Skip to main content

Sizing, Shaping and Pharmaceutical Applications of Polyelectrolyte Complex Nanoparticles

  • Chapter
  • First Online:
Book cover Polyelectrolyte Complexes in the Dispersed and Solid State II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 256))

Abstract

This contribution reviews polyelectrolyte (PEL) complex (PEC) nanoparticles prepared by mixing solutions of oppositely charged PELs, with special focus on the regulation of their size and shape by PEL structural and media parameters and on their pharmaceutical applications. Experimental and simulation evidence indicates that salt and PEL concentration, pH, mixing ratio and order, PEL molecular weight and topology are useful parameters for regulation of the size and internal structure of spherical PEC nanoparticles. Experimental and theoretical data are presented to show that PEL flexibility and stiffness are able to influence and even control PEC nanoparticle shape. Finally, the options, advantages, and challenges of dispersed PEC particles for pharmaceutical applications are outlined, emphasizing the uptake and release properties towards proteins and drugs and the interaction of these nanoparticles with cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasic DD (1994) Sterically stabilized vesicles. Angew Chem Int Ed 33(17):1685–1698

    Google Scholar 

  2. Antonietti M, Förster S (2003) Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mat 15(16):1323–1333

    CAS  Google Scholar 

  3. Gros L, Ringsdorf H, Schupp H (1981) Polymeric antitumour agents on a molecular and cellular level. Angew Chem Int Ed 20:301–323

    Google Scholar 

  4. Slepnev VI, Kuznetsova LE, Gubin AN, Batrakova EV, Alakhov V, Kabanov AV (1992) Micelles of poly(oxyethylene)-poly-(oxypropylene) block copolymer (pluronic) as a tool for low-molecular compound delivery into a cell: phosphorylation of intracellular proteins with micelle incorporated [gamma-32P]ATP. Biochem Int 26:587–595

    CAS  Google Scholar 

  5. Krause HJ, Schwarz A, Rohdewald P (1985) Polylactic acid nanoparticles: a colloidal drug delivery system for lipophilic drugs. Int J Pharm 27(2–3):145–155

    CAS  Google Scholar 

  6. Chawla JS, Amiji MM (2002) Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 249(1–2):127–138

    CAS  Google Scholar 

  7. Speiser PP (1978) Non-liposomal nanocapsules, methodology and application. Front Biol 48:653–668

    Google Scholar 

  8. Couvreur P, Tulkens P, Roland M, Trouet A, Speiser P (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84(2):323–326

    CAS  Google Scholar 

  9. Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32:6043–6046

    CAS  Google Scholar 

  10. Michaels AS (1965) Polyelectrolyte complexes. Ind Eng Chem 57:32–40

    CAS  Google Scholar 

  11. Kabanov VA, Zezin AB (1984) Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pur Appl Chem 56:343–354

    CAS  Google Scholar 

  12. Philipp B, Dautzenberg H, Linow KJ, Kötz J, Dawydoff W (1989) Polyelectrolyte complexes: recent developments and open problems. Prog Polym Sci 14:91–172

    CAS  Google Scholar 

  13. Dubin P, Bock J, Davies RM, Schulz DN, Thies C (1994) Macromolecular complexes in chemistry and biology. Springer, Berlin

    Google Scholar 

  14. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 28(15):5294–5299

    CAS  Google Scholar 

  15. Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K (2002) Polyion complex micelles as vectors in gene therapy - pharmacokinetics and in vivo gene transfer. Gene Ther 9(6):407–414

    CAS  Google Scholar 

  16. Müller M, Kessler B, Richter S (2005) Preparation of monomodal polyelectrolyte complex nanoparticles of PDADMAC/poly(maleic acid-alt-α-methylstyrene) by consecutive centrifugation. Langmuir 21(15):7044–7051

    Google Scholar 

  17. Müller M, Reihs T, Ouyang W (2005) Needlelike and spherical polyelectrolyte complex nanoparticles of poly(L-lysine) and copolymers of maleic acid. Langmuir 21(1):465–469

    Google Scholar 

  18. Oertel U, Buchhammer HM, Müller M et al (1999) Surface modification by polyelectrolytes: studies on model systems. Macromol Symp 145:39–47

