Skip to main content

Layered Systems Under Shear Flow

  • Chapter
  • First Online:
Book cover Complex Macromolecular Systems I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 227))

Abstract

We discuss and review a generalization of the usual hydrodynamic description of smectic A liquid crystals motivated by the experimentally observed shear-induced destabilization and reorientation of smectic A like systems. We include both the smectic layering (via the layer displacement u and the layer normal \(\hat{p}\)) and the director \(\hat{n}\) of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in non equilibrium situations. In a homeotropically aligned sample the nematic director couples to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between \(\hat{n}\) and \(\hat{p}\), which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers with a wave vector parallel to the vorticity direction of the shear flow. We include the couplings of the velocity field with the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of the magnitude of various material parameters on the instability. Comparing our results to available experimental results and molecular dynamic simulations, we find good qualitative agreement for the first instability. In addition, we discuss pathways to higher instabilities leading to the formation of onions (multilamellar vesicles) via cylindrical structures and/or the break-up of layers via large amplitude undulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta VK, Krishnamoorti R, Chen Z-R, Kornfield JA, Smith SD, Satkowski M, Grothaus JT (1996) Macromolecules 29:75

    Google Scholar 

  2. Wiesner U (1997) Macromol Chem Phys 198:3319

    Article  CAS  Google Scholar 

  3. Laurer JH, Scott Pinheiro B, Polis DL, Winey KI (1999) Macromolecules 32:4999

    Article  CAS  Google Scholar 

  4. Zryd JL, Burghardt WR (1998) Macromolecules 31:3656

    Article  CAS  Google Scholar 

  5. Leist H, Maring D, Thurn-Albrecht T, Wiesner U (1999) J Chem Phys 110:8225

    Article  CAS  Google Scholar 

  6. Polis DL, Smith S, Terrill NJ, Ryan AJ, Morse DC, Winey KI (1999) Macromolecules 32:4668

    Article  CAS  Google Scholar 

  7. Winey KI, Patel SS, Larson RG, Watanabe H (1993) Macromolecules 26: 2542

    Article  CAS  Google Scholar 

  8. Winey KI, Patel SS, Larson RG, Watanabe H (1993) Macromolecules 26:4373

    Article  CAS  Google Scholar 

  9. Zhang Y, Wiesner U, Spiess HW (1995) Macromolecules 28:778

    Article  CAS  Google Scholar 

  10. Horn RG, Kleman M (1978) Ann Phys (France) 3:229

    CAS  Google Scholar 

  11. Safinya CR, Sirota EB, Plano RJ (1991) Phys Rev Lett 66:1986

    Article  Google Scholar 

  12. Panizza P, Archambault P, Roux D (1995) J Phys II France 5:303

    Article  CAS  Google Scholar 

  13. Diat O, Roux D (1993) J Phys II France 3:9

    Article  CAS  Google Scholar 

  14. Diat O, Roux D, Nallet F (1993) J Phys II France 3:1427

    Article  CAS  Google Scholar 

  15. Diat O, Roux D, Nallet F (1995) Phys Rev E 51:3296

    Article  CAS  Google Scholar 

  16. Panizza P, Colin A, Coulon C, Roux D (1998) Eur Phys J B 4:65

    Article  CAS  Google Scholar 

  17. Müller S, Börschig C, Gronski W, Schmidt C, Roux D (1999) Langmuir 15:7558 (see also Müller S (1998) Struktur und Orientierung lyotroper Flüssigkristalle unter Scherung. Dissertation, Universität Freiburg)

    Google Scholar 

  18. Schmidt G, Muller S, Schmidt C, Richtering W (1999) Rheol Acta 38:486

    Article  CAS  Google Scholar 

  19. Escalante JI, Hoffmann H (2000) Rheol Acta 39:209

    Article  CAS  Google Scholar 

  20. Koschoreck S, Fujii S, Richtering W (2008) Prog Theor Phys Suppl 175:154

    Article  CAS  Google Scholar 

  21. Koschoreck S, Fujii S, Lindner P, Richtering W (2009) Rheol Acta 48:231

    Article  CAS  Google Scholar 

  22. Zipfel J, Lindner P, Tsianou M, Alexandridis P, Richtering W (1999) Langmuir 15:2599

    Article  CAS  Google Scholar 

  23. Noirez L, Pégy G, Lapp A (1997a) Physica B 234/236:252

    Article  Google Scholar 

  24. Noirez L, Lapp A (1997b) Phys Rev Lett 78:70 (and references therein)

    Article  CAS  Google Scholar 

  25. Noirez L (2000) Phys Rev Lett 84:2164

    Article  CAS  Google Scholar 

  26. Wang H, Newstein MC, Krishnan A, Balsara NP, Garetz BA, Hammouda B, Krishnamorrti R (1999) Macromolecules 32:3695

    Article  CAS  Google Scholar 

  27. De Gennes PG (1972) Solid State Commun 10:753

    Article  Google Scholar 

  28. Martin PC, Parodi O, Pershan PS (1972) Phys Rev A 6:2401

    Article  CAS  Google Scholar 

  29. De Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon, Oxford

    Google Scholar 

  30. Pleiner H, Brand HR (1996) Hydrodynamics and electrohydrodynamics of liquid crystals. Chapter 2. In: Buka A, Kramer L (eds) Pattern formation in liquid crystals. Springer, NY

    Google Scholar 

  31. De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  32. Forster D (1975) Hydrodynamic fluctuations, broken symmetries, and correlation functions. W.A. Benjamin, Massachusetts

