Skip to main content

Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer

  • Chapter
  • First Online:
Protein Ligation and Total Synthesis I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 362))

Abstract

The utility of native chemical ligation (NCL) in the solution or solid phase synthesis of peptides, cyclic peptides, glycopeptides, and neoglycoconjugates is reviewed. In addition, the mechanistic details of inter- or intra-molecular NCLs are discussed from experimental and computational points of view.

✠Katritzky was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    CAS  Google Scholar 

  2. Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47:10030–10074

    CAS  Google Scholar 

  3. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351

    CAS  Google Scholar 

  4. Boltje TJ, Buskas T, Boons GJ (2009) Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat Chem 1:611–622

    CAS  Google Scholar 

  5. Wang P, Danishefsky SJ (2010) Promising general solution to the problem of ligating peptides and glycopeptides. J Am Chem Soc 132:17045–17051

    CAS  Google Scholar 

  6. Wieland T, Bokelmann E, Bauer L, Lang HU, Lau H (1953) Über Peptidsynthesen. 8. Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Liebigs Ann Chem 583:129–149

    CAS  Google Scholar 

  7. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    CAS  Google Scholar 

  8. Kemp DS, Buckler DR (1991) Highly enantioselective amide ligation by prior thiol capture. Tetrahedron Lett 32:3013–3016

    CAS  Google Scholar 

  9. Beligere GS, Dawson PE (1999) Conformationally assisted protein ligation using C-terminal thioester peptides. J Am Chem Soc 121:6332–6333

    CAS  Google Scholar 

  10. Kohn M, Breinbauer R (2004) The Staudinger ligation – a gift to chemical biology. Angew Chem Int Ed 43:3106–3116

    Google Scholar 

  11. Millevoi S, Chiaraluce R, Consalvi V, Giangiacomo L, Pasquo A, Linda Britton K, Stillman TJ, Rice DW, Engel PC (1998) A monomeric mutant of Clostridium symbiosum glutamate dehydrogenase: comparison with a structured monomeric intermediate obtained during refolding. Protein Sci 7:966–974

    CAS  Google Scholar 

  12. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    CAS  Google Scholar 

  13. Dawson PE (2011) Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr J Chem 51:862–867

    CAS  Google Scholar 

  14. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252

    CAS  Google Scholar 

  15. Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. J Am Chem Soc 129:10064–10065

    CAS  Google Scholar 

  16. Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810

    CAS  Google Scholar 

  17. Kumar KSA, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A (2009) Highly efficient and chemoselective peptide ubiquitylation. Angew Chem Int Ed 48:8090–8094

    Google Scholar 

  18. Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2009) Dual native chemical ligation at lysine. J Am Chem Soc 131:13592–13593

    CAS  Google Scholar 

  19. Chen J, Wang P, Zhu JL, Wan Q, Danishefsky SJ (2010) A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 66:2277–2283

    CAS  Google Scholar 

  20. Harpaz Z, Siman P, Kumar KSA, Brik A (2010) Protein synthesis assisted by native chemical ligation at leucine. ChemBioChem 11:1232–1235

    CAS  Google Scholar 

  21. Shang SY, Tan ZP, Dong SW, Danishefsky SJ (2011) An advance in proline ligation. J Am Chem Soc 133:10784–10786

    CAS  Google Scholar 

  22. Siman P, Karthikeyan SV, Brik A (2012) Native chemical ligation at glutamine. Org Lett 14:1520–1523

    CAS  Google Scholar 

  23. Malins LR, Cergol KM, Payne RJ (2013) Peptide ligation-desulfurization chemistry at arginine. ChemBioChem 14:559–563

    CAS  Google Scholar 

  24. He Q-Q, Fang G-M, Liu L (2013) Design of thiol-containing amino acids for native chemical ligation at non-Cys sites. Chin Chem Lett 24:265–269

    CAS  Google Scholar 

  25. Veber D, Milkowski J, Varga S, Denkewalter R, Hirschmann R (1972) Acetamidomethyl. A novel thiol protecting group for cysteine. J Am Chem Soc 94:5456–5461

