raton

    Google Scholar 

  105. Kabanov VA, Dubin P, Bock J, Devies JM, Schulz DN (1994) Macromolecular complexes in chemistry and biology. Springer, Berlin

    Google Scholar 

  106. Holmberg K, Jönsson B, Kronberg B, Lindman B (1998) Surfactants and polymers in aqueous solution. Wiley, Chichester

    Google Scholar 

  107. Piculell L, Thuresson K, Lindman B (2001) Mixed solutions of surfactant and hydrophobically modified polymer. Polym Adv Technol 12:44

    Google Scholar 

  108. Ritacco H, Kurlat DH (2003) Critical aggregation concentration in the PAMPS (10%)/DTAB system. Colloids Surf A 218:27

    CAS  Google Scholar 

  109. Jain NJ, Albouy PA, Langevin D (2003) Study of adsorbed monolayers of a cationic surfactant and an anionic polyelectrolyte at the air–water interface. Langmuir 19:5680

    CAS  Google Scholar 

  110. Jain NJ, Trabelsi S, Guillot S, McLoughlin D, Langevin L, Letellier P, Turmine M (2004) Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir 20:8496

    CAS  Google Scholar 

  111. Krishnan R, Sprycha R (1999) Interactions of acetylenic diol surfactants with polymers – Part 1. Maleic anhydride co-polymers. Colloids Surf A 149:355

    CAS  Google Scholar 

  112. Olea AF, Gamboa C, Acevedo B, Martinez B (2000) Synergistic effect of cationic surfactant on surface properties of anionic copolymers of maleic acid and styrene. Langmuir 16:6884

    CAS  Google Scholar 

  113. Zimin D, Craig VSJ, Kunz W (2004) Adsorption and desorption of polymer/surfactant mixtures at solid–liquid interfaces: substitution experiments. Langmuir 20:8114

    CAS  Google Scholar 

  114. Kasaikin VA, Litmanovich EA, Kabanov VA (1999) Self-organisation of micellar phase upon binding of sodium dodecyl sulfate with polydimethyldiallylammonium chloride in dilute aqueous solution. Doklady Phys Chem 367:205

    Google Scholar 

  115. Staples E, Tucker I, Penfold J, Warren N, Thomas RK, Taylor DJF (2002) Organization of polymer-surfactant mixtures at the air–water interface: sodium dodecyl sulfate and poly(dimethyldiallylammonium chloride). Langmuir 18:5147

    CAS  Google Scholar 

  116. Taylor DJF, Thomas RK (2002) The adsorption of oppositely charged polyelectrolyte/ surfactant mixtures: neutron reflection from dodecyl trimethylammonium bromide and sodium poly(styrene sulfonate) at the air/water interface. Langmuir 18:4748

    CAS  Google Scholar 

  117. Li F, Li GZ, Xu GY, Wang HQ, Wang M (1998) Studies on the interactions between anionic surfactants and polyvinylpyrrolidone: surface tension measurement, 13C NMR and ESR. Colloid Polym Sci 276:1

    CAS  Google Scholar 

  118. Prioetti N, Amato ME, Masci G, Segre AL (2002) Polyelectrolyte/surfactant interaction: an NMR characterization. Macromol 35:4365

    Google Scholar 

  119. Taylor DJF, Thomas RK, Li PX, Penfold J (2003) Adsorption of oppositely charged polyelectrolyte/surfactant mixtures. Neutron reflection from alkyl trimethylammonium bromides and sodium poly(styrenesulfonate) at the air/water interface: the effect of surfactant chain length. Langmuir 19:3712

    CAS  Google Scholar 

  120. Ritacco H, Kurlat D, Langevin D (2003) Properties of aqueous solutions of polyelectrolytes and surfactants of opposite charge: surface tension, surface rheology, and electrical birefringence studies. J Phys Chem B 107:9146

    CAS  Google Scholar 

  121. Noskov BA, Loglio G, Miller R (2004) Dilational visco-elasticity of polyelectrolyte/surfactant adsorption films at the air/water interface: dodecyltrimethylammonium bromide and sodium poly(styrene sulfonate). J Phys Chem 108:18615

    CAS  Google Scholar 

  122. Noskov BA, Loglio G, Lin SY, Miller R (2006) Dynamic surface elasticity of polyelectrolyte/surfactant adsorption layers at the air/water interface: dodecyltrimethylammonium bromide and copolymer of sodium 2-acrylamido-2-methyl-1-propansulfonate with N-isopropyl-acrylamide. J Colloid Interface Sci 301:386

    CAS  Google Scholar 

  123. Naderi A, Claesson PM, Bergström M, Dėdinaitė A (2005) Trapped non-equilibrium states in aqueous solutions of oppositely charged polyelectrolytes and surfactants: effect of mixing protocol and salt concentration. Colloids Surf A 253:83