    Google Scholar 

  33. Litster JD, Als-Nielsen J, Birgeneau RJ, Dana SS, Davidov D, Garcia-Golding F, Kaplan M, Safinya CR, Schaetzing R (1979) J Phys (Paris) Coll C3 40:339 (and references therein)

    Article  Google Scholar 

  34. Clark NA, Meyer RB (1973) Appl Phys Lett 22:493

    Article  CAS  Google Scholar 

  35. Delaye M, Ribotta R, Durand G (1973) Phys Lett 44A:139

    Google Scholar 

  36. Oswald P, Ben-Abraham SI (1982) J Phys (Paris) 43:1193

    Article  CAS  Google Scholar 

  37. Wunenburger AS, Colin A, Colin T, Roux D (2000) Eur Phys J E 2:277

    Article  CAS  Google Scholar 

  38. Bruinsma R, Rabin Y (1992) Phys Rev E 45:994

    Article  Google Scholar 

  39. Williams DRM, MacKintosh FC (1994) Macromolecules 27:7677

    Article  CAS  Google Scholar 

  40. Zilman AG, Granek R (1999) Eur Phys J B 11:593

    Article  CAS  Google Scholar 

  41. Marlow SW, Olmsted PD (2002) Eur Phys J E 8:485

    CAS  Google Scholar 

  42. Auernhammer GK, Brand HR, Pleiner H (2000) Rheol Acta 39:215

    Article  CAS  Google Scholar 

  43. Auernhammer GK, Brand HR, Pleiner H (2002) Phys Rev E66:061707; (2005) Phys Rev E71:049901

    Google Scholar 

  44. De Gennes PG (1973) Mol Cryst Liq Cryst 21:49

    Article  Google Scholar 

  45. Garoff S, Meyer RB (1977) Phys Rev Lett 38:848

    Article  CAS  Google Scholar 

  46. Forster D, Lubensky TC, Martin PC, Swift J, Pershan PS (1971) Phys Rev Lett 26:1016

    Article  CAS  Google Scholar 

  47. Liu M (1979) Phys Rev A19:2090

    Google Scholar 

  48. Brand HR, Kawasaki K (1986) J Phys C 19:937

    Article  Google Scholar 

  49. Marignan J, Parodi O, Dubois-Vioeltte E (1983) J Phys (Paris) 44:263

    Article  CAS  Google Scholar 

  50. Pleiner H, Brand HR (1999) Physica A 265:62

    Article  CAS  Google Scholar 

  51. Graf HH, Kneppe H, Schneider F (1992) Mol Phys 77:521

    Article  CAS  Google Scholar 

  52. Soddemann T, Duenweg B, Kremer K (2001) Eur Phys J E 6:409

    Article  CAS  Google Scholar 

  53. Soddemann T, Auernhammer GK, Guo HX, Duenweg B, Kremer K (2004) Eur Phys J E 13:141

    Article  CAS  Google Scholar 

  54. Auernhammer GK (2004) PhD Thesis, University of Bayreuth

    Google Scholar 

  55. Zipfel J, Nettesheim F, Lindner P, Le TD, Olsson U, Richtering W (2001) Europhys Lett 53:335

    Article  CAS  Google Scholar 

  56. Helfrich W (1978) Z Naturforsch 33a:305

    CAS  Google Scholar 

  57. Nallet F, Roux D, Prost J (1989) J Phys France 50:3147

    Article  CAS  Google Scholar 

  58. Von Berlepsch H, de Vries R (2000) Eur Phys J E 1:141

    Article  Google Scholar 

  59. Johnson D, Saupe A (1977) Phys Rev A15:2079

    Google Scholar 

  60. Kumar S (1981) Phys Rev A23:3207

    Google Scholar 

  61. Ribotta R, Durand G (1977) J Phys France 38:179

    Article  CAS  Google Scholar 

  62. Nettesheim F, Zipfel J, Olsson U, Renth F, Lindner P, Richtering W (2003) Langmuir 19:3603

    Article  CAS  Google Scholar 

  63. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  64. Fletcher CAJ (1988) Computational techniques for fluid dynamics, vol II. Springer, Berlin

    Book  Google Scholar 

  65. Schlüter A, Lortz D, Busse FH (1965) J Fluid Mech 23:129

    Article  Google Scholar 

  66. Newell AC, Whitehead JA (1969) J Fluid Mech 38:279

    Article  Google Scholar 

  67. Cross MC, Hohenberg PC (1993) Rev Mod Phys 65:851

    Article  CAS  Google Scholar 

  68. Buka A, Kramer L (eds) (1996) Pattern formation in liquid crystals. Springer, Berlin

    Google Scholar 

  69. Busse FH, Müller SC (eds) (1998) Evolution of spontaneous structures in dissipative continuous systems. Springer, Berlin

    Google Scholar 

  70. Pleiner H, Brand HR (1985) J Phys (Paris) 46:615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Guenter Auernhammer, Harald Pleiner, and Walter Richtering for interesting and stimulating discussions. Partial support of this work by the Alexander von Humboldt Foundation (for D.S.) and through SFB 481 ‘Komplexe Makromolekül- und Hybridsysteme in inneren und äußeren Feldern’ of the Deutsche Forschungsgemeinschaft (for H.R.B.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut R. Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Svenšek, D., Brand, H.R. (2010). Layered Systems Under Shear Flow. In: Müller, A., Schmidt, HW. (eds) Complex Macromolecular Systems I. Advances in Polymer Science, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_37

Download citation

Publish with us

Policies and ethics