    CAS  Google Scholar 

  26. Pentelute BL, Kent SBH (2007) Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org Lett 9:687–690

    CAS  Google Scholar 

  27. Dawson PE, Churchill MJ, Ghadiri MR, Kent SBH (1997) Modulation of reactivity in native chemical ligation through the use of thiol additives. J Am Chem Soc 119:4325–4329

    CAS  Google Scholar 

  28. Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646

    CAS  Google Scholar 

  29. Kent SBH (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989

    CAS  Google Scholar 

  30. Offer J (2010) Native chemical ligation with N α acyl transfer auxiliaries. Biopolymers (Pept Sci) 94:530–541

    CAS  Google Scholar 

  31. Payne RJ, Wong C-H (2010) Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun 46:21–43

    CAS  Google Scholar 

  32. Macmillan D, De Cecco M, Reynolds NL, Santos LFA, Barran PE, Dorin JR (2011) Synthesis of cyclic peptides through an intramolecular amide bond rearrangement. ChemBioChem 12:2133–2136

    CAS  Google Scholar 

  33. Palomo JM (2014) Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv 4:32658–32672

    CAS  Google Scholar 

  34. Zhang LS, Tam JP (1999) Lactone and lactam library synthesis by silver ion-assisted orthogonal cyclization of unprotected peptides. J Am Chem Soc 121:3311–3320

    CAS  Google Scholar 

  35. Clippingdale AB, Barrow CJ, Wade JD (2000) Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation. J Pept Sci 6:225–234

    CAS  Google Scholar 

  36. Mende F, Seitz O (2011) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angew Chem Int Ed 50:1232–1240

    CAS  Google Scholar 

  37. Raibaut L, Adihou H, Desmet R, Delmas AF, Aucagne V, Melnyk O (2013) Highly efficient solid phase synthesis of large polypeptides by iterative ligations of bis(2-sulfanylethyl)amido (SEA) peptide segments. Chem Sci 4:4061–4066

    CAS  Google Scholar 

  38. Boll E, Drobecq H, Ollivier N, Raibaut L, Desmet R, Vicogne J, Melnyk O (2014) A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chem Sci 5:2017–2022

    CAS  Google Scholar 

  39. Panda SS, Hall CD, Oliferenko AA, Katritzky AR (2014) Traceless chemical ligation from S-, O-, and N-acyl isopeptides. Acc Chem Res 47:1076–1087

    CAS  Google Scholar 

  40. Katritzky AR, Abo-Dya NE, Tala SR, Abdel-Samii ZK (2010) The chemical ligation of selectively S-acylated cysteine peptides to form native peptides via 5-, 11- and 14-membered cyclic transition states. Org Biomol Chem 8:2316–2319

    CAS  Google Scholar 

  41. Katritzky AR, Tala SR, Abo-Dya NE, Ibrahim TS, El-Feky SA, Gyanda K, Pandya KM (2011) Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states. J Org Chem 76:85–96

    CAS  Google Scholar 

  42. Panda SS, El-Nachef C, Bajaj K, Al-Youbi AO, Oliferenko A, Katritzky AR (2012) Study of chemical ligation via 17-, 18- and 19-membered cyclic transition states. Chem Biol Drug Des 80:821–827

    CAS  Google Scholar 

  43. Ha K, Chahar M, Monbaliu JCM, Todadze E, Hansen FK, Oliferenko AA, Ocampo CE, Leino D, Lillicotch A, Stevens CV, Katritzky AR (2012) Long-range intramolecular S→N acyl migration: a study of the formation of native peptide analogues via 13-, 15-, and 16-membered cyclic transition states. J Org Chem 77:2637–2648

    CAS  Google Scholar 

  44. Bol’shakov O, Kovacs J, Chahar M, Ha K, Khelashvili L, Katritzky AR (2012) S- to N-acyl transfer in S-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states. J Pept Sci 18:704–709

