Skip to main content

Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery

  • Chapter
  • First Online:
Chitosan for Biomaterials I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 243))

Abstract

The use of particulate systems is considered very promising for the delivery of antigenic molecules via parenteral and non-parenteral routes. They provide improved protection and facilitated transport of the antigen as well as more effective antigen recognition by the immune cells, which results in enhanced immune responses. The natural cationic polysaccharide chitosan has been investigated extensively both as an adjuvant and delivery system for vaccines. It has been shown to enhance both humoral and cellular responses. From the formulation point of view, chitosan-based particulate systems offer advantages over the other polymers used by avoiding the harsh conditions of heat and/or organic solvents for encapsulation of the antigen. Furthermore, versatility in the physicochemical properties of chitosan provides an exceptional opportunity to engineer antigen-specific adjuvant/delivery systems. In this review, the importance of chitosan in particulate systems for vaccine delivery will be emphasized according to administration routes, particularly focusing on non-invasive (needle-free) routes including oral, mucosal and pulmonary mucosae as well as skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan EJ, Daly LM, Mills KH (2001) Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 19(8):293–304

    Article  CAS  Google Scholar 

  2. Griffin JF (2002) A strategic approach to vaccine development: animal models, monitoring vaccine efficacy, formulation and delivery. Adv Drug Deliv Rev 54(6):851–861

    Article  CAS  Google Scholar 

  3. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 364(2):272–280

    Article  CAS  Google Scholar 

  4. Mills KH (2009) Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunol Lett 122(2):108–111

    Article  CAS  Google Scholar 

  5. Sui ZW, Chen QJ, Wu R, Zhang HB, Zheng M, Wang HZ, Chen Z (2010) Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch Virol 155(4):535–544

    Article  CAS  Google Scholar 

  6. Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30(1):23–32

    Article  CAS  Google Scholar 

  7. Alving CR (2002) Design and selection of vaccine adjuvants: animal models and human trials. Vaccine 20(Suppl 3):S56–S64

    Article  CAS  Google Scholar 

  8. Trujillo-Vargas CM, Mayer KD, Bickert T, Palmetshofer A, Grunewald S, Ramirez-Pineda JR, Polte T, Hansen G, Wohlleben G, Erb KJ (2005) Vaccinations with T-helper type 1 directing adjuvants have different suppressive effects on the development of allergen-induced T-helper type 2 responses. Clin Exp Allergy 35(8):1003–1013

    Article  CAS  Google Scholar 

  9. Cox E, Verdonck F, Vanrompay D, Goddeeris B (2006) Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37(3):511–539

    Article  CAS  Google Scholar 

  10. Liang MT, Davies NM, Blanchfield JT, Toth I (2006) Particulate systems as adjuvants and carriers for peptide and protein antigens. Curr Drug Deliv 3(4):379–388

    Article  CAS  Google Scholar 

  11. Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B (2009) Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 98(4):1278–1316

    Article  CAS  Google Scholar 

  12. Arca HC, Günbeyaz M, Şenel S (2009) Chitosan-based systems for the delivery of vaccine antigens. Expert Rev Vaccines 8(7):937–953

    Article  CAS  Google Scholar 

  13. Sayın B, Şenel S (2008) Chitosan and its derivatives for mucosal immunization. In: Jayakumar R, Prabaharan M (eds) Current research and development on chitin in biomaterial science, vol 1. Research Signpost, Kerala, India, pp 145–165

    Google Scholar 

  14. Lambert PH, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26(26):3197–3208

    Article  CAS  Google Scholar 

  15. Carstens MG (2009) Opportunities and challenges in vaccine delivery. Eur J Pharm Sci 36(4–5):605–608

    Article  CAS  Google Scholar 

  16. Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308(5958):457–460

    Article  CAS  Google Scholar 

  17. Pearse MJ, Drane D (2005) ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 57(3):465–474

    Article  CAS  Google Scholar 

  18. Wee JL, Scheerlinck JP, Snibson KJ, Edwards S, Pearse M, Quinn C, Sutton P (2008) Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol 1(6):489–496

