Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 254))

Abstract

Gene delivery is an important issue in embryo and stem cell studies for transgenic animal production, cell fate regulation, gene therapy, generation of patient-specific stem cells for cell-based therapy, cell tracing and imaging. Gene delivery has been classically achieved by a variety of methods that use a viral or a non-viral vector packaged with the nucleic acid of interest. In the last decade, several newer approaches to gene delivery have emerged that utilize nanomaterials to provide an efficient, safe and targeted gene delivery, both in vitro and in vivo. These nanomaterials, including polymeric nanoparticles, ceramic nanoparticles, magnetic nanoparticles, polymeric micelles and dendrimers, modify the kinetics, distribution and release of the genes into the cells and, thereby, increase the efficiency of gene delivery. This chapter describes the available nanoparticle-based gene delivery systems and their utility in stem cells for maintaining self-renewal, pluripotency and/or targeted differentiation into specific cell types for cell-based therapy and/or gene therapy. The chapter further discusses and reviews the progress and future of nanoparticles for generation of transgenic animals via gene delivery into embryos – a research area that is yet to be fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    CAS  Google Scholar 

  2. Read SP, Cashman SM, Kumar-Singh R (2010) A poly(ethylene) glycolylated peptide for ocular delivery compacts DNA into nanoparticles for gene delivery to post-mitotic tissues in vivo. J Gene Med 12:86–96

    CAS  Google Scholar 

  3. Wilson RW, Bloomfield VA (1979) Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study. Biochemistry 18:2192–2196

    CAS  Google Scholar 

  4. Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1:e38

    Google Scholar 

  5. Fink TL, Klepcyk PJ, Oette SM et al (2006) Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther 13:1048–1051

    CAS  Google Scholar 

  6. Kedziorek DA, Muja N, Walczak P et al (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63:1031–1043

    CAS  Google Scholar 

  7. Liu G, Molas M, Grossmann GA et al (2001) Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem 276:34379–34387

    CAS  Google Scholar 

  8. Caracciolo G, Pozzi D, Capriotti AL et al (2011) Factors determining the superior performance of lipid/DNA/protammine nanoparticles over lipoplexes. J Med Chem 54:4160–4171

    CAS  Google Scholar 

  9. Han G, Chari NS, Verma A et al (2005) Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione. Bioconjug Chem 16:1356–1359

    CAS  Google Scholar 

  10. McIntosh CM, Esposito EA 3rd, Boal AK et al (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629

    CAS  Google Scholar 

  11. Niidome T, Nakashima K, Takahashi H et al (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun (Camb) 1978–1979

    Google Scholar 

  12. Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    CAS  Google Scholar 

  13. Seferos DS, Giljohann DA, Rosi NL et al (2007) Locked nucleic acid-nanoparticle conjugates. Chembiochem 8:1230–1232

    CAS  Google Scholar 

  14. Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    CAS  Google Scholar 

  15. Niidome Y, Niidome T, Yamada S et al (2006) Pulsed-laser induced fragmentation and dissociation of DNA immobilized on gold nanoparticles. Mol Cryst Liq Cryst 445:201–206

    CAS  Google Scholar 

  16. Chen CC, Lin YP, Wang CW et al (2006) DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715

    CAS  Google Scholar 

  17. Takahashi H, Niidome Y, Yamada S (2005) Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun (Camb) 2247–2249

    Google Scholar 

  18. Wijaya A, Schaffer SB, Pallares IG et al (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3:80–86

    CAS  Google Scholar 

  19. Kawano T, Yamagata M, Takahashi H et al (2006) Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Control Release 111:382–389

    CAS  Google Scholar 

  20. Huang YF, Sefah K, Bamrungsap S et al (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24:11860–11865

    CAS  Google Scholar 

  21. Boyer C, Priyanto P, Davis TP et al (2010) Anti-fouling magnetic nanoparticles for siRNA delivery. J Mater Chem 20:255–265

