Skip to main content

Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application

  • Chapter
  • First Online:
Polymer Characterization

Part of the book series: Advances in Polymer Science ((POLYMER,volume 230))

Abstract

This review concentrates on semiconductors and carbon nanotubes as the inorganic component of organic–inorganic nanomaterials. One of the cornerstones of the current push towards future improvements in electronics and in optics technology is the decrease in size of the various components used for device manufacture. This paper discusses the character of nanocomposites for optics and electronics, their preparation, and the properties of semiconductor nanoparticles such as ZnS, ZnO, ZnS:Mn, TiO2, CdSe, and CdS. Research in this area has shown the great potential advantages of novel materials composed of semiconductor nanocrystals and a polymer matrix. A short characterization of the nature of carbon-based materials (i.e., fullerenes and nanotubes) is given to provide a brief review of these materials. Then, the characterization of non-conjugated (PMMA, PS, and PVDF) and conjugated (PT, PVK, PPV, and PANI) polymer matrices and nanocomposites is described. Finally, the most advanced applications of the nanocomposites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Acrylic acid

AAO:

Anodic aluminum oxide

AC EL:

Alternating current electroluminescence

AIBN:

2,2-Azobis(isobutyronitrile)

AKY:

Polyoxyethylene(4..5)laurylether acetic acid

Alq3 :

Tris(8-hydroxyquinolinato)aluminium(III)

AM:

Air mass

BHJ:

Bulk heterojunctions

CB:

Conduction band

CNT:

Carbon nanotube

CPDHFPV:

Poly(9,9-dihexylfluorene-2,7-divinylene-m-phenylenevinylene-stat-p-phenylenevinylene)

C60:

[60] Fullerene or buckminsterfullerene

CVD:

Chemical vapor deposition

DBSNa:

Sodium dodecylbenzene sulfonate

DC EL:

Direct current electroluminescence

DCM:

4-(Dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran

DMF:

N,N-dimethylformamide

DPA:

Dodecylphosphonic acid

DSC:

Dye-sensitized solar cell

EBE:

Electron beam evaporation

E C :

Energy of an electron in the conduction band

E F :

Fermi level

E g :

Energy band gap

E v :

Energy of an electron at the top of the valence band

EL:

Electroluminescence

EQE:

External quantum efficiency

ER:

Electrorheological properties

eV:

Electron fill factor volt

FCC:

Face-centered cubic

o-FET:

Field effect transistors

FF:

Fill factor

FT-IR:

Fourier transform infrared spectroscopy

HOMO:

Highest occupied molecular orbital

HDA:

Hexadecylamine

I mpp :

Current in the maximum power point

I sc :

Short circuit current

ITO:

Indium tin oxide

IUPAC:

International Union of Pure and Applied Chemistry

k :

Wavevector

LAVD:

Laser-assisted vapor deposition

LB:

Langmuir–Blodgett technique

LED:

Light-emitting diode

LUMO:

Lowest unoccupied molecular orbital

MA:

Methacrylic acid

MDDA:

Didecylamine-solubilized carbon nanotubes

MEH-PPV:

Poly[2-methoxy-5(2-ethyl-hexyloxyl)-p-phenylene vinylene]

MBE:

Molecular beam epitaxy

MMA:

Methyl methacrylate

MOCVD:

Metal–organic chemical vapor deposition

MPA:

3-Mercaptopropionic acid

MPTMS:

γ-Ethacryloxypropyltrimethoxysilane

MWCNT:

Multiwall carbon nanotube

p-MWCNT:

Purified multiwall carbon nanotube

n :

Refractive index of the matrix

n :

Refractive index of the particles

NaAOT:

Sodium bis(2-ethylhexyl)sulfosuccinate

NC:

Nanocrystal

OLED:

Organic light-emitting diode

PAA:

Poly(acrylic acid)

PANI:

Polyaniline

PCBM:

[6,6]-Phenyl-C61-butyric acid methyl ester

PC:

Photonic crystal

PCE:

Power conversion efficiency

PCO:

Photocatalytic oxidation

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PHOS:

Polyoxyethylene(1)laurylether phosphoric acid

P3HT:

Poly(3-hexylthiophene)

P3OT:

Poly(3-octylthiophene)

Plight :

Incident solar radiation

PL:

Photoluminescence

PLD:

Pulsed laser deposition

PMMA:

Poly(methyl methacrylate)

PmPV:

Poly(m-pheneylenevinylene-co-2,5-dioctoxy-p-phenylene)

P o :

Incident power

PPV:

Poly(p-phenylene vinylene)

PPy:

Polypyrrole

PS:

Polystyrene

PSS:

Polystyrene sulfonic acid

PT:

Polythiophene

PTU:

Polythiourethane

PU:

Polyurethane

PUMM:

Poly(urethane-methacrylate macromer)

PV:

Photovoltaic

PVA:

Poly(vinyl alcohol)

PVB:

Poly(vinyl butyral)

PVDF:

Poly(vinylidene fluoride)

PVK:

Poly(N-vinylcarbazole)

PVP:

Poly(vinylpyrrolidone)

QD:

Quantum dot

QY:

Quantum yield

SAM:

Self-assembled monolayer

SC:

Semiconductor

SSG:

Solution–sol–gel

SWCNT:

Single-wall carbon nanotube

SQ:

Size quantization

TDPA:

Tetradecylphosphonic acid

TFEL:

Thin-film electroluminescence

Th:

Thorium

TOPO:

Tri-n-octylphosphine oxide

TPDA:

N,N -Diphenyl-N,N -bis(3-methylphenyl)-1,1-biphenyl-4-4- diamine

TTAB:

Tetradecyltrimethylammonium bromide

Tween 20:

Poly(oxyethylene) (20) sorbitan monolaurate

W:

Wurtzite structure

UMM:

Urethane-methacrylate macromer

UV:

Ultraviolet

V :

Volume of single particles

VB:

Valence band

V oc :

Open circuit voltage

V mpp :

Voltage in the maximum power point

ZB:

Zinc blende

ΔW f :

Work functions of electrodes

ε:

Dielectric constant

εr :

Relative dielectric constant

λ:

Wavelength of light

δd :

Dispersive contribution

δp :

Polar contribution

δh :

Hydrogen bonding contribution

ηeff :

Overall efficiency of a solar cell

ρ:

