Skip to main content

Engineering of Polysaccharides via Nanotechnology

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 254))

Abstract

The exploitation of nanotechnology to engineer polysaccharides is undoubtedly very innovative in the context of nanobiopolymers. The polysaccharides are naturally occurring biopolymers and can potentially be used for diverse applications. Interest in the study of nanotechnology to produce nanoscaled polysaccharides is gradually increasing. Nanotechnology not only changes the structures of polysaccharides but also changes the functionality of the materials. Many properties of polysaccharides are perhaps still undiscovered. The use of nanotechnology to engineer polysaccharides may open up a new horizon that can noticeably change every aspect of human life. Chitosan is an important polysaccharide and is found in the exoskeleton of crab, shrimp, prawn, lobster, squid pen, etc. Despite its abundant availability in nature, it has not yet been completely cherished by the scientific community. The properties of chitosan vary from source to source, which could enable the efficient use of chitosan for a specific application. This chapter deals with various sources of chitosan and discusses its physical, chemical, and biological properties; synthesis of chitosan-based nanoparticles, nanospheres, and nanogels; characterization; and biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zheng H, Du Y, Yu J et al (2001) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80:2558–2565

    CAS  Google Scholar 

  2. Knaul JZ, Hudson SM, Creber KAM (1999) Improved mechanical properties of chitosan fibers. J Appl Polym Sci 72:1721–1732

    CAS  Google Scholar 

  3. Jiu H, Du Y, Wang X et al (2004) Chitosan kill bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Google Scholar 

  4. Dong Y, Wang H, Zheng W et al (2004) Liquid crystalline behavior of chitooligosaccharides. Carbohydr Polym 57:235–240

    CAS  Google Scholar 

  5. Dutta J, Dutta PK, Rinki K et al (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, Trivandrum

    Google Scholar 

  6. Tangpasuthadol V, Pongchaisirikul N, Hoven VP (2003) Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr Res 338:937–942

    CAS  Google Scholar 

  7. Zhang J, Xia W, Liu P et al (2010) Chitosan modigfications and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1987

    CAS  Google Scholar 

  8. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  Google Scholar 

  9. Riva R, Ragelle H, Rieux AD et al (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci 244:19–44

    CAS  Google Scholar 

  10. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    CAS  Google Scholar 

  11. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biologic Macromol 43:401–414

    CAS  Google Scholar 

  12. Liu X, Ma L, Mao Z et al (2011) Chitosan-based biomaterials for tissue repair and regeneration. Adv Polym Sci 244:81–128

    CAS  Google Scholar 

  13. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  14. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan: chemistry, solubility, and fiber formation. Prog Polym Sci 34:641–678

    CAS  Google Scholar 

  15. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109

    CAS  Google Scholar 

  16. Franco LO, Thayza CM, Newton P et al (2005) Cunningamella elegans (IFM 46109) como fonte de quitina e quitosana. Rev Anal 4:40–44

    Google Scholar 

  17. Muzzarelli RAA (1990) Encyclopedia of polymer science and engineering, 3rd edn. Wiley, New York, p 430

    Google Scholar 

  18. George TS, Guru KSS, Sankaranarayanan N et al (2011) Extraction, purification and characterization of chitosan from endophytic fungi isolated from medical plants. World J Sci Technol 1:43–48

    CAS  Google Scholar 

  19. Synowiecki J, Al-Khateeb NA (2003) Production, properties and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171

    CAS  Google Scholar 

  20. Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14:535–542

    CAS  Google Scholar 

  21. Rasmussen RS, Morrissey MT (2007) Chitin and chitosan. In: Shahidi F, Barrow C (eds) Marine nutraceuticals and functional foods. CRC Press, New York

    Google Scholar 

  22. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Trend Food Sci Technol 10:37–51

    CAS  Google Scholar 

  23. Islam MM, Masum SM, Mahbub KR et al (2011) Antibacterial activity of crab-chitosan against Staphylococcus aureus and Escherichia coli. J Adv Scient Res 2:63–66

    CAS  Google Scholar 

  24. Dutta PK, Dutta J, Chattopadhyaya MC et al (2004) Chitin and Chitosan: novel biomaterials waiting for future development. J Polym Mater 21:321–333.

    Google Scholar 

  25. Kumirska J, Weinhold MX, Thöming J et al (2011) Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901

    CAS  Google Scholar 

  26. Limam Z, Selmi S, Sadok S et al (2011) Extraction of chitin and chitosan from crustacean by-products: Biological and physicochemical properties. Afr J Biotechnol 10:640–647

    CAS  Google Scholar 

  27. Toan NV (2009) Production of chitin and chitosan from partially autolyzed shrimp shell. Open Biomater J 1:21–24

    Google Scholar 

  28. Lertsutthiwong P, How NC, Chandrkrachang S et al (2002) Effect of chemical treatment on the characteristics of shrimp chitosan. J Met Mater Miner 12:11–18