    CAS  Google Scholar 

  19. Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171

    Google Scholar 

  20. Reihs T, Müller M, Lunkwitz K (2003) Deposition of polylelectrolyte complex nano-particles at silica surfaces characterized by ATR-FTIR and SEM. Coll Surf A 212(1):79–95

    CAS  Google Scholar 

  21. Reihs T, Müller M, Lunkwitz K (2004) Preparation and adsorption of refined polyelectrolyte complex nanoparticles. J Colloid Interface Sci 271(1):69–79

    CAS  Google Scholar 

  22. Starchenko V, Müller M, Lebovka N (2008) Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J Phys Chem C 112(24):8863–8869

    CAS  Google Scholar 

  23. Lebovka NI (2012) Aggregation of charged colloidal particles. Adv Polym Sci

    Google Scholar 

  24. Burchard W (1983) Static and dynamic light scattering from branched polymers and bio-polymers. Adv Polym Sci 48:1–124

    CAS  Google Scholar 

  25. Schnablegger H, Glatter O (1993) Simultaneous determination of size distribution and refractive index of colloidal particles from static light-scattering experiments. J Colloid Interface Sci 158(1):228–242

    CAS  Google Scholar 

  26. Dautzenberg H (2001) Polyelectrolyte complex formation in highly aggregating systems: methodical aspects and general tendencies. In: Radeeva I (ed) Physical chemistry of polyelectrolytes (surfactant science series 99). ACS symposium series, Washington

    Google Scholar 

  27. Dautzenberg H, Rother G, Hartmann J (1994) Light scattering studies of polyelectrolyte complex formation: effect of polymer concentration. In: Schmitz KS (ed) Macro-ion characterization: from dilute solution to complex fluids. ACS Symposium Series, Washington

    Google Scholar 

  28. Dautzenberg H, Linow KJ, Philipp B (1982) Zur Bildung wasserlöslicher Polysalze (Symplexe) aus anionischen und kationischen Copolymeren des Acrylamids. Acta Polymerica 33(11):619–623

    Google Scholar 

  29. Schmitz KS (1990) Dynamic light scattering by macromolecules. Academic, San Diego

    Google Scholar 

  30. Dubin PL, Davis DD (1984) Quasi elastic light scattering of polyelectrolyte micelle complexes. Macromoleculaes 17(6):1294–1296

    CAS  Google Scholar 

  31. Dubin PL, Murrell JM (1988) Size distribution of complexes formed between PDADMAC and BSA. Macromolecules 21(7):2291–2293

    CAS  Google Scholar 

  32. Lindhoud S, Norde W, Cohen Stuart MA (2009) Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J Phys Chem B 113:5431–5439

    CAS  Google Scholar 

  33. van der Burgh S, de Keizer A, Cohen Stuart MA (2004) Complex coacervation core micelles. Colloidal stability and aggregation mechanism. Langmuir 20:1073–1084

    Google Scholar 

  34. Lindhoud S, Cohen Stuart MA (2012) Relaxation phenomena during polyelectrolyte complex formation. Adv Polym Sci DOI 10.1007/12_2012_178

  35. Tiersch B, Hartmann H, Dautzenberg H et al (1986) Elektronenmikroskopische Untersu-chungen an Fällungen von Polyanion-Polykation-Komplexen. Acta Polymerica 37(1):47–51

    CAS  Google Scholar 

  36. Dautzenberg H, Hartmann J, Grunewald S et al (1996) Stoichiometry and structure of polyelectyroltye complex particles in diluted solutions. Ber Bunsenges PhysChem 100:1024–1032

    CAS  Google Scholar 

  37. Tsuchida E (1974) The formation of higher structure through hydrophobic interaction of interpolymer complexes. Die Makromolekulare Chernie 175:603–611

    CAS  Google Scholar 

  38. Tsuchida E, Abe K, Honma M (1976) Aggregation of polyion complexes between synthetic polyelectrolytes. Macromolecules 9:112–120

    CAS  Google Scholar 

  39. Wolfert MA, Seymour LW (1996) AFM analysis of the influence of the molecular weight of poly(L-lysine) on the size of the polyelectrolyte complex with DNA. Gene Ther 3:269–273

    CAS  Google Scholar 

  40. Kramer G, Buchhammer HM, Lunkwitz K (1997) Surface modification by polyelectrolyte complexes: influence of different polyelectrolyte components and substrates. Coll Surf A 122:1–12