Density dimensions of quantities of particles

References

  1. Work WJ, Horie K, Hess M, Stepto RFT (2004) Pure Appl Chem 76:1985

    Google Scholar 

  2. Sanchez C, Romero P (2004) Functional hybrid materials. Wiley, Weinheim

    Google Scholar 

  3. Judenstein P, Sanchez C (1996) J Mater Chem 6:511

    Google Scholar 

  4. Gross S, Camozzo D, Noto VD, Armelao L, Tondello E (2007) Eur Polym J 43:673

    Google Scholar 

  5. Weiner S, Wagner HD (1998) Rev Mater Sci 28:271

    Google Scholar 

  6. Fong H, Sarikaya M, White SN, Snead ML (2000) Mater Sci Eng C 7:119

    Google Scholar 

  7. Zaremba CM, Morse DE, Mann S, Hansma PK, Stucky GD (1998) Chem Mater 10:3813

    Google Scholar 

  8. Gacitua WE, Ballerini AA, Zhang J (2005) Maderas Cienc Tecnol 7:159

    Google Scholar 

  9. Tanka T, Montanari GC, Mulhaup R (2004) IEEE Trans Dielectr Electr Insul 11:763

    Google Scholar 

  10. Jang J (2006) Adv Polym Sci 199:189

    Google Scholar 

  11. Ajayan PM, Schadler LS, Braun PV (2003), Nanocomposite science and technology. Wiley, Weinheim

    Google Scholar 

  12. de Tacconi NR, Wenren H, Rajeshwar K (1997) J Electrochem Soc 144:3159

    Google Scholar 

  13. Lee BH, Kwon KW, Shim M (2007) J Mater Chem 17:1284

    Google Scholar 

  14. Ghosh PK, Mitra MK, Chattopadhyay KK (2005) Nanotechnology 16:107

    Google Scholar 

  15. Tanaka M, Qi J, Masumoto Y (2000) J Cryst Growth 214:410

    Google Scholar 

  16. Althues H, Palkovits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Chem Mater 18:1068

    Google Scholar 

  17. Adachi D, Hasui S, Toyama T, Okamoto H (2000) Appl Phys Lett 77:1301

    Google Scholar 

  18. Komarneni S (2005) Chemical processing of ceramics, 2nd edn. CRC, New York

    Google Scholar 

  19. Godovsky DY (2000) Adv Polym Sci 153:163

    Google Scholar 

  20. Sugunan A, Dutta J (2004) J Phys Sci I 4:5

    Google Scholar 

  21. Kerker M (1969) The scattering of light. Academic, New York

    Google Scholar 

  22. Lu C, Cui Z, Li Z, Yang B, Shen J (2003) J Mater Chem 13:526

    Google Scholar 

  23. Sze SM (1985) Semiconductor devices. Wiley, New York

    Google Scholar 

  24. Kalinowski J (1997) In: Miyata S (ed) Organic electroluminescent materials and devices. CRC, Boca Raton

    Google Scholar 

  25. Vij DR (2004) Handbook of luminescence materials, Institute of Physics (Great Britain). CRC, Boca Raton

    Google Scholar 

  26. Abou El-Ela FM (2000) Egypt J Sol 23:27

    Google Scholar 

  27. Fahlman M, Salaneck WR (2002) Surf Sci 500:904

    Google Scholar 

  28. Holder E, Tessler N, Rogach AL (2008) J Mater Chem 18:1064

    Google Scholar 

  29. Oey CC, Djurisic AB, Kwong CY, Cheung CH, Chan WK, Nunzi JM, Chui PC (2005) Thin Solid Films 492:253

    Google Scholar 

  30. Liu HW, Laskar IR, Huang CP, Cheng JA, Cheng SS, Luo LY, Wang HR, Chen TM (2005) Thin Solid Films 489:296

    Google Scholar 

  31. Hikmet RAM, Talapin DV, Weller H (2003) J Appl Phys 93:3509

    Google Scholar 

  32. Yang H, Hollowy PH (2003) J Phys Chem B 107:9705

    Google Scholar 

  33. Park JH, Park SI, Kim TH, Park OO (2007) Thin Solid Films 515:3085

    Google Scholar 

  34. Lee KW, Lee SP, Choi H, Mo KH, Jang JW (2007) J Appl Phys 91:023110

    Google Scholar 

  35. Manzoor K, Vadera SR, Kumar N (2004) Appl Phys Lett 84:284

    Google Scholar 

  36. Lee CY, Haung YT, Su WF, Lin CF (2006) Appl Phys Lett 89:231116

    Google Scholar 

  37. Yang Y, Huang J, Yang B, Liu S, Shen J (1997) Synth Met 91:347

    Google Scholar 

  38. Yang CH, Bhongale CJ, Chou CH, Yang SH, Lo CN, Chen TM, Hsu CS (2007) Polymer 48:116

    Google Scholar 

  39. Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Wang H, Mak CSK, Chan WK (2007) Nat Mater 6:521

    Google Scholar 

  40. Shrotriya V, Ouyang J, Tseng RJ, Yang GL, Yang Y (2005) Chem Phys Lett 411:138

    Google Scholar 

  41. Kim Y, Cook S, Kirkpatrick J, Nelson J, Durrant JR, Bradley DDC, Giles M, Heeney M, Hamilton R, McCulloch I (2007) Phys Chem Lett C 111:8137

    Google Scholar 

  42. Kim Y, Choulis SA, Nelson J, Bradley DDC (2005) J Mater Sci 40:1371

    Google Scholar 

  43. Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Wang H, Mak CSK, Chan WK (2007) Nat Mater 6:521