    CAS  Google Scholar 

  29. Teng WL, Khor E, Tan TK et al (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332:305–316

    CAS  Google Scholar 

  30. Das S, Ganesh EA (2010) Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr Res J Biol Sci 2:72–75

    CAS  Google Scholar 

  31. Okada T, Hartsdale NY, Kubo I et al (1999) Fungus useful for chitin production. US Patent 5,905,035

    Google Scholar 

  32. Wooten J, Singer NS (2003) Methods of extracting chitin from the shells of exoskeletal animals. US Patent 6,632,941 B2

    Google Scholar 

  33. Sannan T, Tsuchida S, Yoshinaga S et al (2006) Purified chitins and production thereof. US Patent 6,989,440 B2

    Google Scholar 

  34. Hackman RH, Goldberg M (1965) The studies on chitin. VI. The nature of α- and β-chitins. Aust J Biol Chem 18:941–965

    Google Scholar 

  35. No HK, Meyers SP, Lee KS (1989) Isolation and characterization of chitin from crawfish shell waste. J Agric Food Chem 37:138–144

    Google Scholar 

  36. Austin PR, Brine CJ, Castle JE et al (1981) Chitin: new facts of research. Science 212:749–753

    CAS  Google Scholar 

  37. Roberts G (1997) Chitosan production routes and their role in determining the structure and properties of the product. In: Domard A, Roberts GAF, Varum KM (eds) Advances in chitin science. Jaques Andre, Lyon, pp 22–31

    Google Scholar 

  38. Roberts GAF (1992) Chitin chemistry. Macmillan, London

    Google Scholar 

  39. Hayes M, Carney B, Slater J et al (2008) Mining marine shellfish waste for bioactive molecules: chitin and chitosan. Part A: Extraction methods. Biotechnol J 3:871–877

    CAS  Google Scholar 

  40. Kjartansson GT, Zivanovic S, Kristbergsson K et al (2006) Sonication-assisted extraction of chitin from shells of fresh water prawns (Macrobrachium rosenbergii). J Agr Food Chem 54:3317–3323

    CAS  Google Scholar 

  41. Kim SK, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368

    CAS  Google Scholar 

  42. Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4(1):12–18

    CAS  Google Scholar 

  43. Waldeck VJ, Daum G, Bisping B et al (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885

    CAS  Google Scholar 

  44. Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    CAS  Google Scholar 

  45. Rødde RH, Einbu A, Varum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71:388–393

    Google Scholar 

  46. No HK, Lee MY (1996) Isolation of chitin from crab shell waste. J Korean Soc Food Nutr 24:105

    Google Scholar 

  47. Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow Crab (Cinoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527

    CAS  Google Scholar 

  48. Tsaih ML, Chen RH (2003) The effect of reaction time and temperature during heterogeneous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. J Appl Polym Sci 88:2917

    CAS  Google Scholar 

  49. Gagne N, Simpson BK (1993) Use of proteolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol 7:253

    CAS  Google Scholar 

  50. No HK, Meyers SP (1997) Preparation of chitin and chitosan. In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. European Chitin Society, Grottammare, Atec, Grottammare, Italy pp 475–489

    Google Scholar 

  51. Acosta N, Jimenez C, Borau V et al (1993) Extraction and characterization of chitin from crustaceans. Biomass Bioeng 5:145

    CAS  Google Scholar 

  52. Synowiecki J, Sikorski ZE, Naczk M (1981) The activity of immobilized enzymes on different krill chitin preparations. Biotechnol Bioeng 23:2211

    CAS  Google Scholar 

  53. No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan – a review. J Aq Food Prod Technol 4:27

    CAS  Google Scholar 

  54. Whistler RS, BeMiller JN (1962) Alkaline degradation of amino sugars. J Org Chem 27:1161

    Google Scholar 

  55. Horowitz ST, Roseman S, Blumental HJ (1957) The preparation of glucosamine oligosaccharides separation. J Am Chem Soc 79:5046

    CAS  Google Scholar 

  56. Refer website: www.france-chitine.com/fab.e.htm

  57. Chen MH, Chan HY, Wu CL et al (2002) Production of chitosan and chitin. US Patent 6,485,946 B1

    Google Scholar 

  58. Feofilova EP, Nemtsev DV, Tereshina VM et al (1996) Appl Biochem Microbiol 32:437–445

    Google Scholar 

  59. Tsigos I, Martinou A, Kafetzopoulos D et al (2000) Chitin deacetylases: new versatile tools in biotechnology. Tibtech 18:305–312

    CAS  Google Scholar 

  60. Araki Y, Ito E (1975) A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Eur J Biochem 189:249–253

    Google Scholar 

  61. Kafetzopoulos D, Martinou A et al (1993) Bioconversion of chitin and chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90:2564–2568

    CAS  Google Scholar 

  62. Martinou A, Kafetzopoulos D et al (1993) Isolation of chitin deacetylase from Mucor rouxii by immunoaffinity chromatography. J Chromatogr 644:35–41