    CAS  Google Scholar 

  41. Bernhardt H, Schell H (1993) Control of flocculants by use of a streaming current detector. J Water SRT-Aqua 42:239–251

    CAS  Google Scholar 

  42. Buchhammer HM, Petzold G, Lunkwitz K (1999) Salt effect on formation and properties of interpolyelectrolyte complexes and their interactions with silica particles. Langmuir 15:4306–4310

    CAS  Google Scholar 

  43. Johnson BK, Prud’homme RK (2003) Chemical processing and micromixing in confined impinging jets. AIChE J 49:2264–2282

    CAS  Google Scholar 

  44. Ankerfors C, Ondaral S, Wågberg L et al (2010) Using jet mixing to prepare polyelectrolyte complexes: complex properties and their interaction with silicon oxide surfaces. J Coll Interf Sci 351:88–95

    CAS  Google Scholar 

  45. Saether HV, Holme HK, Maurstad G et al (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821

    CAS  Google Scholar 

  46. Schatz C, Domard A, Viton C, Pichot C, Delair T (2004) Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 5:1882–1892

    CAS  Google Scholar 

  47. Mende M, Buchhammer HM, Schwarz S (2004) The stability of polyelectrolyte complex systems of PDADMAC with different polyanions. Macromol Symp 211:121–133

    CAS  Google Scholar 

  48. Müller M, Keßler B, Fröhlich J et al (2011) Polyelctrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): preparation and applications. Polymers 3:762–778

    Google Scholar 

  49. Schatz C, Lucas JM, Viton C et al (2004) Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20(18):7766–7778

    CAS  Google Scholar 

  50. Drogoz A, David L, Rochas C et al (2007) Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir 23(22):10950–10958

    CAS  Google Scholar 

  51. Dautzenberg H, Jaeger W (2002) Effect of charge density on the formation and salt stability of polyelectrolyte complexes. Macromol Chem Phys 203:2095–2102

    CAS  Google Scholar 

  52. Pergushov DV, Babin IA, Plamper FA et al (2008) Water-soluble complexes of star-shaped poly(acrylic acid) with quaternized poly(4-vinylpyridine). Langmuir 24:6414–6419

    CAS  Google Scholar 

  53. Mende M, Petzold G, Buchhhammer HM (2002) Polyelectrolyte complex formation between poly(diallyldimethylammonium chloride) and copolymers of acrylamide and sodium-acrylate. Colloid Polym Sci 280:342–351

    CAS  Google Scholar 

  54. Shovsky A, Varga I, Makuska R, Claesson PM (2009) Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir 25(11):6113–6121

    CAS  Google Scholar 

  55. Hu Y, Yang T, Hu X (2012) Novel polysaccharides-based nanoparticle carriers prepared by polyelectrolyte complexation for protein drug delivery. Polym Bull 68:1183–1199

    CAS  Google Scholar 

  56. Imae T, Miura A (2003) Binding of poly(amido amine) dendrimer on sodium poly-L-glutamate in aqueous NaCl solution. J Phys Chem B 107:8088–8092

    CAS  Google Scholar 

  57. Shifrina ZB, Kuchkina NV, Rutkevich PN et al (2009) Water-soluble cationic aromatic dendrimers and their complexation with DNA. Macromolecules 42:9548–9560

    CAS  Google Scholar 

  58. Kłos JS, Sommer JU (2011) Monte Carlo simulations of charged dendrimer-linear polyelectrolyte complexes and explicit counterions. J Chem Phys 134:204902

    Google Scholar 

  59. Kabanov AV, Bronich TK, Kabanov VA et al (1996) Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules 29(21):6797–6802

    CAS  Google Scholar 

  60. Schild HG (1992) Poly(N-isopropylacrylamide) – experiment, theory and applications. Prog Polym Sci 17(2):163–249

    CAS  Google Scholar 

  61. Dautzenberg H, Gao Y, Hahn M (2000) Formation, structure, and temperature behavior of polyelectrolyte complexes between ionically modified thermosensitive polymers. Langmuir 16:9070–9081

    CAS  Google Scholar 

  62. Kleinen J, Richtering W (2008) Defined complexes of negatively charged multisensitive poly(N-isopropylacrylamide-co-methacrylic acid) microgels and poly(diallydimethylammonium chloride). Macromolecules 41:1785–1790