    Google Scholar 

  44. Al-Ibrahim M, Sensfuss S, Uziel J, Ecke G, Ambacher O (2005) Sol Energ Mater Sol Cell 85:277

    Google Scholar 

  45. Kwong CY, Choy WCH, Djurisic AB, Chui PC, Cheng KW, Chan WK (2004) Nanotechnology 15:1156

    Google Scholar 

  46. Vu QT, Pavlik M, Hebestrei N, Rammelt U, Plieth W, Pfleger J (2005) React Funct Polym 65:69

    Google Scholar 

  47. Kwong CY, Djurisic AB, Chui PC, Cheng KW (2004) Chem Phys Lett 384:372

    Google Scholar 

  48. Zhang Q, Russell TP, Emrick T (2007) Chem Mater 19:3712

    Google Scholar 

  49. De Girolamo J, Reiss P, Pron A (2007) J Phys Chem C 111:14681

    Google Scholar 

  50. Sonar P, Sreenivasan KP, Madddanimath T, Vijayamohanan K (2006) Mater Res Bull 41:198

    Google Scholar 

  51. Chaudhary S, Lu H, Muller AM, Bardeen CJ, Ozkan M (2007) Nano Lett 7:1973

    Google Scholar 

  52. Geng J, Zeng T (2006) J Am Chem Soc 128:16827

    Google Scholar 

  53. Beek WJE, Wienk MM, Janssen RAJ (2006) Adv Funct Mater 16:1112

    Google Scholar 

  54. Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J (2006) J Phys Chem B 110:7635

    Google Scholar 

  55. Jaglarz J, Kassiba A, Armatys P, Pokladko M, Gondek E, Sanetra J (2004) Mater Sci 22:389

    Google Scholar 

  56. Boucle J, Ravirajan P, Nelson J (2007) J Mater Chem 17:3141

    Google Scholar 

  57. Hodes G (2001) Electrochemistry of nanomaterials. Wiley, Weinheim

    Google Scholar 

  58. Shionoya S, Yen W (1998) Phosphors handbook. Hardcover, CRC, New York

    Google Scholar 

  59. Smith RA (1964) Semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  60. Rajeshwar K, Tacconi NR, Chenthamarakshan CR (2001) Chem Mater 13:2765

    Google Scholar 

  61. Geusic JE, Singh S, Tipping DW, Rich TC (1967) Phys Rev Lett 19:1126

    Google Scholar 

  62. Penzkofer A, Falkenstein W (1976) Opt Commun 17:1

    Google Scholar 

  63. Staginus G, Frohlich D, Gaps T (1968) Rev Sci Instrum 39:1129

    Google Scholar 

  64. van der Ziel JP (1977) Phys Rev B 16:2775

    Google Scholar 

  65. Basov NG, Grasyuk AZ, Efimov VF, Zubarev IG, Katulin VA, Popov JM (1966) J Phys Soc Jpn Suppl 21:276

    Google Scholar 

  66. Panizza E (1967) Appl Phys Lett 10:265

    Google Scholar 

  67. Arsen’ev VV, Dneprovskii VS, Klyshko DN, Penin AN (1969) Sov Phys Dokl 12:4

    Google Scholar 

  68. Prasad PN (2004) Nanophotonics. Wiley, New Jersey

    Google Scholar 

  69. Peng WQ, Cong GW, Qu SC, Wang ZG (2006) Opt Mater 29:313

    Google Scholar 

  70. Nalwa HS, Rohwer LS (2003) Handbook of luminescence display materials & devices. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  71. Bryan JD, Gamelin DR (2005) Prog Inorg Chem 54:47

    Google Scholar 

  72. Yang H, Holloway PH (2002) J Appl Phys 93:586

    Google Scholar 

  73. Hawang J, Oh MO, Kim I, Lee JK, Ha ChS (2005) Curr Appl Phys 5:31

    Google Scholar 

  74. Manzoor K, Vadera SR, Kumar N (2004) Appl Phys Lett 84:284

    Google Scholar 

  75. Yang H, Han S, Cui Y, Liang Y (2004) Mater Lett 58:2087

    Google Scholar 

  76. Toyama T, Yoshimura K, Fujii M, Haze H, Okamoto H (2005) Appl Surf Sci 244:524

    Google Scholar 

  77. Bol AA, van Beek R, Meijerink A (2002) Chem Mater 4:1121

    Google Scholar 

  78. Jian W, Zhuang J, Zhang D, Dai J, Yang W, Bai Y (2006) Mater Chem Phys 99:497

    Google Scholar 

  79. Swart HC, Greeff AP, Holloway PH, Berning GLP (1999) Appl Surf Sci 140:63

    Google Scholar 

  80. Raevskaya AE, Korzhak AV, Stroyuk AL, Kuchmii SY (2005) Theor Exp Chem 41:359

    Google Scholar 

  81. Kushida T, Kurita A, Watanabe M, Kanematsu Y, Hirata K, Okubo N, Kanemitsu Y (2000) J Lumin 87:466

    Google Scholar 

  82. Peng WQ, Cong GW, Qu SC, Wang ZG (2006) Opt Mater 29:313

    Google Scholar 

  83. Yang P, Lu M, Zhou G, Yuan DR, Xu D (2001) Inorg Chem Commun 4:734

    Google Scholar 

  84. Bhargava RN, Gallagher D, Welker T (1994) J Lumin 60:275

    Google Scholar 

  85. Kitai AH (1993) Solid state luminescence: theory, materials, and devices. Chapman & Hall, New York

    Google Scholar 

  86. Blasse GB, Grabmaier BC (1994) Luminescence materials. Springer, Berlin

    Google Scholar 

  87. McClean IP, Thomas CB (1992) Semicond Sci Technol 7:1394

    Google Scholar 

  88. Hirabayashi K, Kozawaguchi H (1986) Jpn J Appl Phys 25:711

    Google Scholar 

  89. Ozawa M, Satoh T, Hirate T (2008) E-MRS Fall Meeting 2007, Acta Materialia Gold Medal Workshop, Warsaw, Poland, September 17–21, http://www.science24.com/paper/11683 (14.02.2008)

  90. Dutta J, Hofmann H (2003) In: Nalwa HS (ed) Encyclopaedia of nanoscience and nanotechnology, vol. 10. American Scientific Publishers, Stevenson Ranch, CA, pp 1–23

    Google Scholar 

  91. McHardy J, Ludwig F (1992), Electrochemistry of semiconductors and electronics. Noyes, Park Ridge, NJ

    Google Scholar 

  92. Cao L, Zhang J, Ren S, Huang S (2002) Appl Phys Lett 80:23

    Google Scholar 

  93. Yang H, Han S, Cui Y, Liang Y (2004) Mater Lett 58:2087

    Google Scholar 

  94. Sugunan A, Warad HC, Thanachayanont C, Dutta J (2005) In: 2nd ECTI annual conference proceedings, Pattaya, Thailand, 12–13 May 2005