    CAS  Google Scholar 

  63. Tsigos I, Bouriotis V (1995) Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J Biol Chem 270:26286–26291

    CAS  Google Scholar 

  64. Gao XD, Katsumoto T et al (1995) Purification and characterization of chitin deacetylase from Absidia coerulea. J Biochem 117:257–263

    CAS  Google Scholar 

  65. Tokuyasu K, Ohnishi-Kameyama M et al (1996) Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Biosci Biotechnol Biochem 60:1598–1603

    CAS  Google Scholar 

  66. Zhao Y, Park RD et al (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46

    CAS  Google Scholar 

  67. Song YS, Seo DJ, Kim KY et al (2012) Expression patterns of chitinase produced from Paenibacillus chitinolyticus with different two culture media. Carbohydr Polym 90:1187–1192

    CAS  Google Scholar 

  68. Zhao Y, Jo GH, Ju WT et al (2011) A highly N-glycosylated chitin deacetylase derived from a novel strain of Mortierella sp. DY-52. Biosci Biotechnol Biochem 75:960–965

    CAS  Google Scholar 

  69. Srinivasan VR (1998) Biotransformation of chitin to chitosan. US Patent 5,739,015

    Google Scholar 

  70. Yong T, Hong J, Zhangfu L et al (2005) Purification and characterization of an extracellular chitinase produced by bacterium C4. Ann Microbiol 55:213–218

    CAS  Google Scholar 

  71. Zhou G, Zhang H, He Y et al (2010) Identification of a chitin deacetylase producing bacteria isolated from soil and its fermentation optimization. Afr J Microbiol Res 4:2597–2603

    CAS  Google Scholar 

  72. Kaur K, Dattajirao V, Shrivastava V et al (2012) Isolation and characterization of chitosan-producing bacteria from beaches of Chennai, India. Enzyme Res. doi:10.1155/2012/421683

  73. Muzzarelli RAA, Mattioli-Belmonte M, Muzzarelli B et al (1997) Medical and veterinary applications of chitin and chitosan. In: Domard A, Roberts GAF, Varum KM (eds) Advances in chitin Science. Jacques Andre, Lyon, pp 580–589

    Google Scholar 

  74. Naczk M, Synowiecki J, Sikorski ZE (1981) The gross chemical composition of Antarctic krill shell waste. Food Chem 7:175–179

    CAS  Google Scholar 

  75. Synowiecki J, Al-Khateeb NA (2000) The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem 68:147–152

    CAS  Google Scholar 

  76. Kassai M (2008) A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym 71:497–508

    Google Scholar 

  77. Brugnerotto J, Lizardi J, Goycoolea FM et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    CAS  Google Scholar 

  78. Van de Velde K, Kiekens P (2004) Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydr Polym 58:409–416

    Google Scholar 

  79. Muzzarelli RAA, Rocchetti R (1985) Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr Polym 6:61–72

    Google Scholar 

  80. Wu T, Zivanovic S (2008) Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydr Polym 73:248–253

    CAS  Google Scholar 

  81. Duarte ML, Ferreira MC, Marvao MR et al (2001) Determination of the degree of acetylation of chitin materials by 13C CP/MAS NMR spectroscopy and solid state 13C NMR spectroscopy. Int J Biol Macromol 28:359–363

    CAS  Google Scholar 

  82. Varum KM, Antohonsen MW, Grasdalen H et al (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr Res 211:17–23

    CAS  Google Scholar 

  83. Raymond L, Morin FG, Marchessault RH (1993) Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydr Res 246:331–336

    CAS  Google Scholar 

  84. Jiang X, Chen L, Zhong W (2003) A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr Polym 54:457–463

    CAS  Google Scholar 

  85. Guinesi L, Cavalheiro E (2006) The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Termochim Acta 444:128–133

    CAS  Google Scholar 

  86. Rinaudo M, Milas M, Le Dung P (1993) Characterization of chitosan: Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol 15:281–285

    CAS  Google Scholar 

  87. Brugnerotto J, Desbrieres J, Roberts G et al (2001) Characterization of chitosan by steric exclusion chromatography. Polymer 42:09921–09927

    CAS  Google Scholar 

  88. Terbojevich M, Cosani A (1997) Molecular weight determination of chitin and chitosan. In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. European Chitin Society, Grotammare, pp 87–101

    Google Scholar 

  89. Yen M, Yang J, Mau J (2009) physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    CAS  Google Scholar 

  90. ASTM Standard F2103-01 (2001) Standard guide for characterization and testing of chitosan salts as starting materials intended for use in biomedical and tissue-engineered medical product applications. ASTM International, West Conshohocken

    Google Scholar 

  91. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    CAS  Google Scholar 

  92. Shigemasa Y, Saito K, Sashiwa H et al (1994) Enzymatic degradation of chitins and partially deacetylated chitins. Int J Biol Macromol 16:43–49

    CAS  Google Scholar 

  93. Ben AC (2011) Chitin and chitosan: Marine biopolymers with unique properties and versatile applications. Global J Biotech Biochem 6:149–153