    Article  CAS  Google Scholar 

  19. Yan W, Huang L (2009) The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm 368(1–2):56–62

    Article  CAS  Google Scholar 

  20. Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE (2005) Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299(1–2):155–166

    Article  CAS  Google Scholar 

  21. He X, Jiang L, Wang F, Xiao Z, Li J, Liu LS, Li D, Ren D, Jin X, Li K, He Y, Shi K, Guo Y, Zhang Y, Sun S (2005) Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. J Control Release 107(2):357–372

    Article  CAS  Google Scholar 

  22. Estevan M, Gamazo C, Grillo MJ, Del Barrio GG, Blasco JM, Irache JM (2006) Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine 24(19):4179–4187

    Article  CAS  Google Scholar 

  23. Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60(8):915–928

    Article  CAS  Google Scholar 

  24. Csaba N, Garcia-Fuentes M, Alonso MJ (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61(2):140–157

    Article  CAS  Google Scholar 

  25. Look M, Bandyopadhyay A, Blum JS, Fahmy TM (2010) Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 62(4–5):378–393

    Article  CAS  Google Scholar 

  26. Borges O, Lebre F, Bento D, Borchard G, Junginger HE (2010) Mucosal vaccines: recent progress in understanding the natural barriers. Pharm Res 27(2):211–223

    Article  CAS  Google Scholar 

  27. Chang C (2010) The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 34(3):J234–246

    Article  CAS  Google Scholar 

  28. Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19(10):1480–1487

    Article  CAS  Google Scholar 

  29. Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58(6):739–747

    Article  CAS  Google Scholar 

  30. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13(1):106–112

    Article  CAS  Google Scholar 

  31. Thiele L, Merkle HP, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharmaceut Res 20(2):221–228

    Article  CAS  Google Scholar 

  32. Storni T, Kundig TM, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57(3):333–355

    Article  CAS  Google Scholar 

  33. O’Hagan DT, Singh M (2003) Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines 2(2):269–283

    Article  Google Scholar 

  34. Sharma S, Mukkur TK, Benson HA, Chen Y (2009) Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci 98(3):812–843

    Article  CAS  Google Scholar 

  35. Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62(4–5):394–407

    Article  CAS  Google Scholar 

  36. Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kundig TM, Gander B, Johansen P (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147(3):342–349

    Article  CAS  Google Scholar 

  37. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  38. Kang ML, Kang SG, Jiang HL, Guo DD, Lee DY, Rayamahji N, Seo YS, Cho CS, Yoo HS (2008) Chitosan microspheres containing Bordetella bronchiseptica antigens as novel vaccine against atrophic rhinitis in pigs. J Microbiol Biotechnol 18(6):1179–1185

    CAS  Google Scholar 

  39. Lai WF, Lin MC (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134(3):158–168

    Article  CAS  Google Scholar 

  40. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  CAS  Google Scholar 

  41. Seferian PG, Martinez ML (2001) Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine 19(6):661–668

    Article  Google Scholar 

  42. Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419

    Article  CAS  Google Scholar 

  43. Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine 25(52):8673–8686

    Article  CAS  Google Scholar 

  44. Villiers C, Chevallet M, Diemer H, Couderc R, Freitas H, Van Dorsselaer A, Marche PN, Rabilloud T (2009) From secretome analysis to immunology: chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol Cell Proteomics 8(6):1252–1264

    Article  CAS  Google Scholar 

  45. Maeda Y, Kimura Y (2004) Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J Nutr 134(4):945–950

    CAS  Google Scholar 

  46. Porporatto C, Bianco ID, Correa SG (2005) Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol 78(1):62–69

    Article  CAS  Google Scholar 

  47. McNeela EA, Jabbal-Gill I, Illum L, Pizza M, Rappuoli R, Podda A, Lewis DJ, Mills KH (2004) Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan. Vaccine 22(8):909–914

    Article  CAS  Google Scholar 

  48. Dang Y, Li S, Wang W, Wang S, Zoua M, Guoa Y, Fan J, Dub Y, Zhang J (2011) The effects of chitosan oligosaccharide on the activation of murine spleen CD11c+ dendritic cells via Toll-like receptor 4. Carbohydr Polym 83:1075–1081