    Google Scholar 

  95. Bhargava RN, Gallagher D, Hong X, Nurmiko A (1994) Phys Rev Lett 72:416

    Google Scholar 

  96. Maity R, Chattopadhyay KK (2004) Nanotechnology 15:812

    Google Scholar 

  97. Peng WQ, Qu SC, Cong GW, Zhang XQ, Wang ZG (2005) J Crys Growth 282:179

    Google Scholar 

  98. Martinez-Castanon GA, Martinez-Mendoza JR, Ruiz F, Gonzalez- Hernandez J (2007) Inorg Chem Commun 10:531

    Google Scholar 

  99. Kane RS, Cohen RE, Silbey R (1999) Chem Mater 11:90

    Google Scholar 

  100. Konishi M, Isobe T, Senna M (2001) J Lumin 93:1

    Google Scholar 

  101. Toyoda T, Cruz AB (2003) Thin Solid Films 438:132

    Google Scholar 

  102. Bol AA, Meijerink A (2001) J Phys Chem B 105:10197

    Google Scholar 

  103. Yu J, Liu H, Wang Y, Fernandez FE, Jia W (1997) J Lumin 75:252

    Google Scholar 

  104. Zhao K, Dai J, Zhuang J, Li J, Yang W (2007) Colloids Surf A 296:154

    Google Scholar 

  105. Karar N, Singh F, Mehta BR (2004) J Appl Phys 95:656

    Google Scholar 

  106. Zhuang J, Zhang X, Wang G, Li D, Yang W (2003) J Mater Chem 13:1853

    Google Scholar 

  107. Warad HC, Ghosh SC, Hemtanon B, Thanachayanont C, Dutta J (2005) Sci Technol Adv Mater 6:296–301

    Google Scholar 

  108. Bredol M, Althues H (2004) Solid State Phenomena 99:19

    Google Scholar 

  109. Kubo T, Isobe T, Senna M (2002) J Lumin 99:39

    Google Scholar 

  110. Bunn CW (1935) Proc Phys Soc London 47:836

    Google Scholar 

  111. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morko H (2005) J Appl Phys 98:041301

    Google Scholar 

  112. Li ZW, Gao W (2007) Thin Solid Films 515:3323

    Google Scholar 

  113. Chakrabarti S, Das D, Ganguli D, Chaudhuri S (2003) Thin Solid Films 441:228

    Google Scholar 

  114. Schirmer F, Zwingle D (1970) Solid State Commun 8:1559

    Google Scholar 

  115. Look DC (2001) Mater Sci Eng B 80:381

    Google Scholar 

  116. Kucheyev O, Williams JS, Jagadish C, Zou J, Evans C, Nelson AJ, Hamza AV (2003) Phys Rev B 67:094115

    Google Scholar 

  117. Turton R, Berry DA, Gardner TH, Miltz A (2004) Ind Eng Chem Res 43:1235

    Google Scholar 

  118. Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Sens Actuaators B Chem 66:2000

    Google Scholar 

  119. Hoffman L, Norris BJ, Wager JF (2003) Appl Phys Lett 82:733

    Google Scholar 

  120. Hoffman L (2004) J Appl Phys 95:5813

    Google Scholar 

  121. Curridal ML, Comparelli R, Cozzli PD, Mascolo G, Agostiano A (2003) Mater Sci Eng C 23:285

    Google Scholar 

  122. Peiro AM, Ravirajan P, Govender K, Boyle DS, Brien PO, Bradley DDC, Nelson J, Durrant JR (2005) Organic photovoltaic VI, Proc SPIE 5938:191

    Google Scholar 

  123. Beek WJE, Wienk MM, Janssen RAJ (2006) Adv Funct Mater 16:1112

    Google Scholar 

  124. Li ZW, Gao W, Reeves R (2005) Surf Coat Technol 198:319

    Google Scholar 

  125. Chichina M, Tichy M, Churpita Hubicka Z (2005) 14th Annual Conference of Doctoral Student. Prauge, Czech Republic, WDS’05 Proceedings of Contributed Papers, Part II, 325–331, 2005 (03.03.2008) WDS 2005 - Proceedings of Contributed Papers Proceedings of the 14th Annual Conference of Doctoral Students - WDS 2005 Prague, 7th June - 10th June, 2005 www.mff.cuni.cz/veda/konference/wds/contents/wds05.htm

  126. Vlachopoulos N, Liska P, Augustynski J, Gratzel M (1988) J Am Chem Soc 110:1216

    Google Scholar 

  127. Kong FT, Dai SY, Wang KJ (2007) Adv Opt Electron 1155:75384

    Google Scholar 

  128. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) J Am Chem Soc 115:6382

    Google Scholar 

  129. Salafsky JS (1999) Phys Rev B 59:10885

    Google Scholar 

  130. Kumazawa N, Rafiqul Islam M, Takeuchi M (1999) J Electroanal Chem 472:137

    Google Scholar 

  131. Chin SS, Chiang K, Gordon Fane A (2006) J Membr Sci 275:202

    Google Scholar 

  132. Losito I, Amorisco A, Palmisano F, Zambonin PG (2005) Appl Surf Sci 240:180

    Google Scholar 

  133. Gogate PR, Pandit AB (2004) Adv Environ Res 8:501

    Google Scholar 

  134. Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539

    Google Scholar 

  135. Zhang Q, Gao L (2003) Langumir 19:967

    Google Scholar 

  136. Ramakrishna G, Ghosh HN (2003) Langumir 19:505

    Google Scholar 

  137. Kim CS, Moon BK, Park JH, Choi BC, Seo HJ (2003) J Cryst Growth 257:309

    Google Scholar 

  138. Hsu WP, Yu R, Matijevic E (1993) J Colloid Interface Sci 156:56

    Google Scholar 

  139. Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Surf Sci Rep 62:111

    Google Scholar 

  140. Nirmal M, Brus L (1999) Acc Chem Res 32: 407

    Google Scholar 

  141. El-Sayed MA (2001) Acc Chem Res 34:257

    Google Scholar 

  142. Dabbousi BO, Rodriguez-Viejo J, Mikulec V, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendii MG (1997) J Phys Chem B 101:9463