    Google Scholar 

  94. Khoushab F, Montarop Y (2010) Chitin research revisited. Mar Drugs 8:1988–2012

    CAS  Google Scholar 

  95. Chen JK, Shen CR, Liu CL (2010) N-acetylglucosamine: production and applications. Mar Drugs 8:2493–2516

    CAS  Google Scholar 

  96. Kumirska J, Czerwicka M, Kaczyński Z et al (2010) Applications of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636

    CAS  Google Scholar 

  97. Tolaimate A, Desbrieres J, Rhazi M et al (2003) Contribution to the preparation of chitins and chitosans with controlled physicochemical properties. Polymer 44:7939–7952

    CAS  Google Scholar 

  98. Campana-Filho SP, De Britto D, Curti E et al (2007) Extraction, structures and properties of α- and β-chitin. Quim Nova 30:644–650

    CAS  Google Scholar 

  99. Kurita K, Ishii S, Tomita K et al (1994) Reactivity characteristics of squid β-chitin as compared with those of shrimp chitin: high potentials of squid chitin as starting material for facile chemical modifications. J Polym Sci Part Polym Chem 32:1027–1032

    CAS  Google Scholar 

  100. Sannan T, Kurita K, Iwakura Y (1976) Studies on chitin 2. Effect of deacetylation on solubility. Makromol Chem 177:3589–3600

    CAS  Google Scholar 

  101. Noishiki Y, Takami H, Nishiyama Y et al (2003) Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4:896–899

    CAS  Google Scholar 

  102. Dvir T, Tsur-Gang O, Cohen S (2005) Scaffolds for tissue engineering and regeneration. Isr J Chem 45:487–494

    CAS  Google Scholar 

  103. Senel S, McClure SJ (2004) Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 56:1467–1480

    CAS  Google Scholar 

  104. Martino AD, Sittinnger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Google Scholar 

  105. Mahae N, Chalat C, Muhamud P et al (2011) Antioxidant and antimicrobial properties of chitosan-sugar complex. Int Food Res J 18:1543–1551

    CAS  Google Scholar 

  106. Li Q, Dunn ET, Grandmaison EW et al (1992) Applications and properties of chitosan. J Bioact Compat Polym 7:370–397

    CAS  Google Scholar 

  107. New N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2:374–398

    Google Scholar 

  108. Hwang JK, Shin HH (2000) Rheological properties of chitosan solutions. Korea Aust Rheol J 12:175–179

    Google Scholar 

  109. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 5:122–128

    Google Scholar 

  110. Trapani A, Sitterberg J, Bakowsky U et al (2009) The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm 375:97–106

    CAS  Google Scholar 

  111. Sajomsang W, Tantayanon S, Tangpasuthadol V et al (2009) Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity. Carbohydr Res 344:2502–2511

    CAS  Google Scholar 

  112. Prabhakaran M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Google Scholar 

  113. Papadimitriou SA, Achilias DS, Bikiaris DN (2012) Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. Int J Pharm 430:318–327

    CAS  Google Scholar 

  114. Harris JM, Struck EC, Case MG et al (1984) Synthesis and characterization of poly(ethylene glycol) derivatives. J Polym Sci Polym Chem Ed 22:341–352

    CAS  Google Scholar 

  115. Sugimoto M, Morimoto M, Sashiva H et al (1998) Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym 36:49–59

    CAS  Google Scholar 

  116. Gorochovceva N, Naderi A, Dedinaite A et al (2005) Chitosan-N-poly(ethylene glycol) brush copolymers: synthesis and adsorption on silica surface. Eur Polym J 41:2653–2662

    CAS  Google Scholar 

  117. Bravo-Osuna PG, Vauthier C (2007) Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur J Pharm Sci 30:143–154

    CAS  Google Scholar 

  118. Huang M, Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21:344–353

    CAS  Google Scholar 

  119. Bernkop-Schnǜrch A, Kast CE, Guggi D (2001) Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 93:95–103

    Google Scholar 

  120. Choochottiros C, Yoksan R, Chirachanchai S (2009) Amphiphilic chitosan nanospheres: factors to control nanosphere formation and its consequent pH responsive performance. Polymer 50:1877–1886

    CAS  Google Scholar 

  121. Wang J, Zong JY, Zhao D et al (2011) In-situ formation of chitosan-cylodextrin nanospheres for drug delivery. Colloids Surf B Biointerfaces 87:198–202

    CAS  Google Scholar 

  122. Lu B, Xu XD, Zhang XZ et al (2008) Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules 9:2594–2600

    CAS  Google Scholar 

  123. Yateen SP, Saikishore V, Srokanth K et al (2012) Drug delivery systems using chitosan nanoparticles. Am J PharmTech Res 2:1–19

    Google Scholar 

  124. Jong WHD, Borm PJA (2008) Drug delivery and nanoparticles. Int J Nanomedicine 3:133–149

    Google Scholar 

  125. Singh M, Manikandan S, Kumaraguru AK (2010) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1–12. doi:10.3923/rjnn.2010