    Google Scholar 

  49. Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Del Giudice G (2003) The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine 21(25–26):3837–3844

    Article  CAS  Google Scholar 

  50. Baudner BC, Verhoef JC, Giuliani MM, Peppoloni S, Rappuoli R, Del Giudice G, Junginger HE (2005) Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J Drug Target 13(8–9):489–498

    Article  CAS  Google Scholar 

  51. Steinhagen F, Kinjo T, Bode C, Klinman DM (2010) TLR-based immune adjuvants. Vaccine. doi:10.1016/j.vaccine.2010.08.002

    Google Scholar 

  52. Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32(3):926–932

    Article  CAS  Google Scholar 

  53. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51(1–3):81–96

    Article  CAS  Google Scholar 

  54. Yuki Y, Kiyono H (2003) New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol 13(5):293–310

    Article  CAS  Google Scholar 

  55. Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4(9):699–710

    Article  CAS  Google Scholar 

  56. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45–S53

    Article  CAS  Google Scholar 

  57. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  58. Brayden DJ, Baird AW (2001) Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes Infect 3(10):867–876

    Article  CAS  Google Scholar 

  59. Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10(17):1145–1157

    Article  CAS  Google Scholar 

  60. O’Hagan DT, Singh M, Ulmer JB (2006) Microparticle-based technologies for vaccines. Methods 40(1):10–19

    Article  CAS  Google Scholar 

  61. Vajdy M, O’Hagan DT (2001) Microparticles for intranasal immunization. Adv Drug Deliv Rev 51(1–3):127–141

    Article  CAS  Google Scholar 

  62. Betancourt AA, Delgado CA, Estevez ZC, Martinez JC, Rios GV, Aureoles-Rosello SR, Zaldivar RA, Guzman MA, Baile NF, Reyes PA, Ruano LO, Fernandez AC, Lobaina-Matos Y, Fernandez AD, Madrazo AI, Martinez MI, Banos ML, Alvarez NP, Baldo MD, Mestre RE, Perez MV, Martinez ME, Escobar DA, Guanche MJ, Caceres LM, Betancourt RS, Rando EH, Nieto GE, Gonzalez VL, Rubido JC (2007) Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens. Int J Infect Dis 11(5):394–401

    Article  CAS  Google Scholar 

  63. Kang ML, Cho CS, Yoo HS (2009) Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 27(6):857–865

    Article  CAS  Google Scholar 

  64. Amorij JP, Hinrichs W, Frijlink HW, Wilschut JC, Huckriede A (2010) Needle-free influenza vaccination. Lancet Infect Dis 10(10):699–711

    Article  Google Scholar 

  65. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62(1):59–82

    Article  CAS  Google Scholar 

  66. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14(3):201–207

    Article  Google Scholar 

  67. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21(13–14):1400–1408

    Article  CAS  Google Scholar 

  68. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387–391

    Article  CAS  Google Scholar 

  69. Chew JL, Wolfowicz CB, Mao HQ, Leong KW, Chua KY (2003) Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine 21(21–22):2720–2729

    Article  CAS  Google Scholar 

  70. Saint-Lu N, Tourdot S, Razafindratsita A, Mascarell L, Berjont N, Chabre H, Louise A, Van Overtvelt L, Moingeon P (2009) Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy 64(7):1003–1013

    Article  CAS  Google Scholar 

  71. Bal SM, Slutter B, van Riet E, Kruithof AC, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA (2010) Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 142(3):374–383

    Article  CAS  Google Scholar 

  72. Bal SM, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA (2010) Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 27(9):1837–1847. doi:10.1007/s11095-010-0182-y

    Article  CAS  Google Scholar 

  73. Boyoglu S, Vig K, Pillai S, Rangari V, Dennis VA, Khazi F, Singh SR (2009) Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomedicine 5(4):463–472

    Article  CAS  Google Scholar 

  74. Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE (2008) Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm 69(2):405–416