    Google Scholar 

  143. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Google Scholar 

  144. Kippeny TC, Swafford LA, Rosenthal SJ (2002) J Chem Educ 79:1094

    Google Scholar 

  145. Qu L, Peng AZ, Peng X (2001) Nano Lett 1:333

    Google Scholar 

  146. Wang CC, Chen AL, Chen IH (2006) Polym Adv Technol 17:598

    Google Scholar 

  147. Murcia MJ, Shaw DL, Woodruff H, Naumann CA, Young BA, Long EC (2006) Chem Mater 18:2219–2225

    Google Scholar 

  148. Reiss P, Bleuse J, Pron A (2002) Nano Lett 781:2

    Google Scholar 

  149. Liu HW, Laskar IR, Huang CP, Cheng JA, Cheng SS, Luo LY, Wang HR, Chen TM (2005) Thin Solid Films 489:296

    Google Scholar 

  150. Kratschmer W (1995) Nanostruct Mater 6:65

    Google Scholar 

  151. Dresselhaus MS, Dresselhaus G (1997) Nanostruct Mater 9:33

    Google Scholar 

  152. Bernholc J, Roland Ch, Yakobson B (1997) Curr Opin Solid State Mater 2:706

    Google Scholar 

  153. Mintmire JW, White CT (1995) Carbon 33:893

    Google Scholar 

  154. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624

    Google Scholar 

  155. Paradise M, Goswami T (2007) Mater Des 28:1477

    Google Scholar 

  156. Baibarac M, Gomez-Romero P (2006) J Nanosci Nanotechnol 6:1

    Google Scholar 

  157. Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89

    Google Scholar 

  158. Breuret O, Sundararaj U (2004) Polym Compos 25:630

    Google Scholar 

  159. Desai AV, Haque MA (2005) Thin Wall Struct 43:1787

    Google Scholar 

  160. Lau KT, Chipara M, Ling HY, Hui D (2004) Composites B 35:95

    Google Scholar 

  161. Lau KT, Hui D (2002) Composites B 33:263

    Google Scholar 

  162. Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:1899

    Google Scholar 

  163. Winkler K, Balch AL, Kutner W (2006) J Solid State Electrochem 10:761

    Google Scholar 

  164. Buseck PR (2002) Earth Planet Sci Lett 203:781

    Google Scholar 

  165. Miller GP (2006) C R Chimie 9:952

    Google Scholar 

  166. Briggs JB, Miller GP (2006) C R Chim 9:916

    Google Scholar 

  167. Adamopoulos G, Heiser T, Giovanella U, Ould-Saad S, van de Wetering KI, Brochon C, Zorba T, Paraskevopoulos KM, Hadziioannou G (2006) Thin Solid Films 511:371

    Google Scholar 

  168. Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Garlaschelli L, Maggini M (2002) Sol Energ Mater Sol Cell 76:107

    Google Scholar 

  169. Al-Ibrahim M, Sensfuss S, Uziel J, Ecke G, Ambacher O (2005) Sol Energ Mater Sol Cell 85:277

    Google Scholar 

  170. Kim Y, Nelson J, Durrant J, Bradley DD, Heo K, Park J, Kim H, McCulloch I, Heeney M, Ree M, Ha ChS (2006) Soft Matter 3:117

    Google Scholar 

  171. Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Prog Polym Sci 29:1079

    Google Scholar 

  172. Hutchison KLG, Schick G, Rubin Y, Wudl F (1999) J Am Chem Soc 121:5611

    Google Scholar 

  173. Protiere M, Reiss P (2006) Nanoscale Res Lett 1:62

    Google Scholar 

  174. Collins PG, Avouris P (2000) Sci Am 283:62

    Google Scholar 

  175. Kim P, Shi L, Majumdar A, McEuen PL (2001) Phys Rev Lett 87:215502

    Google Scholar 

  176. Liu J, Liu T, Kumar S (2005) Polymer 46:3419

    Google Scholar 

  177. Mark JE (1999) Polymer data handbook Oxford University Press, New York

    Google Scholar 

  178. Howard M (1980) Plastics desk top data bank, Book B, 5th edn. International Plastics Selector, San Diego

    Google Scholar 

  179. Reichmanis E, Katz H, Kloc Ch, Maliakal A (2005) Bell Labs Tech J 10:87

    Google Scholar 

  180. Hunt AT (2006) Technical report. nGimat TM Co. Atlanta, USA http://www.ngimat.com/ pdfs/Nanocomposites_Metal_Ceramic_Polymer.pdf (20.08.2008)

  181. Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, Chichester

    Google Scholar 

  182. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook 4th edn. Wiley, New York

    Google Scholar 

  183. Pedone L, Caponetti E, Leone M, Militello V, Panto V, Polizzi S, Saladino ML (2005) J Colloid Interface Sci 284:495

    Google Scholar 

  184. Wang ZG, Zu XT, Yu HJ, He X, Zhu S, Wei QM, Wang LM (2006) Nucl Instrum Methods Phys Res Sect B 250:196

    Google Scholar 

  185. Wang ZG, Zu S, Xiang X, Fang LM, Wang LM (2006) Phys Lett 359:252

    Google Scholar 

  186. Wang ZG, Zu XT, Yu HJ (2006) J Nanopart Res 8:137

    Google Scholar 

  187. Hong RY, Qian JZ, Cao JX (2006) Powder Technol 163:160

    Google Scholar 

  188. Park SJ, Lim ST, Cho MS, Kim HM, Joo J, Choi HJ (2005) Curr Appl Phys 5:302

    Google Scholar 

  189. Lee WJ, Lee SE, Kim ChG (2006) Compos Struct 76:406

    Google Scholar 

  190. Wang M, Pramoda KP, Goh SH (2006) Carbon 44:613

    Google Scholar 

  191. Jin HJ, Choi HJ, Yoon SH, Myung SJ, Shim SE (2005) Chem Mater 17:4034

    Google Scholar 

  192. Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Composites B 35:173

    Google Scholar 

  193. Dai J, Wang Q, Li W, Wei Z, Xu G (2007) Mater Lett 61:27

    Google Scholar 

  194. Tang E, Cheng G, Pang G, Ma X, Xing F (2006) Colloid Polym Sci 284:422

    Google Scholar 

  195. Martiradonna L, Stomeo T, De Giorgi M, Cingolani R, De Vittorio M (2006) Microelectron Eng 83:1478

    Google Scholar 

  196. Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA (2007) Sens Actuators B 123:522