    Google Scholar 

  22. Kamau SW, Hassa PO, Steitz B et al (2006) Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 34:e40

    Google Scholar 

  23. McBain SC, Griesenbach U, Xenariou S et al (2008) Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19:405102

    CAS  Google Scholar 

  24. Ito A, Shinkai M, Honda H et al (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654

    CAS  Google Scholar 

  25. Tang QS, Zhang DS, Cong XM et al (2008) Using thermal energy produced by irradiation of Mn–Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Biomaterials 29:2673–2679

    CAS  Google Scholar 

  26. Kami D, Takeda S, Itakura Y et al (2011) Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 12:3705–3722

    CAS  Google Scholar 

  27. Huth S, Lausier J, Gersting SW et al (2004) Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 6:923–936

    CAS  Google Scholar 

  28. Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102:11539–11544

    CAS  Google Scholar 

  29. Gemeinhart RA, Luo D, Saltzman WM (2005) Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog 21:532–537

    CAS  Google Scholar 

  30. Li Z, Zhu S, Gan K et al (2005) Poly-l-lysine-modified silica nanoparticles: a potential oral gene delivery system. J Nanosci Nanotechnol 5:1199–1203

    CAS  Google Scholar 

  31. Radu DR, Lai CY, Jeftinija K et al (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    CAS  Google Scholar 

  32. Kim W, Ng JK, Kunitake ME et al (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129:7228–7229

    CAS  Google Scholar 

  33. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasa PN (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 102:279–284

    CAS  Google Scholar 

  34. Chang JS, Chang KL, Hwang DF et al (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    CAS  Google Scholar 

  35. Lin W, Huang YW, Zhou XD et al (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259

    CAS  Google Scholar 

  36. Cai D, Mataraza JM, Qin ZH et al (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449–454

    CAS  Google Scholar 

  37. Gao L, Nie L, Wang T et al (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7:239–242

    CAS  Google Scholar 

  38. Mann DG, McKnight TE, McPherson JT et al (2008) Inducible RNA interference-mediated gene silencing using nanostructured gene delivery arrays. ACS Nano 2:69–76

    CAS  Google Scholar 

  39. Yu Z, McKnight TE, Ericson MN et al (2012) Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function. Nanomedicine 8:419–423

    CAS  Google Scholar 

  40. Boussif O, Lezoualc'h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    CAS  Google Scholar 

  41. Gosselin MA, Guo W, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem 12:989–994

    CAS  Google Scholar 

  42. Neu M, Sitterberg J, Bakowsky U et al (2006) Stabilized nanocarriers for plasmids based upon cross-linked poly(ethylene imine). Biomacromolecules 7:3428–3438

    CAS  Google Scholar 

  43. Sun YX, Zeng X, Meng QF et al (2008) The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials 29:4356–4365

    CAS  Google Scholar 

  44. Peng Q, Zhong Z, Zhuo R (2008) Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconjug Chem 19:499–506

    CAS  Google Scholar 

  45. Breunig M, Lungwitz U, Liebl R et al (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci USA 104:14454–14459

    CAS  Google Scholar 

  46. Lee Y, Mo H, Koo H et al (2007) Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem 18:13–18

    CAS  Google Scholar 

  47. Koo H, Jin GW, Kang H et al (2010) Biodegradable branched poly(ethylenimine sulfide) for gene delivery. Biomaterials 31:988–997

    CAS  Google Scholar 

  48. Hosseinkhani H, Hosseinkhani M, Gabrielson NP et al (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85:47–60

    Google Scholar 

  49. Neu M, Germershaus O, Behe M et al (2007) Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo. J Control Release 124:69–80

    CAS  Google Scholar 

  50. Ahn CH, Chae SY, Bae YH et al (2002) Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release 80:273–282

    CAS  Google Scholar 

  51. Chen XA, Zhang LJ, He ZJ et al (2011) Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells. Int J Nanomedicine 6:843–853