    Google Scholar 

  45. El Khatib M, Elagawany M, Jabeen F, Todadze E, Bol’shakov O, Oliferenko A, Khelashvili L, El-Feky SA, Asiri A, Katritzky AR (2012) Traceless chemical ligations from O-acyl serine sites. Org Biomol Chem 10:4836–4838

    Google Scholar 

  46. Panda SS, Elagawany M, Marwani HM, Caliskan E, El Khatib M, Oliferenko A, Almary KA, Katritzky AR (2014) Chemical ligation from O-acyl isopeptides via 8- and 11-membered cyclic transition states. Arkivoc iv:91–106

    Google Scholar 

  47. Popov V, Panda SS, Katritzky AR (2013) Ligations from tyrosine isopeptides via 12-to 19-membered cyclic transition states. J Org Chem 78:7455–7461

    CAS  Google Scholar 

  48. Popov V, Panda SS, Katritzky AR (2013) Ligations of N-acyl tryptophan units to give native peptides via 7-, 10-, 11- and 12-membered cyclic transition states. Org Biomol Chem 11:1594–1597

    CAS  Google Scholar 

  49. Gause GF, Brazhnikova MG (1944) Gramicidin S and its use in the treatment of infected wounds. Nature 154:703–703

    Google Scholar 

  50. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524

    CAS  Google Scholar 

  51. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–999

    CAS  Google Scholar 

  52. Craik DJ (2006) Seamless proteins tie up their loose ends. Science 311:1563–1564

    Google Scholar 

  53. Hamada Y, Shioiri T (2005) Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev 105:4441–4482

    CAS  Google Scholar 

  54. Daly NL, Craik DJ (2011) Bioactive cystine knot proteins. Curr Opin Chem Biol 15:362–368

    CAS  Google Scholar 

  55. Sewald N, Jakube H-D (2009) Peptides: chemistry and biology, 2nd edn. Wiley, Weinheim

    Google Scholar 

  56. Kates SA, Solé NA, Albericio F, Barany G (1994) In: Basava C, Anantharamaiah GM (eds) Peptides: design, synthesis and biological activity. Birkhäuser, Boston, pp 39–58

    Google Scholar 

  57. Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9:471–501

    CAS  Google Scholar 

  58. Gilon C, Mang C, Lohof E, Friedler A, Kessler H (2002) In: Goodman M, Felix AM, Moroder L, Toniolo C (eds) Synthesis of peptides and peptidomimetics (Houben-Weyl E22b: Methods of organic chemistry). Georg Thieme, Stuttgart/New York

    Google Scholar 

  59. Camarero JA, Muir TW (1997) Chemoselective backbone cyclization of unprotected peptides. Chem Commun 1369–1370

    Google Scholar 

  60. Shao Y, Lu WY, Kent SBH (1998) A novel method to synthesize cyclic peptides. Tetrahedron Lett 39:3911–3914

    CAS  Google Scholar 

  61. Clark RJ, Craik DJ (2012) In: Wittrup KD, Gregory LV (eds) Methods enzymol. Academic Press, Maryland Heights, pp 57–74

    Google Scholar 

  62. Zhang LS, Tam JP (1997) Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers. J Am Chem Soc 119:2363–2370

    CAS  Google Scholar 

  63. Kleineweischede R, Hackenberger CPR (2008) Chemoselective peptide cyclization by traceless Staudinger ligation. Angew Chem Int Ed 47:5984–5988

    CAS  Google Scholar 

  64. Zheng H, Wang F, Wang Q, Gao J (2011) Cofactor-free detection of phosphatidylserine with cyclic peptides mimicking lactadherin. J Am Chem Soc 133:15280–15283

    CAS  Google Scholar 

  65. Hosseini AS, Zheng H, Gao J (2014) Understanding lipid recognition by protein-mimicking cyclic peptides. Tetrahedron 70:7632–7638

    CAS  Google Scholar 

  66. Fang G-M, Li Y-M, Shen F, Huang Y-C, Li J-B, Lin Y, Cui H-K, Liu L (2011) Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed 50:7645–7649