  126. Arayne MS, Sultana N, Sabah NS (2007) Fabrication of solid nanoparticles for drug delivery. Pak J Pharm Sci 20:251–259

    CAS  Google Scholar 

  127. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31

    CAS  Google Scholar 

  128. Diebold Y, Calonge M (2010) Applications of nanoparticles in opthamology. Prog Polym Sci 29:596–609

    CAS  Google Scholar 

  129. Wu W, Aiello M, Zhou et al (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell, imaging, and drug delivery. Biomaterials 31:3023–3031

    CAS  Google Scholar 

  130. Meyers MA, Chen PY, Lin AYM et al (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    CAS  Google Scholar 

  131. Andrade F, Goycoolea F, Chiapptta DA et al (2011) Chitosan-grafted copolymers and chitosan-ligand as matrices for pulmonary drug delivery. Int J Carbohydr Chem 1–14. doi:10.1155/2011/865704

  132. Boddohi S, Kipper MJ (2010) Engineering nanoassemblies of polysaccharides. Adv Mater 22:2998–3016

    CAS  Google Scholar 

  133. Zhang J, Chen XG, Li YY et al (2007) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine 3:258–265

    CAS  Google Scholar 

  134. Liu CG, Desai KGH, Chen XG et al (2005) Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. J Agric Food Chem 53:437–441

    CAS  Google Scholar 

  135. Manaspon C, Viravaidya-Pasuwat K, Pimpha N (2012) Preparation of folate-conjugated pluronic F127/chitosan core-shell nanoparticles encapsulating doxorubicin for breast cancer treatment. J Nanomater 1–11. doi:10.1155/2012/593878

  136. Sharma PK, Bhatia SR (2004) Effect of anti-inflammatories on Pluronic® F127: micellar assembly, gelation and partitioning. Int J Pharm 278:361–377

    CAS  Google Scholar 

  137. Escobar-Chàvez JJ, López-Cervantes M, Naϊk A et al (2006) Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9:339–358

    Google Scholar 

  138. Kwon SH, Kim SY, Ha KW et al (2007) Pharmaceutical evaluation of genestein-loaded pluronic micelles for oral delivery. Arch Pharm Res 13:1138–1143

    Google Scholar 

  139. Kabanov AV, Lemieux P, Vinogradov S et al (2002) Pluronic block copolymers: novel functional molecules for gene therapy. Add Drug Deliv Rev 54:223–233

    CAS  Google Scholar 

  140. Hecht E, Mortensen M, Gradzielski M, Hoffmann H (1994) Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 10:86–91

    CAS  Google Scholar 

  141. Janes KA, Fresneau MP, Marazuela A et al (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267

    CAS  Google Scholar 

  142. Papadimitriou S, Bikiaris D, Avgoustakis K et al (2008) Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym 73:44–54

    CAS  Google Scholar 

  143. Su ZQ, Zhanh HL, Wu SH et al (2010) Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater. doi:10.1155/2010/898910

  144. Srinatha A, Pandit J, Singh S (2008) Ionic cross-linked chitosan beads for extended relaese of ciprofloxacin: in vitro characterization. Indian J Pharm Sci 70:16–21

    CAS  Google Scholar 

  145. Jayakumar R, Deepthy M, Manzoor K et al (2010) Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym. doi:10.1016/j.carbpol. 2010.04.074

  146. Rejinold NS, Chennazhi KP, Nair SV et al (2011) Biodegradable and thermo-responsive chitosan-g-poly(N-vinylcaprolactum) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83:776–786

    CAS  Google Scholar 

  147. Choi IS, Oh DY, Kim BS et al (2007) 5-FU, folinic acid as first-line palliative chemotherapy in elderly patients with metastatic or recurrent gastric cancer. Cancer Res Treat 39:99–103

    Google Scholar 

  148. Kouchak M, Avadi M, Abbaspour M et al (2012) Effect of different molecular weights of chitosan on preparation and characterization of insulin loaded nanoparticles by ion gelation method. Int J Drug Dev Res 4:271–277

    CAS  Google Scholar 

  149. Grenha A, Seijo B, Serra C et al (2007) Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules 8:2072–2079

    CAS  Google Scholar 

  150. Grenha A, Seijo B, Remunan-Lopez C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25:427–437

    CAS  Google Scholar 

  151. Fan W, Yan W, Xu Z et al (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 90:21–27

    CAS  Google Scholar 

  152. Katas H, Oya Alpar H (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    CAS  Google Scholar 

  153. Yao RS, Liu L, Deng SS et al (2011) Synthesis and characterization of PEGylated carboxymethylchitosan nanoparticles. Carbohydr Polym 85:809–816

    CAS  Google Scholar 

  154. Pang HT, Chen XG, Park HJ et al (2007) Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems. Carbohydr Polym 68:419–425