    CAS  Google Scholar 

  63. Serpe MJ, Yarmey KA, Nolan CM, Lyon LA (2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6:408–413

    CAS  Google Scholar 

  64. Nolan CM, Serpe MJ, Lyon LA (2004) Thermally modulated insulin release from microgel thin films. Biomacromolecules 5:1940–1946

    CAS  Google Scholar 

  65. Schacher F, Betthausen E, Walther A et al (2009) Interpolyelectrolyte complexes of dynamic multicompartment micelles. ACS Nano 3(8):2095–2102

    CAS  Google Scholar 

  66. Pergushov DV, Borisov OV, Zezin AB et al (2011) Interpolyelectrolyte complexes based on polyionic species of branched topology. Adv Polym Sci 241:131–161

    CAS  Google Scholar 

  67. Pergushov DV et al. (2012) Advanced functional structures based on interpolyelectrolyte complexes. Adv Polym Sci

    Google Scholar 

  68. Dautzenberg H (1997) Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 30:7810–7815

    CAS  Google Scholar 

  69. Buchhammer HM, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Coll Surf A 218:151–159

    CAS  Google Scholar 

  70. Wandrey C, Hunkeler D, Wendler U et al (2000) Counterion activity of highly charged strong polyelectrolytes. Macromolecules 33:7136–7143

    CAS  Google Scholar 

  71. Pergushov DV, Buchhammer HM (1999) Effect of a low-molecular-weight salt on colloidal dispersions of interpolyelectrolyte complexes. Colloid Polym Sci 277:101–107

    CAS  Google Scholar 

  72. Feng X, Leduc M, Pelton RH (2008) Polyelectrolyte complex characterization with isothermal titration calorimetry and colloid titration. Coll Surf A 317:535–542

    CAS  Google Scholar 

  73. Ostwald WZ (1897) Phys Chem 22:289

    CAS  Google Scholar 

  74. Voorhees PM (1985) The theory of Ostwald ripening. J Stat Phys 38(1/2):231–252

    Google Scholar 

  75. Derjaguin BV, Landau L (1941) Acta Physicochim USSR 14:633

    Google Scholar 

  76. Verwey EJW, Overbeek JTG (1948) Theory of stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  77. Dautzenberg H, Kriz J (2003) Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 19:5204–5211

    CAS  Google Scholar 

  78. Gardlund L, Wagberg L, Norgren M (2007) New insights into the structure of polyelectrolyte complexes. J Colloid Interface Sci 312(2):237–246

    Google Scholar 

  79. Porcel CH, Schlenoff JB (2009) Compact polyelectrolyte complexes: “saloplastic” candidates for biomaterials. Biomacromolecules 10:2968–2975

    CAS  Google Scholar 

  80. Hariri HH, Schlenoff JB (2010) Saloplastic macroporous polyelectrolyte complexes: cartilage mimics. Macromolecules 43:8656–8663

    CAS  Google Scholar 

  81. Markarian MZ, Hariri HH, Reisch A et al (2012) A small-angle neutron scattering study of the equilibrium conformation of polyelectrolytes in stoichiometric saloplastic polyelectrolyte complexes. Macromolecules 45:1016–1024

    CAS  Google Scholar 

  82. Heuvingh J, Zappa M, Fery A (2005) Salt softening of polyelectrolyte multilayer capsules. Langmuir 21:3165–3171

    CAS  Google Scholar 

  83. Gelman RA, Blackwell J (1973) Heparin-polypeptide interactions in aqueous solution. Arch Biochem Biophys 169:427–433

    Google Scholar 

  84. Nakajima A, Shinoda K, Hayashi T, Sato H (1975) Interactions between oppositely charged polypeptides. Polymer J 7:550–557

    CAS  Google Scholar 

  85. Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21

    CAS  Google Scholar 

  86. Goessl I, Shu L, Schlüter AD, Rabe JP (2002) Molecular structure of single DNA complexes with positively charged dendronized polymers. J Am Chem Soc 124:6860–6865

    CAS  Google Scholar 

  87. Xu Y, Borisov OV, Ballauff M, Müller AHE (2010) Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study. Langmuir 26(10):6919–6926

    CAS  Google Scholar 

  88. Duschner S, Störkle D, Schmidt M, Maskos M (2008) Topologicallly controlled interpolyelectrolyte complexes. Macromolecules 41:9067–9071