    CAS  Google Scholar 

  67. Fang G-M, Wang J-X, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed 51:10347–10350

    CAS  Google Scholar 

  68. Zheng J-S, Tang S, Guo Y, Chang H-N, Liu L (2012) Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides. ChemBioChem 13:542–546

    CAS  Google Scholar 

  69. Tulla-Puche J, Barany G (2004) On-resin native chemical ligation for cyclic peptide synthesis. J Org Chem 69:4101–4107

    CAS  Google Scholar 

  70. Fukuzumi T, Ju L, Bode JW (2012) Chemoselective cyclization of unprotected linear peptides by α-ketoacid-hydroxylamine amide-ligation. Org Biomol Chem 10:5837–5844

    CAS  Google Scholar 

  71. van de Langemheen H, Brouwer AJ, Kemmink J, Kruijtzer JAW, Liskamp RMJ (2012) Synthesis of cyclic peptides containing a thioester handle for native chemical ligation. J Org Chem 77:10058–10064

    Google Scholar 

  72. van de Langemheen H, van Hoeke M, Quarles van Ufford HC, Kruijtzer JAW, Liskamp RMJ (2014) Scaffolded multiple cyclic peptide libraries for protein mimics by native chemical ligation. Org Biomol Chem 12:4471–4478

    Google Scholar 

  73. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    CAS  Google Scholar 

  74. Franke R, Hirsch T, Overwin H, Eichler J (2007) Synthetic mimetics of the CD4 binding site of HIV-1 gp120 for the design of immunogens. Angew Chem Int Ed 46:1253–1255

    CAS  Google Scholar 

  75. Chamorro C, Kruijtzer JAW, Farsaraki M, Balzarini J, Liskamp RMJ (2009) A general approach for the non-stop solid phase synthesis of TAC-scaffolded loops towards protein mimics containing discontinuous epitopes. Chem Commun 821–823

    Google Scholar 

  76. Chen JH, Warren JD, Wu B, Chen G, Wan Q, Danishefsky SJ (2006) A route to cyclic peptides and glycopeptides by native chemical ligation using in situ derived thioesters. Tetrahedron Lett 47:1969–1972

    CAS  Google Scholar 

  77. Boll E, Dheur J, Drobecq H, Melnyk O (2012) Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu. Org Lett 14:2222–2225

    CAS  Google Scholar 

  78. Taichi M, Hemu X, Qiu YB, Tam JP (2013) A thioethylalkylamido (TEA) thioester surrogate in the synthesis of a cyclic peptide via a tandem acyl shift. Org Lett 15:2620–2623

    CAS  Google Scholar 

  79. Lukszo J, Patterson D, Albericio F, Kates SA (1996) 3-(1-Piperidinyl)alanine formation during the preparation of C-terminal cysteine peptides with the Fmoc/t-Bu strategy. Lett Pept Sci 3:157–166

    CAS  Google Scholar 

  80. Hemu X, Taichi M, Qiu YB, Liu DX, Tam JP (2013) Biomimetic synthesis of cyclic peptides using novel thioester surrogates. Biopolymers 100:492–501

    CAS  Google Scholar 

  81. Li X, Lam HY, Zhang Y, Chan CK (2010) Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org Lett 12:1724–1727

    CAS  Google Scholar 

  82. Zhang YF, Xu C, Lam HY, Lee CL, Li XC (2013) Protein chemical synthesis by serine and threonine ligation. Proc Natl Acad Sci U S A 110:6657–6662

    CAS  Google Scholar 

  83. Lam HY, Zhang YF, Liu H, Xu JC, Wong CTT, Xu C, Li XC (2013) Total synthesis of daptomycin by cyclization via a chemoselective serine ligation. J Am Chem Soc 135:6272–6279

    CAS  Google Scholar 

  84. Davis BG (2002) Synthesis of glycoproteins. Chem Rev 102:579–602

    CAS  Google Scholar 

  85. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163

    CAS  Google Scholar 

  86. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    CAS  Google Scholar 

  87. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    CAS  Google Scholar 

  88. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation. Potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