    Article  CAS  Google Scholar 

  75. Zhu B, Qie Y, Wang J, Zhang Y, Wang Q, Xu Y, Wang H (2007) Chitosan microspheres enhance the immunogenicity of an Ag85B-based fusion protein containing multiple T-cell epitopes of Mycobacterium tuberculosis. Eur J Pharm Biopharm 66(3):318–326

    Article  CAS  Google Scholar 

  76. Wimer-Mackin S, Hinchcliffe M, Petrie CR, Warwood SJ, Tino WT, Williams MS, Stenz JP, Cheff A, Richardson C (2006) An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine 24(18):3953–3963

    Article  CAS  Google Scholar 

  77. Klas SD, Petrie CR, Warwood SJ, Williams MS, Olds CL, Stenz JP, Cheff AM, Hinchcliffe M, Richardson C, Wimer S (2008) A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge. Vaccine 26(43):5494–5502

    Article  CAS  Google Scholar 

  78. Kang ML, Kang SG, Jiang HL, Shin SW, Lee DY, Ahn JM, Rayamahji N, Park IK, Shin SJ, Cho CS, Yoo HS (2006) In vivo induction of mucosal immune responses by intranasal administration of chitosan microspheres containing Bordetella bronchiseptica DNT. Eur J Pharm Biopharm 63(2):215–220

    Article  CAS  Google Scholar 

  79. Kang ML, Jiang HL, Kang SG, Guo DD, Lee DY, Cho CS, Yoo HS (2007) Pluronic F127 enhances the effect as an adjuvant of chitosan microspheres in the intranasal delivery of Bordetella bronchiseptica antigens containing dermonecrotoxin. Vaccine 25(23):4602–4610

    Article  CAS  Google Scholar 

  80. Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, Cho CS (2008) The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant delivery system for intranasal immunization. Biomaterials 29(12):1931–1939

    Article  CAS  Google Scholar 

  81. Wang X, Zhang X, Kang Y, Jin H, Du X, Zhao G, Yu Y, Li J, Su B, Huang C, Wang B (2008) Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine 26(40):5135–5144

    Article  CAS  Google Scholar 

  82. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP (2008) Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 26(18):2225–2233

    Article  CAS  Google Scholar 

  83. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354(1–2): 235–241

    Article  CAS  Google Scholar 

  84. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2008) Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 8(13–14):1773–1780

    Article  CAS  Google Scholar 

  85. Yuan X, Yang X, Cai D, Mao D, Wu J, Zong L, Liu J (2008) Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine 26(29–30):3727–3734

    Article  CAS  Google Scholar 

  86. Hagenaars N, Mania M, de Jong P, Que I, Nieuwland R, Slutter B, Glansbeek H, Heldens J, van den Bosch H, Lowik C, Kaijzel E, Mastrobattista E, Jiskoot W (2010) Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. J Control Release 144(1):17–24

    Article  CAS  Google Scholar 

  87. Garmise RJ, Staats HF, Hickey AJ (2007) Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech 8(4):E81

    Article  Google Scholar 

  88. Amidi M, Pellikaan HC, Hirschberg H, de Boerd AH, Crommelin DJA, Hennink WE, Kersten G, Jiskoot W (2007) Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. Vaccine 25(37–38):6818–6829

    Article  CAS  Google Scholar 

  89. Huo Z, Sinha R, McNeela EA, Borrow R, Giemza R, Cosgrove C, Heath PT, Mills KH, Rappuoli R, Griffin GE, Lewis DJ (2005) Induction of protective serum meningococcal bactericidal and diphtheria-neutralizing antibodies and mucosal immunoglobulin A in volunteers by nasal insufflations of the Neisseria meningitidis serogroup C polysaccharide-CRM197 conjugate vaccine mixed with chitosan. Infect Immun 73(12):8256–8265

    Article  CAS  Google Scholar 

  90. Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH (2009) TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 38(4):362–369

    Article  CAS  Google Scholar 

  91. Günbeyaz M, Faraji A, Özkul A, Puralı N, Şenel S (2010) Chitosan based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1). Eur J Pharm Sci 41(3–4):531–545