    CAS  Google Scholar 

  52. Mahor S, Collin E, Dash BC et al (2011) Controlled release of plasmid DNA from hyaluronan nanoparticles. Curr Drug Deliv 8:354–362

    CAS  Google Scholar 

  53. Park JS, Na K, Woo DG et al (2010) Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 31:124–132

    CAS  Google Scholar 

  54. Jeon SY, Park JS, Yang HN et al (2012) Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials 33(17):4413–4423

    CAS  Google Scholar 

  55. Pimpha N, Sunintaboon P, Inphonlek S et al (2010) Gene delivery efficacy of polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells. J Biomater Sci Polym Ed 21:205–223

    CAS  Google Scholar 

  56. Park JS, Yang HN, Woo DG et al (2011) Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials 32:3679–3688

    CAS  Google Scholar 

  57. Kakizawa Y, Harada A, Kataoka K (2001) Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(l-lysine): a potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2:491–497

    CAS  Google Scholar 

  58. Oishi M, Hayama T, Akiyama Y et al (2005) Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polyion complex (PIC) micelles based on poly(ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules 6:2449–2454

    CAS  Google Scholar 

  59. Kim SH, Jeong JH, Lee SH et al (2006) PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release 116:123–129

    CAS  Google Scholar 

  60. Mok H, Park JW, Park TG (2007) Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjug Chem 18:1483–1489

    CAS  Google Scholar 

  61. Lin C, Zhong Z, Lok MC et al (2007) Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug Chem 18:138–145

    CAS  Google Scholar 

  62. Namgung R, Brumbach JH, Jeong JH et al (2010) Dual bio-responsive gene delivery via reducible poly(amido amine) and survivin-inducible plasmid DNA. Biotechnol Lett 32:755–764

    CAS  Google Scholar 

  63. Lin C, Zhong Z, Lok MC et al (2007) Random and block copolymers of bioreducible poly(amido amine)s with high- and low-basicity amino groups: study of DNA condensation and buffer capacity on gene transfection. J Control Release 123:67–75

    CAS  Google Scholar 

  64. McKenzie DL, Kwok KY, Rice KG (2000) A potent new class of reductively activated peptide gene delivery agents. J Biol Chem 275:9970–9977

    CAS  Google Scholar 

  65. McKenzie DL, Smiley E, Kwok KY et al (2000) Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug Chem 11:901–909

    CAS  Google Scholar 

  66. Oupicky D, Parker AL, Seymour LW (2002) Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J Am Chem Soc 124:8–9

    CAS  Google Scholar 

  67. Read ML, Singh S, Ahmed Z et al (2005) A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res 33:e86

    Google Scholar 

  68. Manickam DS, Oupicky D (2006) Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem 17:1395–1403

    CAS  Google Scholar 

  69. Lo SL, Wang S (2008) An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29:2408–2414

    CAS  Google Scholar 

  70. Won YW, Kim HA, Lee M et al (2010) Reducible poly(oligo-d-arginine) for enhanced gene expression in mouse lung by intratracheal injection. Mol Ther 18:734–742

    CAS  Google Scholar 

  71. Green JJ, Zhou BY, Mitalipova MM et al (2008) Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett 8:3126–3130

    CAS  Google Scholar 

  72. Kim JH, Park JS, Yang HN et al (2011) The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32:268–278

    CAS  Google Scholar 

  73. Andersen MO, Lichawska A, Arpanaei A et al (2010) Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials 31:5671–5677

    CAS  Google Scholar 

  74. Ziady AG, Gedeon CR, Miller T et al (2003) Transfection of airway epithelium by stable PEGylated poly-l-lysine DNA nanoparticles in vivo. Mol Ther 8:936–947

    CAS  Google Scholar 

  75. Mao HQ, Roy K, Troung-Le VL et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    CAS  Google Scholar 

  76. Kiang T, Bright C, Cheung CY et al (2004) Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. J Biomater Sci Polym Ed 15:1405–1421