    CAS  Google Scholar 

  89. Haase C, Seitz O (2007) In: Wittmann V (ed) Glycopeptides and glycoproteins. Springer, Berlin/Heidelberg, pp 1–36

    Google Scholar 

  90. Unverzagt C, Kajihara Y (2013) Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev 42:4408–4420

    CAS  Google Scholar 

  91. Marcaurelle LA, Bertozzi CR (2002) Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology 12:69r–77r

    CAS  Google Scholar 

  92. Varki A (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126:841–845

    CAS  Google Scholar 

  93. Therkildsen MH, Mandel U, Christensen M, Dabelsteen E (1993) Simple mucin-type Tn and sialosyl-Tn carbohydrate antigens in salivary gland carcinomas. Cancer 72:1147–1154

    CAS  Google Scholar 

  94. Brockhausen I, Yang J-M, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233:607–617

    CAS  Google Scholar 

  95. Hanisch FA (2001) O-Glycosylation of the mucin type. Biol Chem 382:143–149

    CAS  Google Scholar 

  96. Burchell J, Mungul A, Taylor-Papadimitriou J (2001) O-Linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6:355–364

    CAS  Google Scholar 

  97. Larsson JMH, Karlsson H, Crespo JG, Johansson MEV, Eklund L, Sjövall H, Hansson GC (2011) Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 17:2299–2307

    Google Scholar 

  98. Stuchlová Horynová M, Raška M, Clausen H, Novak J (2013) Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 70:829–839

    Google Scholar 

  99. Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F, Hollingsworth MA (2013) Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res 19:1981–1993

    CAS  Google Scholar 

  100. Anish C, Schumann B, Pereira Claney L, Seeberger Peter H (2014) Chemical biology approaches to designing defined carbohydrate vaccines. Chem Biol 21:38–50

    CAS  Google Scholar 

  101. Gaidzik N, Westerlind U, Kunz H (2013) The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem Soc Rev 42:4421–4442

    CAS  Google Scholar 

  102. Kajihara Y, Izumi M, Hirano K, Murase T, Macmillan D, Okamoto R (2011) Elucidating the function of complex-type oligosaccharides by use of chemical synthesis of homogeneous glycoproteins. Isr J Chem 51:917–929

    CAS  Google Scholar 

  103. Galan MC, Benito-Alifonso D, Watt GM (2011) Carbohydrate chemistry in drug discovery. Org Biomol Chem 9:3598–3610

    CAS  Google Scholar 

  104. Ficht S, Payne RJ, Guy RT, Wong C-H (2008) Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies. Chem Eur J 14:3620–3629

    CAS  Google Scholar 

  105. Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–653

    CAS  Google Scholar 

  106. Kajihara Y, Yamamoto N, Okamoto R, Hirano K, Murase T (2010) Chemical synthesis of homogeneous glycopeptides and glycoproteins. Chem Rec 10:80–100

    CAS  Google Scholar 

  107. Hojo H, Katayama H, Nakahara Y (2010) Progress in the ligation chemistry for glycoprotein synthesis. Trends Glycosci Glycotechnol 22:269–279

    CAS  Google Scholar 

  108. Liu L, Hong Z-Y, Wong C-H (2006) Convergent glycopeptide synthesis by traceless Staudinger ligation and enzymatic coupling. ChemBioChem 7:429–432

    CAS  Google Scholar 

  109. Brik A, Yang Y-Y, Ficht S, Wong C-H (2006) Sugar-assisted glycopeptide ligation. J Am Chem Soc 128:5626–5627

    CAS  Google Scholar 

  110. Brik A, Ficht S, Yang Y-Y, Wong C-H (2006) Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J Am Chem Soc 128:15026–15033

    CAS  Google Scholar 

  111. Brik A, Wong C-H (2007) Sugar-assisted ligation for the synthesis of glycopeptides. Chem Eur J 13:5670–5675

    CAS  Google Scholar 

  112. Ficht S, Payne RJ, Brik A, Wong C-H (2007) Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. Angew Chem Int Ed 46:5975–5979