    Google Scholar 

  155. Pasanphan W, Rimdusit P, Choofong S et al (2010) Systematic fabrication of chitosan nanoparticle by gamma radiation. Radiat Phys Chem 79:1095–1102

    CAS  Google Scholar 

  156. Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm 265:103–114

    CAS  Google Scholar 

  157. Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13:536–557

    CAS  Google Scholar 

  158. Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives: chemistry and applications. Curr Org Chem 14:308–330

    CAS  Google Scholar 

  159. Bodnar M, Hartmann JF, Borbely J (2005) Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 6:2521–2527

    CAS  Google Scholar 

  160. Lees-Haley PR, Williams CW (1997) Neurotoxicity of chronic low-dose exposure to organic solvents: a skeptical review. J Clin Psychol 53:699–712

    CAS  Google Scholar 

  161. Oda Y, Miura M, Hattori K et al (2009) Syntheses and doxorubicin-inclusion abilities of beta-cyclodextrin derivatives with a hydroquinone alpha-glycoside residue attached at the primary side. Chem Pharm Bull 57:74–78

    CAS  Google Scholar 

  162. Prabhakaran M, Mano JF (2006) Stmuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 8:991–1008

    Google Scholar 

  163. Aiping Z, Tian C, Lanhua Y et al (2006) Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohydr Polym 66:274–279

    Google Scholar 

  164. Gu FX, Karnik R, Wang AZ et al (2007) Targeted nanoparticles for cancer therapy. Nano Today 2:14–21

    Google Scholar 

  165. Arruebo M, Rodrigo FP, Ibarra MR et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Google Scholar 

  166. Ke JH, Lin JJ, Carey JR et al (2010) A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials 31:1707–1715

    CAS  Google Scholar 

  167. Lacava LM, Gareia VAP, Kuckelhaus S et al (2004) Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 272–276:2434–2435

    Google Scholar 

  168. Wang Y, Li B, Zhou Y et al (2011) New generation of chitosan-(acrylic acid)-magnetite nanospheres: synthesis, characterization and cell viability test in vitro. J Control Release 152:e245–e246

    CAS  Google Scholar 

  169. Rösler A, Vandermeulen GWM, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53:95–108

    Google Scholar 

  170. Turner JL, Chen Z, Wooley KL (2005) Regiochemical functionalization of a nanoscale cage-like structure: robust core–shell nanostructures crafted as vessels for selective uptake and release of small and large guests. J Control Release 109:189–202

    CAS  Google Scholar 

  171. Mu B, Shen RP, Liu P (2009) Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface initiated atom transfer radical polymerization. Colloid Surf B 74:511–515

    CAS  Google Scholar 

  172. Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach. J Am Chem Soc 120:8587–8598

    CAS  Google Scholar 

  173. Lee JM, Bermudez H, Discher BM et al (2001) Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 73:135–145

    CAS  Google Scholar 

  174. Li W, Szoka FS Jr (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 24:438–449

    Google Scholar 

  175. Fu GD, Li GL, Neoh KG et al (2011) Hollow polymeric nanostructures-synthesis, morphology and function. Prog Polym Sci 36:127–167

    CAS  Google Scholar 

  176. Hu Y, Chen Y, Chen Q et al (2005) Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid) hollow nanospheres. Polymer 46:12703–12710

    CAS  Google Scholar 

  177. Wang W, Luo C, Shao S et al (2010) Chitosan hollow nanospheres fabricated from biodegradable poly-d,l-lactide-poly(ethylene glycol) nanoparticle template. Eur J Pharm Biopharm 76:376–383

    CAS  Google Scholar 

  178. Deng Z, Zhen Z, Hu X et al (2011) Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32:4976–4986

    CAS  Google Scholar 

  179. Wu J, Sailor M (2009) Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater 19:733–741

    CAS  Google Scholar 

  180. Liu YL, Su YH, Lai JY (2004) In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using gamma-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45:6831–6837

    CAS  Google Scholar 

  181. Vinogradov SV et al (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    CAS  Google Scholar 

  182. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–1282

    CAS  Google Scholar 

  183. Oh JK (2010) Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Can J Chem 88:173–184

    CAS  Google Scholar 

  184. Zhou X, Liu B, Yu X et al (2007) Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release 121:200–207

    CAS  Google Scholar 

  185. Ko JA, Park HJ, Hwang SJ et al (2002) Preparation and characterization of chitosan microparticles intended for controlled release of drug delivery. Int J Pharm 249:165–174

    CAS  Google Scholar 

  186. Shu XZ, Zhu KJ (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

    CAS  Google Scholar 

  187. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250:215–226

    CAS  Google Scholar 

  188. Mincheva R, Bougard F, Paneva D et al (2009) Polyelectrolyte complex nanoparticles from N-carboxymethylchitosan and polycationic double hydrophilic diblock copolymers. J Polym Sci Part A Polym Chem 47:2105–2117