    CAS  Google Scholar 

  77. Corsi K, Chellat F, Yahia L et al (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24:1255–1264

    CAS  Google Scholar 

  78. Sato N, Kobayashi H, Saga T et al (2001) Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res 7:3606–3612

    CAS  Google Scholar 

  79. Gao S, Chen J, Xu X et al (2003) Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int J Pharm 255:57–68

    CAS  Google Scholar 

  80. Kim TH, Park IK, Nah JW et al (2004) Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25:3783–3792

    CAS  Google Scholar 

  81. Park IK, Kim TH, Park YH et al (2001) Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release 76:349–362

    CAS  Google Scholar 

  82. Kim TH, Kim SI, Akaike T et al (2005) Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J Control Release 105:354–366

    CAS  Google Scholar 

  83. Thanou M, Florea BI, Geldof M et al (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159

    CAS  Google Scholar 

  84. Kim YH, Gihm SH, Park CR et al (2001) Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier. Bioconjug Chem 12:932–938

    Google Scholar 

  85. Cheung CY, Murthy N, Stayton PS et al (2001) A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug Chem 12:906–910

    CAS  Google Scholar 

  86. Gwak SJ, Jung JK, An SS et al (2012) Chitosan/TPP-hyaluronic acid nanoparticles: a new vehicle for gene delivery to the spinal cord. J Biomater Sci Polym Ed 23(11):1437–1450

    Google Scholar 

  87. Tseng CL, Peng CL, Huang JY et al (2012) Gelatin nanoparticles as gene carriers for transgenic chicken applications. J Biomater Appl (in press). doi:10.1177/0885328211434089

    Google Scholar 

  88. Mo Y, Barnett ME, Takemoto D et al (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757

    CAS  Google Scholar 

  89. Dutta T, Burgess M, McMillan NA et al (2010) Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. Nanomedicine 6:463–470

    CAS  Google Scholar 

  90. Luo D, Li Y, Um SH et al (2006) A dendrimer-like DNA-based vector for DNA delivery: a viral and nonviral hybrid approach. Methods Mol Med 127:115–125

    CAS  Google Scholar 

  91. Arima H, Kihara F, Hirayama F et al (2001) Enhancement of gene expression by polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins. Bioconjug Chem 12:476–484

    CAS  Google Scholar 

  92. Ofek P, Fischer W, Calderon M et al (2010) In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24:3122–3134

    CAS  Google Scholar 

  93. Cao X, Deng W, Wei Y et al (2011) Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency. Int J Nanomedicine 6:3335–3349

    CAS  Google Scholar 

  94. Jing Y, Moore LR, Williams PS et al (2007) Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng 96:1139–1154

    CAS  Google Scholar 

  95. Kanatsu-Shinohara M, Takashima S, Ishii K et al (2011) Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One 6:e23663

    CAS  Google Scholar 

  96. Lee W, Parpura V (2009) Chapter 6 – Carbon nanotubes as substrates/scaffolds for neural cell growth. Prog Brain Res 180:110–125

    Google Scholar 

  97. Mooney E, Dockery P, Greiser U et al (2008) Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett 8:2137–2143

    CAS  Google Scholar 

  98. Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    CAS  Google Scholar 

  99. Ellis-Behnke RG, Liang YX, You SW et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059

    CAS  Google Scholar 

  100. Guo J, Su H, Zeng Y et al (2007) Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine 3:311–321

    CAS  Google Scholar 

  101. Tysseling-Mattiace VM, Sahni V, Niece KL et al (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    CAS  Google Scholar 

  102. de Freitas ER, Soares PR, de Santos RP et al (2011) Magnetic field-magnetic nanoparticle culture system used to grow in vitro murine embryonic stem cells. J Nanosci Nanotechnol 11:36–44