    CAS  Google Scholar 

  89. Shinoda K, Hayashi T, Yoshida T et al (1976) Complex formation of poly(L-lysine) with poly(acrylic acid). Polymer J 8(2):202–207

    CAS  Google Scholar 

  90. Garnier G, Duskova-Smrckova M, Vyhnalkova R et al (2000) Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene. Langmuir 16:3757–3763

    CAS  Google Scholar 

  91. Gelman RA, Rippon WB, Blackwell J (1973) Interactions between chondroitin-6-sulfate and poly-L-lysine in aqueous solution: circular dichroism studies. Biopolymers 12:541–558

    CAS  Google Scholar 

  92. Stone AL, Epstein P (1977) The aggregation of basic polypeptide residues bound to heparin. Biochim Biophys Acta 497:298–306

    CAS  Google Scholar 

  93. Bystricky S, Malovlikova A, Sticzay T (1991) Interaction of acidic polysaccharides with polylysine enantiomers. Conformation probe in solution. Carbohyd Polym 15:299–308

    CAS  Google Scholar 

  94. Bystricky S, Malovlikova A, Sticzay T (1990) Interaction of alginates and pectins with cationic polypeptides. Carbohydr Polym 13:283–294

    CAS  Google Scholar 

  95. Sapay N, Cabannes E, Petitou M, Imberty A (2011) Molecular modeling of the interaction between heparin sulfate and cellular growth factors: bringing pieces together. Glycobiology 21(9):1181–1193

    CAS  Google Scholar 

  96. Pichert A, Samsonov SA, Theisgen S et al (2012) Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modelling. Glycobiology 22(1):134–145

    CAS  Google Scholar 

  97. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8(10):4108–4116

    CAS  Google Scholar 

  98. Müller M, Ouyang W, Bohata K et al (2010) Nanostructured complexes of polyelectrolytes and charged polypeptides. Adv Biomaterials 12(9):519–528

    Google Scholar 

  99. Zhengzhan D, Jingbo Y, Shifeng Y et al (2007) Polyelectrolyte complexes based on chitosan and poly(L-glutamic acid). Polymer Int 56(9):1122–1127

    Google Scholar 

  100. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    CAS  Google Scholar 

  101. Narambuena CF, Leiva EPM, Chávez-Páez M et al (2010) Effect of chain stiffness on the morphology of polyelectrolyte complexes. A Monte Carlo simulation study. Polymer 51:3293–3302

    CAS  Google Scholar 

  102. Kunze KK, Netz RR (2002) Morphologies of semiflexible polyelectrolyte complexes. Europhys Lett 58(2):299–305

    CAS  Google Scholar 

  103. Maurstad G, Danielsen S, Stokke BT (2003) Analysis of compacted semiflexible polyanions visualized by atomic force microscopy: influence of chain stiffness on the morphologies of polyelectrolyte complexes. J Phys Chem B 107:8172–8180

    CAS  Google Scholar 

  104. Schnurr B, Gittes F, MacKintosh FC (2002) Metastable intermediates in the condensation of semiflexible polymers. Phys Rev E 65:061904

    CAS  Google Scholar 

  105. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141

    CAS  Google Scholar 

  106. Cruz T, Gaspar R, Donato A, Lopes C (1997) Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production. Pharm Res 14(1):73–79

    CAS  Google Scholar 

  107. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    CAS  Google Scholar 

  108. Panyam P, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    CAS  Google Scholar 

  109. Debuigne F, Cuisenaire J, Jeunieau L et al (2001) Synthesis of nimesulide nanoparticles in the microemulsion epikuron/isopropyl myristate/water/n-butanol (or isopropanol). J Colloid Interface Sci 243:90–101

    CAS  Google Scholar 

  110. Chern CS, Lee CK, Chang CJ (2004) Electrostatic interactions between amphoteric latex particles and proteins. Colloid Polym Sci 283:257–264

    CAS  Google Scholar 

  111. Fatouros DG, Piperoudi S, Gortzi O et al (2005) Physical stability of sonicated arsonoliposomes: effect of calcium ions. J Pharm Sci 94:46–55

    CAS  Google Scholar 

  112. Shiraishi S, Imai T, Otagiri M (1993) Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in viva/in vitro evaluation. J Control Release 25:217–225