    CAS  Google Scholar 

  189. Boddohi S, Moore N, Johnson PA et al (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    CAS  Google Scholar 

  190. Bodnar M, Hartmann JF, Borbely J (2006) Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules 7:3030–3036

    CAS  Google Scholar 

  191. Shen X, Zhang L, Jiang X et al (2007) Reversible surface switching of nanogel triggered by external stimuli. Angew Chem Int Ed 46:7104–7107

    CAS  Google Scholar 

  192. Maggi F, Ciccarelli S, Diociaiuti M et al (2011) Chitosan nanogels by template chemical cross-linking in polyion complex micelle nanoreactors. Biomacromolecules 12:3499–3507

    CAS  Google Scholar 

  193. Voets IK, Keizer DA, Cohen Stuart MA (2009) Complex coacervate core micelles. Adv Colloid Interface Sci 147–148:300–318

    Google Scholar 

  194. Lee Y, Kataoka K (2009) Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 5:3810–3817

    CAS  Google Scholar 

  195. Cohen Stuart MA, Hofs B, Voets IK et al (2005) Assembly of polyelectrolyte-containing block copolymers in aqueous media. Curr Opin Colloid Interface Sci 10:30–36

    CAS  Google Scholar 

  196. Shen JM, Xu L, Lu Y et al (2012) Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int J Pharm 427:400–409

    CAS  Google Scholar 

  197. Biju V, Makita Y, Sonoda A (2005) Temperature-sensitive photoluminescence of CdSe quantum dot clusters. J Phys Chem B 109:13899–13905

    CAS  Google Scholar 

  198. Li XT, Lin C, Li PY et al (1985) The comparisons of sensibility of seven kinds of human carcinoma cell lines to the oridonin. Acta Pharm Sci 20:243–246

    CAS  Google Scholar 

  199. Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosang-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68:367–374

    CAS  Google Scholar 

  200. Zhang DR, Ren TC (2003) Pharmaceutical progress of oridonin. Chin Pharm J 38:817–820

    CAS  Google Scholar 

  201. Duan C, Zhang D, Wang FET et al (2011) Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm 409:252–259

    CAS  Google Scholar 

  202. Hu HS, Liu TY, Liu DM et al (2007) Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 40:6786–6788

    CAS  Google Scholar 

  203. Tang YF, Du YM, Hu XW et al (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67:491–499

    CAS  Google Scholar 

  204. Leon TL, Elaissari A, Vinuesa JLO et al (2007) Hofmeister effects on poly(NIPAM) microgel particles: macroscopic evidence of ion adsorption and changes in water structure. Chem Phys Chem 8:148–156

    Google Scholar 

  205. Berndt I, Popescu C, Wortmann FJ et al (2006) Mechanics versus thermodynamics: swelling in multiple-temperature-sensitive core–shell microgels. Angew Chem Int Ed 45:1081–1085

    CAS  Google Scholar 

  206. Liu TY, Hu SH, Liu DM et al (2009) Biomedical nanoparticle carriers with combined thermal and magnetic response. Nano Today 4:52–65

    CAS  Google Scholar 

  207. Zhang J, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 3:838–850

    CAS  Google Scholar 

  208. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    CAS  Google Scholar 

  209. Jordan A, Scholz R, Wust P et al (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible supermagnetic nanoparticles. J Magn Magn Mater 201:413–419

    CAS  Google Scholar 

  210. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210

    CAS  Google Scholar 

  211. Jaiswal MK, Banerjee R, Pradhan P et al (2010) Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces 81:185–194

    CAS  Google Scholar 

  212. Gao J, Frisken BJ (2003) Cross-linker-free N-isopropylamide gel nanospheres. Langmuir 19:5212–5216

    CAS  Google Scholar 

  213. Lee CF, Wen CJ, Chiu WY (2003) Synthesis of poly(chitosan-N-isopropylacrylamide) complex particles with the method soapless dispersion polymerization. J Polym Sci Part A: Polym Chem 41:2053–2063

    CAS  Google Scholar 

  214. Sierra-Martin B, Choi Y, Romero-Cano MS et al (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787

    CAS  Google Scholar 

  215. Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 38:4465–4471

    CAS  Google Scholar 

  216. Lee IS, Akiyoshi K (2004) Molecular mechanics of a cholestrol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25:2911–2918

    CAS  Google Scholar 

  217. Janczewski D, Tomczak N, Han MY et al (2009) Stimulus responsive PNIPAM/QD hybrid microspheres by copolymerization with surface engineered QDs. Macromolecules 42:1801–1804

    CAS  Google Scholar 

  218. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914

    CAS  Google Scholar 

  219. Wu W, Zhou T, Shen J et al (2009) Optical detection of glucose by CdS quantum dots immobilized in smart microgels. Chem Commun 4390–4392