    Google Scholar 

  103. Lee CH, Kim EY, Jeon K et al (2008) Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev 17:133–141

    CAS  Google Scholar 

  104. Lee CH, Kim JH, Lee HJ et al (2011) The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials 32:6683–6691

    CAS  Google Scholar 

  105. Pickard MR, Barraud P, Chari DM (2011) The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 32:2274–2284

    CAS  Google Scholar 

  106. Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366:2198–2207

    CAS  Google Scholar 

  107. Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87

    Google Scholar 

  108. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  Google Scholar 

  109. Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    CAS  Google Scholar 

  110. Okita K, Nakagawa M, Hyenjong H et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    CAS  Google Scholar 

  111. Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    CAS  Google Scholar 

  112. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    CAS  Google Scholar 

  113. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    CAS  Google Scholar 

  114. Han DW, Tapia N, Hermann A et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10:465–472

    CAS  Google Scholar 

  115. Yang JH, Lee SH, Heo YT et al (2010) Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochem Biophys Res Commun 397:679–684

    CAS  Google Scholar 

  116. Yang JH, Shim SW, Lee BY et al (2010) Skin-derived stem cells in human scar tissues: a novel isolation and proliferation technique and their differentiation potential to neurogenic progenitor cells. Tissue Eng Part C Methods 16:619–629

    CAS  Google Scholar 

  117. Shi Y, Do JT, Desponts C et al (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528

    CAS  Google Scholar 

  118. Ruan J, Shen J, Wang Z et al (2011) Efficient preparation and labeling of human induced pluripotent stem cells by nanotechnology. Int J Nanomedicine 6:425–435

    CAS  Google Scholar 

  119. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    CAS  Google Scholar 

  120. Andersen MO, Nygaard JV, Burns JS et al (2010) SiRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther 18:2018–2027

    CAS  Google Scholar 

  121. Cao X, Deng W, Wei Y et al (2012) Incorporating pTGF-beta1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater 23:81–93

    CAS  Google Scholar 

  122. Nguyen YT, Kim HK, Kwon JS et al (2010) Efficient transfer of reporter gene-loaded nanoparticles to bone marrow stromal cells (D1) by reverse transfection. J Nanosci Nanotechnol 10:3170–3174

    CAS  Google Scholar 

  123. Tang C, Russell PJ, Martiniello-Wilks R et al (2010) Concise review: nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 28:1686–1702

    CAS  Google Scholar 

  124. Kim YS, Park IK, Kim WJ et al (2011) SPION nanoparticles as an efficient probe and carrier of DNA to umbilical cord blood-derived mesenchymal stem cells. J Nanosci Nanotechnol 11:1507–1510

    CAS  Google Scholar 

  125. Gagne MB, Pothier F, Sirard MA (1991) Electroporation of bovine spermatozoa to carry foreign DNA in oocytes. Mol Reprod Dev 29:6–15

    CAS  Google Scholar 

  126. Hoelker M, Mekchay S, Schneider H et al (2007) Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture. Theriogenology 67:1097–1107

    CAS  Google Scholar 

  127. Shen W, Li L, Pan Q et al (2006) Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol Reprod Dev 73:589–594

    CAS  Google Scholar 

  128. Spadafora C (2007) Sperm-mediated gene transfer: mechanisms and implications. Soc Reprod Fertil Suppl 65:459–467

    CAS  Google Scholar 

  129. Lavitrano M, Busnelli M, Cerrito MG et al (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18:19–23

    CAS  Google Scholar 

  130. Kim TS, Lee SH, Gang GT et al (2010) Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod Domest Anim 45:e201–e206

    CAS  Google Scholar 

  131. Campos VF, Komninou ER, Urtiaga G et al (2011) NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 75:1476–1481

    CAS  Google Scholar 

  132. Perry AC, Rothman A, de las Heras JI et al (2001) Efficient metaphase II transgenesis with different transgene archetypes. Nat Biotechnol 19:1071–1073