    Google Scholar 

  197. Huang KJ, Rajendran P, Liddell CM (2007) J Colloid Interface Sci 308:112

    Google Scholar 

  198. Adamopoulos G, Heiser T, Giovanella U, Ould-Saad S, van de Wetering KI, Brochon C, Zorba T, Paraskevopoulos KM, Hadziioannou G (2006) Thin Solid Films 511:371

    Google Scholar 

  199. Wang Z, Lu M, Li HL, Guo XY (2006) Mater Chem Phys 100:77

    Google Scholar 

  200. Zhao PQ, Wu XL, Fan JY, Chu PK, Siu GG (2006) Scr Mater 55:1123

    Google Scholar 

  201. Pentimalli M, Antolini F, Bauer EM, Capitani D, Luccio TD, Viel S (2006) Mater Lett 60:2657

    Google Scholar 

  202. Antolini F, Pentimalli M, Luccio TD, Terzi R, Schioppa M, Re M, Mirenghi L, Tapfer L (2005) Mater Lett 59:3181

    Google Scholar 

  203. Antolini F, Ghezelbash C, Esposito C, Trave E, Tapfer L, Korgel BA (2006) Mater Lett 60:1095

    Google Scholar 

  204. Riegler J, Ehler O, Nann T (2006) Anal Bioanal Chem 384:645

    Google Scholar 

  205. Joumaa N, Lansalot M, Theretz A, Elaissari A (2006) Langumir 22:1810

    Google Scholar 

  206. Sherman RL, Ford J, Ford WT (2005) 21:5218

    Google Scholar 

  207. Iezzi RA (1998) Technical report 11-18-04. Elf Atochem North America Inc., Research Center, King of Prussia, Pa., Philadelphia, USA http://www.arkema-inc.com/pdf/techpoly/ Iezzi_Article_From_PCI%20Mag.pdf (25.03.2008)

  208. Jugnickel BJ (1996) The polymeric materials encyclopaedia. CRC, Boca Raton

    Google Scholar 

  209. Dohany JE (1981) US Patent 4360652

    Google Scholar 

  210. Hsu CC, Geil PH (1989) J Mater Sci 24:1219

    Google Scholar 

  211. Anandan S, Pitchumani S, Muthuraaman B, Maruthamuthu P (2006) Sol Energy Mater Sol Cells 90:1715

    Google Scholar 

  212. Hilczer B, Kulek J, Polomska M, Glinchuk MD, Ragulya AV, Pietraszko A (2005) Ferroelectr 316:31

    Google Scholar 

  213. Wang YJ, Kim D (2007) Electrochim Acta 52:3181

    Google Scholar 

  214. Lijie D, Chuanxi X, Juan Ch, Cewen N (2004) J Wuhan Univ Technol Mater Sci Ed 19:9

    Google Scholar 

  215. Gallagher SJ, Norton B, Eames PC (2007) Sol Energy 81:813

    Google Scholar 

  216. Dang ZM, Wang HY, Zhang YH, Qi JQ (2005) Macromol Rapid Commun 26:1185

    Google Scholar 

  217. Hongying Q, Chuanxi X, Lijie D, Guanghui Z (2006) J Wuhan Univ Technol Mater Sci Ed 21:133

    Google Scholar 

  218. Yan L, Wang K, Ye L (2003) J Mater Sci Lett 22:1713

    Google Scholar 

  219. Lu Ch, Cui Z, Wang Y, Li Z, Guan Ch, Yang B, Shen J (2003) J Mater Chem 13:2189

    Google Scholar 

  220. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578

    Google Scholar 

  221. Strenger-Smith JD (1998) Prog Polym Sci 23:57

    Google Scholar 

  222. Chan HSO, Ng SC (1998) Prog Polym Sci 23:1167

    Google Scholar 

  223. Kim DY, Cho HN, Kim CY (2000) Prog Polym Sci 25:1089

    Google Scholar 

  224. Pron A, Rannou P (2002) Polym Sci 27:135

    Google Scholar 

  225. Winder C, Sariciftci NS (2004) J Mater Chem 14:1077

    Google Scholar 

  226. Jang J (2006) Adv Polym Sci 199:189

    Google Scholar 

  227. Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954

    Google Scholar 

  228. Fahlman M, Salaneck WR (2002) Surf Sci 500:904

    Google Scholar 

  229. Reddinger JL, Reynolds JR (1999) Adv Polym Sci 145:57

    Google Scholar 

  230. McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537

    Google Scholar 

  231. Kim Y, Cook S, Choulis SA, Nelson J, Durrant JR, Bradley DC (2005) Synth Met 152:105

    Google Scholar 

  232. Beek WJE, Wienk MM, Janssen RA (2004) Adv Mater 16:1009

    Google Scholar 

  233. Shon JH, Dodabalapur A, Bao Z, Kloe C, Schenker G, Batlogg B (2001) Nature 410:189

    Google Scholar 

  234. Spannggasrd H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125

    Google Scholar 

  235. Grimsdale AC, Mullen K (2006) Adv Polym Sci 199:1

    Google Scholar 

  236. Kim DY, Cho HN, Kim CY (2000) Prog Polym Sci 25:1089

    Google Scholar 

  237. Ho PKH, Friend RH (2002) J Chem Phys 116:6782

    Google Scholar 

  238. Estrada M, Mejia I, Cerdeira A, Iniguez B (2008) Solid State Electron 52:53

    Google Scholar 

  239. Estrada M, Mejia I, Cerdeira A, Pallares J, Marsal LF, Iniguez B (2008) Solid State Electron 52:787

    Google Scholar 

  240. Werzer O, Matoy K, Strohriegl P, Resel R (2007) Thin Solid Films 515:5601

    Google Scholar 

  241. Cotts DB, Reyes Z (1987) Electrically conductive organic polymers for advanced applications. SRI International, Menlo Park, CA

    Google Scholar 

  242. Bertho S, Haeldermans I, Swinnen A, Moons W, Martens T, Lutsen L, Vanderzande D, Manca J, Senes A, Bonfiglio A (2007) Sol Energy Mater Sol Cells 91:385