    CAS  Google Scholar 

  113. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934

    CAS  Google Scholar 

  114. Desai MP, Labhasetwar V, Walter E et al (1997) The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res 14:1568–1573

    CAS  Google Scholar 

  115. Chithrani BD, Ghazani AA, Chan CW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  Google Scholar 

  116. Harada A, Kataoka K (2006) Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci 31:949–982

    CAS  Google Scholar 

  117. Mjahed H, Voegel JC, Chassepot A (2010) Turbidty diagrams of polycation/polyanion complexes in solution as a potential tool to predict the occurrence of polyelectrolyte multilayer deposition. J Colloid Interface Sci 346:163–171

    CAS  Google Scholar 

  118. Siegel RA, Falamarzian M, Firestone BA et al (1988) pH-controlled release from hydrophobic polyelectrolyte copolymer hydrogels. J Control Release 8:179–182

    CAS  Google Scholar 

  119. Sezer AD, Akbuga J (1995) Controlled release of piroxicam from chitosan beads. Int J Pharm 121:113–116

    CAS  Google Scholar 

  120. Aydin Z, Akbuga J (1996) Chitosan beads for the delivery of salmon calcitonin:preparation and release characteristics. Int J Pharm 131:101–103

    CAS  Google Scholar 

  121. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non fickian release from non swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    CAS  Google Scholar 

  122. de la Torre PM, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid): study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24:1499–1506

    Google Scholar 

  123. Calvo P, Remunan Lopez C, Vila Jato JL, Alonso MJ (1997) Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436

    CAS  Google Scholar 

  124. Ouyang W, Müller M (2006) Monomodal polyelectrolyte complex nanoparticles of PDADMAC/poly(sty-renesulfonate): preparation and protein interaction. Macromol Biosci 6:929–941

    CAS  Google Scholar 

  125. Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR (2003) Insulin containing polyethylenimine–dextran sulfate nanoparticles. Int J Pharm 255:139–151

    CAS  Google Scholar 

  126. Huang M, Vitharana SN, Peek LJ et al (2007) Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules 8(5):1607–1614

    CAS  Google Scholar 

  127. Kabanov AV, Astafieva IV, Maksimova IV (1993) Efficient transformation of mammalian cells using DNA interpolyelectrolyte complexes with carbon chain polycations. Bioconjugate Chem 4:448–454

    CAS  Google Scholar 

  128. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147

    CAS  Google Scholar 

  129. Kataoka K, Togawa H, Harada A et al (1996) Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29:8556–8557

    CAS  Google Scholar 

  130. Soliman M, Allen S, Davies MC et al (2010) Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun 46(30):5421–5433

    CAS  Google Scholar 

  131. Kim CJ, Nujoma YN (1995) Drug release from an erodible drug/polyelectrolyte complex. Eur Polym J 31(10):937–940

    CAS  Google Scholar 

  132. Jimenez-Kairuz AF, Llabot JM, Allemandi DA et al (2005) Swellable drug-polyelectrolyte matrices (SDPM) - characterization and delivery properties. Int J Pharm 288(1):87–99

    CAS  Google Scholar 

  133. Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526

    CAS  Google Scholar 

  134. Tiyaboonchai W, Woiszwillo J, Middaugh CR (2001) Formulation and characterization of amphotericin B-polyethylenimine-dextran sulfate nanoparticles. J Pharm Sci 90(7):902–914

    Google Scholar 

  135. Janes KA, Fresneau MP, Marazuela A et al (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2–3):255–267

    CAS  Google Scholar 

  136. Tan ML, Friedhuber AM, Dunstan E et al (2010) The performance of doxorubicin encapsulated in chitosan–dextran sulphate microparticles in an osteosarcoma model. Biomaterials 31(3):541–551

    CAS  Google Scholar 

  137. Lu E, Franzblau S, Onyuksel H et al (2009) Preparation of aminoglycosideloaded chitosan nanoparticles using dextran sulphate as a counterion. J Microencaps 26(4):346–354

    CAS  Google Scholar 

  138. Costa E, Sapag-Hagar J, Valenzuela F et al (2004) Comparative studies on polyelectrolyte complexes and mixtures of chitosan–alginate and chitosan–carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm 57:65–75

    Google Scholar 

  139. Tiwari A, Bindal S, Bohidar HB (2009) Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix. Biomacromolecules 10:184–189