    CAS  Google Scholar 

  133. Lee SH, Gupta MK, Han DW et al (2007) Development of transgenic chickens expressing human parathormone under the control of a ubiquitous promoter by using a retrovirus vector system. Poult Sci 86:2221–2227

    CAS  Google Scholar 

  134. Uhm SJ, Gupta MK, Das ZC et al (2009) Effect of transgene introduction and recloning on efficiency of porcine transgenic cloned embryo production in vitro. Reprod Domest Anim 44:106–115

    CAS  Google Scholar 

  135. Uhm SJ, Gupta MK, Kim T et al (2007) Expression of enhanced green fluorescent protein in porcine- and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector. Mol Reprod Dev 74:1538–1547

    CAS  Google Scholar 

  136. Uhm SJ, Kim NH, Kim T et al (2000) Expression of enhanced green fluorescent protein (EGFP) and neomycin resistant (Neo(R)) genes in porcine embryos following nuclear transfer with porcine fetal fibroblasts transfected by retrovirus vector. Mol Reprod Dev 57:331–337

    CAS  Google Scholar 

  137. Symens N, Soenen SJ, Rejman J et al (2012) Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 64:78–94

    CAS  Google Scholar 

  138. Symens N, Walczak R, Demeester J et al (2011) Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol Pharm 8:1757–1766

    CAS  Google Scholar 

  139. Hsu SH, Ho TT, Tseng TC (2012) Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 33:3639–3650

    CAS  Google Scholar 

  140. Rupprecht S, Lipps HJ (2009) Cell cycle dependent histone dynamics of an episomal non-viral vector. Gene 439:95–101

    CAS  Google Scholar 

  141. Baus J, Liu L, Heggestad AD et al (2005) Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 12:1148–1156

    CAS  Google Scholar 

  142. Wang Y, Li Z, Han Y et al (2010) Nanoparticle-based delivery system for application of siRNA in vivo. Curr Drug Metab 11:182–196

    CAS  Google Scholar 

  143. Woltjen K, Michael IP, Mohseni P et al (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    CAS  Google Scholar 

  144. Liu J, Jeppesen I, Nielsen K et al (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13:1188–1190

    CAS  Google Scholar 

  145. Olivares EC, Hollis RP, Chalberg TW et al (2002) Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol 20:1124–1128

    CAS  Google Scholar 

  146. Riu E, Chen ZY, Xu H et al (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 15:1348–1355

    CAS  Google Scholar 

  147. Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450

    CAS  Google Scholar 

  148. Jackson DA, Juranek S, Lipps HJ (2006) Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 14:613–626

    CAS  Google Scholar 

  149. Papapetrou EP, Ziros PG, Micheva ID et al (2006) Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Ther 13:40–51

    CAS  Google Scholar 

  150. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    CAS  Google Scholar 

  151. Becker S, Soukup JM, Gallagher JE (2002) Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro 16:209–218

    CAS  Google Scholar 

  152. Schubert D, Dargusch R, Raitano J et al (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    CAS  Google Scholar 

  153. Tzeng SY, Guerrero-Cazares H, Martinez EE et al (2011) Non-viral gene delivery nanoparticles based on poly(beta-amino esters) for treatment of glioblastoma. Biomaterials 32:5402–5410

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from the BioGreen 21 Program (#PJ0080962012 and PJ0090142012), Rural Development Administration, Republic of Korea. The authors acknowledge the financial assistance to Pallavi Pushp in the form of an Institute Research Fellowship from NIT, Rourkela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pushp, P., Kaur, R., Lee, H.T., Gupta, M.K. (2012). Nanoparticles for Gene Delivery into Stem Cells and Embryos. In: Dutta, P., Dutta, J. (eds) Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Advances in Polymer Science, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_194

Download citation

Publish with us

Policies and ethics