    Google Scholar 

  243. Ghosh M, Barman A, De SK, Chatterjee S (1998) Synt Met 97:23

    Google Scholar 

  244. Mo TC, Wang HW, Chen SY, Yeh YC (2008) Ceram Int 34:1767

    Google Scholar 

  245. Ahlskog M, Reghu M, Noguchi T, Ohnishi T (1997) Synt Met 89:11

    Google Scholar 

  246. Bhatia V, Gupta D, Kabra D, Narayan KS (2007) J Mater Sci Mater Electron 18:925

    Google Scholar 

  247. Roncali J (1997) Chem Rev 97:173

    Google Scholar 

  248. McCullough RD (1998) Adv Mater 10:9

    Google Scholar 

  249. Tan Z, Zhou E, Yang Y, He Y, Yang C, Li Y (2007) Eur Polym J 43:855

    Google Scholar 

  250. Ji JS, Lin YJ, Lu HP, Wang L, Rwei SP (2006) Thin Solids Film 511–512:182

    Google Scholar 

  251. Vu QT, Pavlik M, Hebestreit N, Rammelt U, Plieth W, Pfleger J (2005) React Funct Polym 65:69

    Google Scholar 

  252. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2427

    Google Scholar 

  253. Cui Y, Duan XF, Hu JT, Lieber CM (2000) J Phys Chem 104:5213

    Google Scholar 

  254. Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KW (2003) Phys Rev B 67:115326

    Google Scholar 

  255. Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Adv Funct Mater 13:73

    Google Scholar 

  256. Huynh WU, Peng X, Alivisatos AP (1999) Adv Mater 11:923

    Google Scholar 

  257. Vidya V, Ambily S, Narang SN, Major S, Talwar SS (2002) Colloids Surf 198:383

    Google Scholar 

  258. Pradhan B, Batabyal SK, Pal A (2006) J Appl Phys Lett 88:093106

    Google Scholar 

  259. Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:112

    Google Scholar 

  260. Parke ID (1994) J Appl Phys 75:1656

    Google Scholar 

  261. Kymakis E, Alexandrou I, Amaratunga GAJ (2003) J Appl Phys 93:1764

    Google Scholar 

  262. McCarthy B, Coleman JN, Curran SA, Dalton AB, Davey AP, Konya Z, Fonseca A, Nagy JB, Blau WJ (2000) J Mater Sci Lett 19:2239

    Google Scholar 

  263. Berson S, Bettignies R, Bailly S, Guillerez S (2007) Adv Funct Mater 17:1377

    Google Scholar 

  264. Zhang Y, Wada T, Sasabe H (1998) J Mat Chem 8:809

    Google Scholar 

  265. Kippelen B, Peyghambarian N (2003) Adv Polym Sci 161:87

    Google Scholar 

  266. Pielichowski J, Bogdal D (2004) Nonlinear Opt Quantum Opt 32:59

    Google Scholar 

  267. Winiarz JG, Zhang L, Lal M, Friend CS, Prasad PN (1999) Chem Phys 245:417

    Google Scholar 

  268. Yu W, Xu Z, Teng F, Yang S, Hou Y, Qian L, Qu C, Quan S, Xu X (2005) Phys Lett A 338:402

    Google Scholar 

  269. Yang S, Jiang Y, Teng F, Xu Z, Hou Y, Xu X (2006) Solid State Commun 139:415

    Google Scholar 

  270. Jiang Y, Yang S, Teng F, Xu Z, Hou Y, Xu X (2007) J Lumin 122:617

    Google Scholar 

  271. Horii Y, Kitagawa M, Taneoka H, Kusano H, Murakami T, Hino Y, Kobayashi H (2001) Mater Sci Eng B 85:92

    Google Scholar 

  272. Kawakami S, Kitagawa M, Kusano H, Morita D, Horii Y, Hirooka Y, Hatano K, Sawada T, Tsushima T, Kobayashi H (2000) Thin Solid Films 363:17

    Google Scholar 

  273. Xi H, Qian X, Yin J, Bian L, He R, Zhu Z (2003) Mater Lett 57:2657

    Google Scholar 

  274. Bogdal D, Prociak A (2007) Microwave-enhanced polymer chemistry and technology. Blackwell-Wiley, Oxford

    Google Scholar 

  275. He R, Qian X, Yin J, Bian L, Xi H, Zhu Z (2003) Mater Lett 57:1351

    Google Scholar 

  276. Cheng J, Wang S, Li XY, Yan Y, Yang S, Yang CL, Wang JN, Ge WK (2001) Chem Phys Lett 333:375

    Google Scholar 

  277. Gao Y, Liang C, Tang A, Teng F, Li D, Deng Z, Huang S (2007) J Lumin 122:646

    Google Scholar 

  278. Zhang T, Xu Z, Qian L, Tao DL, Teng F, Xu XR (2006) Opt Mater 29:216

    Google Scholar 

  279. Wu HX, Qiu XQ, Cai RF, Qian SX (2007) App Surf Sci 253:5122

    Google Scholar 

  280. Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D (2002) Chem Phys Lett 364:196