    CAS  Google Scholar 

  140. Hong C, Caihua N, Liping Z (2012) Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength. Eur J Pharm Sci 45(1–2):43–49

    Google Scholar 

  141. Lee KY, Park WH, Ha WS (1997) Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. J Appl Polymer Sci 63:425–432

    CAS  Google Scholar 

  142. Coppi G, Iannuccelli V (2009) Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm 367:127–132

    CAS  Google Scholar 

  143. Thiele C, Auerbach D, Jung G et al (2011) Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym Chem 2:209–215

    CAS  Google Scholar 

  144. Yuan J, Luo Y, Gao Q (2011) Self-assembled polyion complex micelles for sustained release of hydrophilic drug. J Microencaps 28(2):93–98

    CAS  Google Scholar 

  145. Chuang CY, Chiu WY, Don TM (2011) Synthesis of chitosan-poly(acrylic acid) complex particles by dispersion polymerization and their applications in ph buffering and drug release. J Appl Polym Sci 120(3):1659–1670

    CAS  Google Scholar 

  146. Lei G, Yanfeng M, Guiying L et al (2011) Self-assembled nanoparticles from thermo-sensitive polyion complex micelles for controlled drug release. Chem Eng J 174(1):199–205

    Google Scholar 

  147. Müller M (2011) Method for producing a drug delivery system on the basis of polyelectrolyte complexes. Patent publication DE 10 2010 003 615 A1 and WO 2011/121019 A2

    Google Scholar 

  148. Chung AJ, Rubner MF (2002) Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films. Langmuir 18:1176–1183

    CAS  Google Scholar 

  149. Müller M, Keßler B (2012) Release of pamidronate from poly(ethyleneimine)/cellulose sulphate complex nanoparticle films: An in-situ ATR-FTIR study. J Pharm Biomed Anal 66:183–190

    Google Scholar 

  150. Rogers MJ, Crockett JC, Coxon FP et al (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41

    CAS  Google Scholar 

  151. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    CAS  Google Scholar 

  152. Müller M, Rieser T, Lunkwitz K et al (1998) An in-situ ATR-FTIR study on polyelectrolyte multilayer assemblies on solid surfaces and their susceptibility to fouling. Macromol Rapid Commun 19(7):333–336

    Google Scholar 

  153. Keller TF, Müller M, Ouyang W et al (2010) Templating alpha-helical poly(L-lysine)/polyanion complexes by nanostructured uniaxially oriented ultrathin polyethylene films. Langmuir 26(24):18893–18901

    CAS  Google Scholar 

  154. Müller M, Keßler B (2011) Deposition from dopamine solutions at Ge substrates: an in situ ATR-FTIR study. Langmuir 27(20):12499–12505

    Google Scholar 

  155. Ouyang W, Müller M, Appelhans D, Voit B (2009) In situ ATR-FTIR investigation on the preparation and enantiospecificity of chiral polyelectrolyte multilayers. ACS Appl Mater Interfaces 1(12):2878–2885

    CAS  Google Scholar 

  156. Müller M, Grosse I, Jacobasch HJ, Sams P (1998) Surfactant adsorption and water desorption on thin cellulose films monitored by in-situ ATR FTIR spectroscopy. Tenside Surfactants Detergents 35(5):354

    Google Scholar 

  157. Bauer HH, Müller M, Goette J et al (1994) Interfacial adsorption and aggregation associated changes in secondary structure of human calcitonin monitored by ATR-FTIR spectroscopy. Biochemistry 33:12276–12283

    CAS  Google Scholar 

  158. Müller M, Keßler B, Houbenov N et al (2006) pH dependence and protein selectivity of poly(ethyleneimine)/poly(acrylic acid) multilayers studied by in situ ATR-FTIR spectroscopy. Biomacromolecules 7(4):1285–1294

    Google Scholar 

  159. Alexis F, Lo SL, Wang S (2006) Covalent attachment of low molecular weight poly(ethylene imine) improves Tat peptide mediated gene delivery. Adv Mater 18:2174–2178

    Google Scholar 

  160. Niepel MS, Peschel D, Sisquella X et al (2009) pH-dependent modulation of fibroblast adhesion on multilayers composed of poly(ethylene imine) and heparin. Biomaterials 30:4939–4947