    Article  CAS  Google Scholar 

  92. Slutter B, Soema PC, Ding Z, Verheul R, Hennink W, Jiskoot W (2010) Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Control Release 143(2):207–214

    Article  CAS  Google Scholar 

  93. Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, Bouwstra J, Broere F, Jiskoot W (2010) Nasal vaccination with N trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28(38):6282–6291

    Article  CAS  Google Scholar 

  94. Prego C, Paolicelli P, Diaz B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614

    Article  CAS  Google Scholar 

  95. Sayın B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Şenel S (2008) Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 363(1–2):139–148

    Article  CAS  Google Scholar 

  96. Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Vila Jato JL, Alonso MJ (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57(1):123–131

    Article  CAS  Google Scholar 

  97. Yang X, Yuan X, Cai D, Wang S, Zong L (2009) Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 375(1–2):123–132

    Article  CAS  Google Scholar 

  98. Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A, Illum L, Jennings R (2005) Effective nasal influenza vaccine delivery using chitosan. Vaccine 23(35):4367–4374

    Article  CAS  Google Scholar 

  99. Ligocyte Pharmaceuticals (2010) Intranasal norovirus vaccine demonstrates immunogenicity in phase I studies. http://www.ligocyte.com/news/documents/LIGOCYTE_DATA_AT_NFID_VAX_CONF_final_for_distribution.pdf. Accessed 31 January 2011

  100. Bivas-Benita M, Ottenhoff TH, Junginger HE, Borchard G (2005) Pulmonary DNA vaccination: concepts, possibilities and perspectives. J Control Release 107(1):1–29

    Article  CAS  Google Scholar 

  101. Hokey DA, Misra A (2010) Aerosol vaccines for tuberculosis: a fine line between protection and pathology. Tuberculosis (Edinb). doi:S1472-9792(10)00110-1 [pii] 10.1016/j.tube.2010.09.007

    Google Scholar 

  102. Bivas-Benita M, van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, Geluk A (2004) Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14):1609–1615

    Article  CAS  Google Scholar 

  103. Heuking S, Iannitelli A, Di Stefano A, Borchard G (2009) Toll-like receptor-2 agonist functionalized biopolymer for mucosal vaccination. Int J Pharm 381(2):97–105

    Article  CAS  Google Scholar 

  104. Heuking S, Adam-Malpel S, Sublet E, Iannitelli A, Stefano A, Borchard G (2009) Stimulation of human macrophages (THP-1) using Toll-like receptor-2 (TLR-2) agonist decorated nanocarriers. J Drug Target 17(8):662–670

    Article  CAS  Google Scholar 

  105. Choi M, Cho M, Han BS, Hong J, Jeong J, Park S, Cho MH, Kim K, Cho WS (2010) Chitosan nanoparticles show rapid extrapulmonary tissue distribution and excretion with mild pulmonary inflammation to mice. Toxicol Lett 199(2):144–152

    Article  CAS  Google Scholar 

  106. Partidos CD, Beignon AS, Brown F, Kramer E, Briand JP, Muller S (2002) Applying peptide antigens onto bare skin: induction of humoral and cellular immune responses and potential for vaccination. J Control Release 85(1–3):27–34

    Article  CAS  Google Scholar 

  107. Partidos CD, Beignon AS, Mawas F, Belliard G, Briand JP, Muller S (2003) Immunity under the skin: potential application for topical delivery of vaccines. Vaccine 21(7–8):776–780

    Article  CAS  Google Scholar 

  108. Kohli AK, Alpar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275(1–2):13–17

    Article  CAS  Google Scholar 

  109. Combadiere B, Mahe B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31(2–3):293–315. doi:DOI 10.1016/j.cimid.2007.07.015

    Article  Google Scholar 

  110. Hammond SA, Walwender D, Alving CR, Glenn GM (2001) Transcutaneous immunization: T cell responses and boosting of existing immunity. Vaccine 19(17–19):2701–2707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Şenel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Şenel, S. (2011). Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials I. Advances in Polymer Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_120

Download citation

Publish with us

Policies and ethics