    Google Scholar 

  281. Qian J, Qian S, Cai Z (1999) Solid State Commun 109:371

    Google Scholar 

  282. Wang D, Ke G, Qian S (1995) Phys Lett 12:717

    Google Scholar 

  283. Park JH, Park OO, Kim J, Yu JW, Kim JK, Kim YC (2004) Curr Appl Phys 4:659

    Google Scholar 

  284. Kim JY, Kim M, Kim H, Joo J, Choi JH (2002) Opt Mater 21:147

    Google Scholar 

  285. Kim JY, Kim ES, Choi JH (2002) J Appl Phys 91:1944

    Google Scholar 

  286. Wang G, Qian S, Xu J, Wang W, Liu X, Lu X, Li F (2000) Physica B 279:116

    Google Scholar 

  287. Gurunathan K, Vadivel Murugan A, Marimuthu R, Mulik UP, Amalnerkar DP (1999) Mater Chem Phys 61:173

    Google Scholar 

  288. Peres LO, Varela H, Garcia JR, Fernandes MR, Torresi RM, Nart FC, Gruber J (2001) Synth Met 118:65

    Google Scholar 

  289. Xin Y, Huang Z, Chen J, Wang C, Tong Y, Liu S (2008) Mater Lett 62:991

    Google Scholar 

  290. Yang BD, Yoon KH, Chung KW (2004) Synth Met 143:25

    Google Scholar 

  291. Salafsky JS, Lubberhuizen WH, Schropp REI (1998) Chem Phys Lett 290:297

    Google Scholar 

  292. Zhang J, Wang B, Ju X, Liu T, Hu T (2001) Polymer 42:3697

    Google Scholar 

  293. Zhang J, Ju X, Wang B, Li Q, Liu T, Hu T (2001) Synth Met 118:181

    Google Scholar 

  294. Yang SH, Nguyen TP, Rendu PL, Hsu CS (2005) Composites A 36:509

    Google Scholar 

  295. Sirimanne PM, Premalal EVA, Pitigala PKDDP, Tennakone K (2006) Sol Energy Mater Sol Cells

    Google Scholar 

  296. Su SJ, Kuramoto N (2000) Synth Met 108:121

    Google Scholar 

  297. Tang A, Teng F, Jin H, Gao Y, Hou Y, Liang C, Wang Y (2007) Mater Lett 61:2178

    Google Scholar 

  298. Taylor RM, Church KH, Sluch MI (2007) Displays 28:92

    Google Scholar 

  299. Gao M, Richter B, Kirsein S (1999) Synth Met 102:1213

    Google Scholar 

  300. Chen Y, Midorikawa T, Bai J, Liu Y, Araki Y, Ito O (2005) Polymer 46:9803

    Google Scholar 

  301. Gao J, Hide F, Wang H (1997) Synth Met 84:979

    Google Scholar 

  302. Gospodinova N, Terlemezyan (1998) Prog Polym Sci 23:1443

    Google Scholar 

  303. Zhang D, Wang Y (2006) Mater Sci Eng B 134:9

    Google Scholar 

  304. Somani PR (2002) Mater Chem Phys 77:81

    Google Scholar 

  305. Araujo WS, Margarit ICP, Ferreira M, Mattos OR, Neto PL (2001) Electrochim Acta 46:1307

    Google Scholar 

  306. Vaschetto ME, Monkman AP, Springborg M (1999) J Mol Struct 468:181

    Google Scholar 

  307. Palaniappan S, Amarnath CA (2006) React Funct Polym 66:1741

    Google Scholar 

  308. Zhou S, Wu T, Kan J (2007) Eur Polym J 43:395

    Google Scholar 

  309. Yoshikawa H, Hino T, Kuramoto N (2006) Synth Met 156:1187

    Google Scholar 

  310. Troitsky VI, Berzina TS, Fontana MP (2002) Synth Met 129:39

    Google Scholar 

  311. Malinauskas A (2001) Polymer 42:3957

    Google Scholar 

  312. Goel S, Gupta A, Singh KP, Mehrotra R, Kandpal HC (2007) Mater Sci Eng A 443:71

    Google Scholar 

  313. Huang JX, Moore JA, Acquaye JH, Kaner RB (2005) Macromolecules 38:317

    Google Scholar 

  314. Liao C, Gu M (2002) Thin Solid Films 408:37

    Google Scholar 

  315. Paterno LG, Manolache S, Denes F (2002) Synth Met 130:85

    Google Scholar 

  316. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Polymer 47:7361

    Google Scholar 

  317. Tai H, Jiang Y, Xie G, Yu G, Chen X (2007) Sens Actuators B 125:644

    Google Scholar 

  318. Sathiyanarayanan S, Syed Azim S, Venkatachari G (2007) Prog Org Coat 59:291

    Google Scholar 

  319. Li X, Wang G, Li X, Lu D (2004) Appl Surf Sci 229:395

    Google Scholar 

  320. Xiong S, Wang Q, Chen Y (2007) Mater Chem Phys 103:450

    Google Scholar 

  321. Yavuz AG, Gok A (2007) Synth Met 157:235

    Google Scholar 

  322. Yan B, Chen D, Jiao X (2004) Mater Res Bull 39:1655

    Google Scholar 

  323. Khanna PK, Kulkarni MV, Singh N, Lonkar SP, Subbarao VVVS, Viswanath AK (2006) Mater Chem Phys 95:24

    Google Scholar 

  324. Khanna PK, Lonkar SP, Subbarao VVVS, Jun KW (2004) 87:49

    Google Scholar 

  325. Lee KP, Gopalan AI, Santhosh P, Lee SH, Nho YC (2007) Compos Sci Technol 67:811

    Google Scholar 

  326. Long Y, Chen Z, Duvail JL, Zhang Z, Wan M (2005) Physica B 370:121

    Google Scholar 

  327. Kaushik D, Sharma M, Singh RR, Gupta DK, Pandey RK (2006) Mater Lett 60:2994

    Google Scholar 

  328. He Y (2004) Powder Technol 147:59

    Google Scholar 

  329. Wu TM, Lin YW (2006) Polymer 47:3576

    Google Scholar 

  330. Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Polymer 47:5715

    Google Scholar 

  331. Mottaghitalb V, Xi B, Spinks GM, Wallace GG (2006) Synth Met 156:796

    Google Scholar 

  332. Guo M, Chen J, Li J, Tao B, Yao S (2005) Anal Chim Acta 532:71

    Google Scholar 

  333. Zhou Y, He B, Zhou W, Huang J, Li X, Wu B, Li H (2004) Electrochim Acta 49:257

    Google Scholar 

  334. Yu Y, Che B, Si Z, Li L, Chen W, Xue G (2005) Synth Met 150:271

    Google Scholar 

  335. Qiao Y, Li CM, Bao SJ, Bao QL (2007) J Power Sources 170:79

    Google Scholar 

  336. Gupta V, Miura N (2006) Electrochim Acta 52:1721

    Google Scholar 

  337. Gupta V, Miura N (2006) J Power Sources 157:616

    Google Scholar 

  338. Baibarac M, Gomez-Romero P, Lira-Cantu M, Casan-Pastor N, Mestres N, Lefrant S (2006) Eur Polym J 42:2302

    Google Scholar 

  339. Baibarac M, Lira-Cantu M, Oro Sol J, Baltog I, Casan-Pastor N, Gomez-Romero P (2007) Compos Sci Technol 67:2556 Editor: K. Dušek

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Matras-Postolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Matras-Postolek, K., Bogdal, D. (2010). Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application. In: Dusek, K., Joanny, JF. (eds) Polymer Characterization. Advances in Polymer Science, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_49

Download citation

Publish with us

Policies and ethics