    Google Scholar 

  220. Chen YF, Ji TH, Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett 3:581–584

    CAS  Google Scholar 

  221. Hasegawa U, Nomura SM, Kaul SC et al (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921

    CAS  Google Scholar 

  222. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:165–1571

    Google Scholar 

  223. Bhang SH, Won N, Lee T et al (2009) Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano 3:1389–1398

    CAS  Google Scholar 

  224. Wu W, Shen J, Banerjee P et al (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31:8371–8381

    CAS  Google Scholar 

  225. Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1652

    CAS  Google Scholar 

  226. Agnihotri SA, Mallakarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticle in drug delivery. J Control Release 100:5–28

    CAS  Google Scholar 

  227. Nanjawade BK, Manvi FV, Manjappa AS (2007) In-situ forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122:119–134

    CAS  Google Scholar 

  228. Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11:014104–014114

    Google Scholar 

  229. Li L, Chen D, Zhang Y et al (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery systems. Nanotechnology 18:405102. doi:10.1088/0957-4484/18/40/405102

    Google Scholar 

  230. Wilson B, Samanta MK, Santhi K et al (2010) Chitosan nanoparticles as a new delivery system for the anti-alzheimer drug tarcine. Nanomedicine 6:144–152

    CAS  Google Scholar 

  231. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58:1423–1430

    CAS  Google Scholar 

  232. Chauddhury A, Das S (2011) Recent advancement of chitosan-based nanoparticels for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12:10–20

    Google Scholar 

  233. Tang DW, Yu SH, Ho YC et al (2010) Heparinized chitosan/poly (γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31:9320–9332

    CAS  Google Scholar 

  234. Sarmento B, Rebeiro A, Veiga F et al (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8:3054–3060

    CAS  Google Scholar 

  235. Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ (2009) New generation of hybrid polyoligosaccharide nanoparticels as carriers for the nasal delivery of macromolecules. Biomacromolecules 10:243–249

    CAS  Google Scholar 

  236. Liu ZG, Jiao YP, Liu F et al (2007) Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res A 83A:806–812

    CAS  Google Scholar 

  237. Dai H, Jiang X, Tan GCY et al (2006) Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery. Int J Nanomedicine 1:507–522

    CAS  Google Scholar 

  238. Zhang H, Oh M, Allen C et al (2004) Monodosperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5:2461–2468

    CAS  Google Scholar 

  239. Hrictu D, Popa MI, Popa N et al (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796

    Google Scholar 

  240. Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI-PEG-Chitosan copolymer coated iron-oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    CAS  Google Scholar 

  241. Tan YL, Liu CG (2011) Preparation and characterization of self-assemblied nanoparticles based on folic acid modified carboxymethyl chitosan. J Mater Sci Mater Med 22:1213–1220

    CAS  Google Scholar 

  242. Kavya KC, Dixit R, Jayakumar R et al (2012) Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering. J Biomed Nanotechnol 8:149–160

    CAS  Google Scholar 

  243. Chang SQ, Kang B, Dai YD et al (2011) One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route. Nanoscale Res Lett 6:591–597

    Google Scholar 

  244. Ge Y, Zhang Y, He S et al (2009) Fluorescent modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanascale Res Lett 4:187–295

    Google Scholar 

  245. Hou Z, Zhan C, Jiang Q et al (2011) Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett 6:563–573

    Google Scholar 

  246. Feng C, Chen X, Zhang J et al (2011) The effect of carboxymethylchitosan nanoparticles on proliferation of keloid fibroblast. Front Chem China 5:31–37

    Google Scholar 

  247. Jain NK, Jain SK (2010) Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS PharmSciTech 2:686–697

    Google Scholar 

  248. Chun W, Xiong FU, LianSheng Y (2007) Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chin Sci Bull 52:883–889

    Google Scholar 

  249. Cho Y, Shi R, Borgens RB (2010) Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein induced cell injury. J Biol Eng 4:2, http://www.jbioleng.org/content/4/1/2

    Google Scholar 

  250. Bhattarai SR, Kc RB, Kim SY et al (2008) N-hexanoyl chitosan stabilized magnetic nanoparticles: Implication for cellular labeling and magnetic resonance imaging. J Nanobiotechnol 6:1. doi:10.1186/1477-3155-6-1

    Google Scholar 

  251. Pashkunova-Matric I, Kremser C, Galanski M et al (2011) Lectin–Gd-loaded chitosan hydrogel nanoparticles: a new biospecific contrast agent for MRI. Mol Imaging Biol 13:16–24

    Google Scholar 

  252. Zhou W, Zhao M, Zhao Y et al (2011) A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies. J Mater Sci Mater Med 22:1221–1230

    Google Scholar 

  253. Nafee N, Schneider M, Schaefer U et al (2009) Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381:130–139

    CAS  Google Scholar 

  254. Debache K, Krope C, Schütz CA et al (2011) Vaccination of mice with chitosan nanogel-associated recombinant NcPDI against challenge infection with Neospora caninum. Parasite Immunol 33:81–94

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutta, J. (2013). Engineering of Polysaccharides via Nanotechnology. In: Dutta, P., Dutta, J. (eds) Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Advances in Polymer Science, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_196

Download citation

Publish with us

Policies and ethics