    CAS  Google Scholar 

  161. Carlesso G, Kozlov E, Prokop A, Unutmaz D, Davidson JM (2005) Nanoparticulate system for efficient gene transfer into refractory cell targets. Biomacromolecules 6:1185–1192

    CAS  Google Scholar 

  162. Hartig SM, Greene RR, Dikov MM et al (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 24(12):2353–2369

    CAS  Google Scholar 

  163. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78:10–18

    Google Scholar 

  164. Min H, Cory B (2009) Controlled release of repifermin(R) from polyelectrolyte complexes stimulates endothelial cell proliferation. J Pharm Sci 98(1):268–280

    Google Scholar 

  165. Min H, Zhixin LH, Mehmet B et al (2008) Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. Nanomedicine 4(1):30–40

    Google Scholar 

  166. Amyere M, Mettlen M, Van der Smissen P et al (2002) Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int J Med Microbiol 291(6–7):487–494

    CAS  Google Scholar 

  167. Mao JS, Cui YL, Wang XH et al (2004) A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 25:3973–3981

    CAS  Google Scholar 

  168. Tsai CC, Chiu PC, Lin SH et al (2011) Antitumor efficacy of doxorubicin released from crosslinked nanoparticulate chondroitin sulfate/chitosan polyelectrolyte complexes. Macromol Biosci 11:680–688

    CAS  Google Scholar 

  169. Hartig SM, Greene RR, Carlesso G et al (2007) Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. Biomaterials 28:3843–3855

    CAS  Google Scholar 

  170. Wang T, Lacık I, Brissova M et al (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15:358–362

    CAS  Google Scholar 

  171. Boura C, Menu P, Payan E et al (2003) Endothelial cells grown on thin polyelectrolyte mutlilayered films:nan evaluation of a new versatile surface modification. Biomaterials 24:3521–3530

    CAS  Google Scholar 

  172. Lin Q, Yan J, Qiu F et al (2011) Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J Biomed Mater Res 96A (1):132–141

    Google Scholar 

  173. Nagahata M, Nakaoka R, Teramoto A et al (2005) The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes. Biomaterials 26(25):5138–5144

    CAS  Google Scholar 

  174. Hamano T, Chiba D, Nakatsuka K, Nagahata M, Teramoto A, Kondo Y, Hachimori A, Abe K. (2002) Evaluation of a polyelectrolyte complex(PEC) composed of chitin derivatives and chitosan, which promotes the rat calvarial osteoblast differentiation. Polym Adv Technol:13:46–53

    Google Scholar 

  175. Li QL, Wu MY, Tang LL et al (2008) Bioactivity of a novel nano-composite of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex. J Bioact Compat Polym 23(6):520–531

    CAS  Google Scholar 

  176. Yancheva E, Paneva D, Danchev D et al (2007) Polyelectrolyte complexes based on (quaternized) poly[(2-dimethylamino)ethylmethacrylate]: behavior in contact with blood. Macromol Biosci 7:940–954

    CAS  Google Scholar 

  177. Stanton BW, Harris JJ, Miller MD et al (2003) Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19(17):7038–7042

    Google Scholar 

  178. Hong SU, Malaisamy R, Bruening ML (2007) Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes. Langmuir 23(4):1716–1722

    Google Scholar 

  179. De S, Cramer C, Schönhoff M (2011) Humidity dependence of the ionic conductivity of polyelectrolyte complexes. Macromolecules 44(22):8936–8943

    Google Scholar 

  180. Bhide A, Schönhoff M, Cramer C (2012) Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes. Solid State Ionics 214:13–18

    Google Scholar 

Download references

Acknowledgements

Concepts and experimental work outlined and shown in this review are partly related to the Special Research Area/Transregional 79 (TRR 79, part project M7) entitled “Materials for Tissue Regeneration in Systemically Diseased Bones” by Deutsche Forschungsgemeinschaft (DFG) involving universities and research institutes in Giessen, Heidelberg and Dresden, Germany.

 DRESDEN concept linking research activities of IPF Dresden and TU Dresden is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, M. (2012). Sizing, Shaping and Pharmaceutical Applications of Polyelectrolyte Complex Nanoparticles. In: Müller, M. (eds) Polyelectrolyte Complexes in the Dispersed and Solid State II. Advances in Polymer Science, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_170

Download citation

Publish with us

Policies and ethics