    CAS  Google Scholar 

  124. Petzold G, Dutschk V, Mende M, Miller R (2008) Interaction of cationic surfactant and anionic polyelectrolytes in mixed aqueous solutions. Colloids Surf A 319:43

    CAS  Google Scholar 

  125. Petzold G, Mende M, Kochurova N (2007) Polymer-surfactant complexes as flocculants. Colloids Surf A 298:139

    CAS  Google Scholar 

  126. Petzold G, Jaeger W, Schwarz S, Mende M (2007) Dye flocculation using polyampholytes and polyelectrolyte-surfactant nanoparticles. J Appl Polym Sci 104:1342

    CAS  Google Scholar 

  127. Petzold G, Schwarz S (2006) Dye removal with polyelectrolytes and polyelectrolyte – surfactant complexes. Sep Purif Technol 51:318

    CAS  Google Scholar 

  128. Magdassi S, Rodel BZ (1996) Flocculation of montmorillonite dispersions based on surfactant–polymer interactions. Colloids Surf A 119:51

    CAS  Google Scholar 

  129. Buchhammer HM, Petzold G, Lunkwitz K (2000) Nanoparticles based on PEL. Colloid Polym Sci 278:841

    CAS  Google Scholar 

  130. Nizri G, Magdassi S (2005) Solubilization of hydrophobic molecules in nanoparticles formed by polymer-surfactant interactions. J Colloid Interface Sci 291:169

    CAS  Google Scholar 

  131. Sobisch T, Lerche D (2002) Pre-selection of flocculants by the LUMiFuge separation analyser. Water Sci Technol 46:441

    CAS  Google Scholar 

  132. Lerche D, Sobisch T (2011) Direct and accelerated direct and accelerated characterization of formulation stability. J Dispersion Sci Technol 32:1799

    CAS  Google Scholar 

  133. Lerche D (2002) Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field. J Dispersion Sci Technol 23:699

    CAS  Google Scholar 

  134. Küchler S, Sobisch T, Detloff T, Lerche D (2011) Direct characterization of ceramic dispersions. Ceram Forum Int 88:E27

    Google Scholar 

  135. Sobisch T, Lerche L (2008) Thickener performance. Colloids Surf A 331:114

    CAS  Google Scholar 

  136. Krause B, Mende M, Pötschke P, Petzold G (2010) Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48:2746

    CAS  Google Scholar 

  137. Mihai M (2009) Chitosan based nonstoichiometric polyelectrolyte complexes as specialized flocculants. Colloids Surf A 346:39

    CAS  Google Scholar 

  138. Glampedaki P, Petzold G, Dutsch V, Miller R, Warmoeskerken MCG (2012) Physicochemical properties of biopolymer-based polyelectrolyte complexes with controlled pH/thermo responsiveness. React Funct Polym 72:458

    CAS  Google Scholar 

  139. Glampedaki P, Krägel J, Petzold G, Dutschk V, Miller R (2012) Textile functionalization through incorporation of pH/thermo – responsive microgels. Part 1. Microgel preparation. Colloids Surf A 413:334

    CAS  Google Scholar 

  140. Rutkaite R, Bendoraitiene J, Klimaviciute R, Zemaitaitis A (2012) Cationic starch nanoparticles based on polyelectrolyte complexes. Int J Biol Macromol 50:687

    CAS  Google Scholar 

  141. Müller M, Starchenko V, Lebovka N, Ouyang W, Keßler B (2009) Nanoparticles of polyelectrolyte complexes with narrow size distribution: preparation and life science applications. Polym Mater Sci Eng 101:1514

    Google Scholar 

  142. Höbel S, Loos A, Appelhans D, Schwarz S, Seidel J, Voit B, Aigner A (2011) Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): physicochemical and biological properties of DNA and siRNA complexes. J Controlled Release 149:146

    Google Scholar 

Download references

Acknowledgements

We are indebted to many long-term collaborators and colleagues, especially to Dr. Stela Dragan and her group (Institute Petru Poni, Iasi, Romania) and to Dr. Svetlana Bratskaya (Far East Department of Russian Academy of Sciences, Institute of Chemistry, Vladivostok, Russia). The investigations with tailored polymers, especially hydrophobic PCs, were undertaken in collaboration with Prof. Laschewsky and his group (Fraunhofer IAP Golm, Germany). Above all, we would like to thank our unforgettable colleague and friend Dr. Werner Jaeger.

Financial support from the BMBF and AiF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petzold, G., Schwarz, S. (2013). Polyelectrolyte Complexes in Flocculation Applications. In: Müller, M. (eds) Polyelectrolyte Complexes in the Dispersed and Solid State II. Advances in Polymer Science, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_205

Download citation

Publish with us

Policies and ethics