    CAS  Google Scholar 

  113. Yang Y-Y, Ficht S, Brik A, Wong C-H (2007) Sugar-assisted ligation in glycoprotein synthesis. J Am Chem Soc 129:7690–7701

    CAS  Google Scholar 

  114. Payne RJ, Ficht S, Tang S, Brik A, Yang Y-Y, Case DA, Wong C-H (2007) Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J Am Chem Soc 129:13527–13536

    CAS  Google Scholar 

  115. Bennett CS, Dean SM, Payne RJ, Ficht S, Brik A, Wong C-H (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130:11945–11952

    CAS  Google Scholar 

  116. Wang L-X, Amin MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 21:51–66

    Google Scholar 

  117. Westerlind U (2012) Synthetic glycopeptides and glycoproteins with applications in biological research. Beilstein J Org Chem 8:804–818

    CAS  Google Scholar 

  118. Peri F, Nicotra F (2004) Chemoselective ligation in glycochemistry. Chem Commun 623–627

    Google Scholar 

  119. Specker D, Wittmann V (2007) In: Wittmann V (ed) Glycopeptides and glycoproteins. Springer, Berlin/Heidelberg, pp 65–107

    Google Scholar 

  120. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR (1999) Fmoc-based synthesis of peptide-(alpha)thioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J Am Chem Soc 121:11684–11689

    CAS  Google Scholar 

  121. Buskas T, Ingale S, Boons G-J (2006) Glycopeptides as versatile tools for glycobiology. Glycobiology 16:113R–136R

    CAS  Google Scholar 

  122. Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed 51:3567–3572

    CAS  Google Scholar 

  123. Liu L, Bennett CS, Wong CH (2006) Advances in glycoprotein synthesis. Chem Commun 21–33

    Google Scholar 

  124. Hojo H, Nakahara Y (2007) Recent progress in the field of glycopeptide synthesis. Biopolymers 88:308–324

    CAS  Google Scholar 

  125. Monbaliu JCM, Katritzky AR (2012) Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun 48:11601–11622

    CAS  Google Scholar 

  126. Garner J, Jolliffe KA, Harding MM, Payne RJ (2009) Synthesis of homogeneous antifreeze glycopeptides via a ligation-desulfurisation strategy. Chem Commun 6925–6927

    Google Scholar 

  127. Chen J, Wan Q, Yuan Y, Zhu JL, Danishefsky SJ (2008) Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew Chem Int Ed 47:8521–8524

    CAS  Google Scholar 

  128. Moyal T, Hemantha HP, Siman P, Refua M, Brik A (2013) Highly efficient one-pot ligation and desulfurization. Chem Sci 4:2496–2501

    CAS  Google Scholar 

  129. Thompson RE, Liu XY, Alonso-Garcia N, Pereira PJB, Jolliffe KA, Payne RJ (2014) Trifluoroethanethiol: an additive for efficient one-pot peptide ligation-desulfurization chemistry. J Am Chem Soc 136:8161–8164

    CAS  Google Scholar 

  130. Okamoto R, Kajihara Y (2008) Uncovering a latent ligation site for glycopeptide synthesis. Angew Chem Int Ed 47:5402–5406

    CAS  Google Scholar 

  131. Okamoto R, Souma S, Kajihara Y (2009) Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T-N antigens. J Org Chem 74:2494–2501

    CAS  Google Scholar 

  132. Hojo H, Ozawa C, Katayama H, Ueki A, Nakahara Y, Nakahara Y (2010) The mercaptomethyl group facilitates an efficient one-pot ligation at Xaa-Ser/Thr for (glyco)peptide synthesis. Angew Chem Int Ed 49:5318–5321

    CAS  Google Scholar 

  133. Kang J, Macmillan D (2010) Peptide and protein thioester synthesis via N→S acyl transfer. Org Biomol Chem 8:1993–2002

    CAS  Google Scholar 

  134. Macmillan D, Adams A, Premdjee B (2011) Shifting native chemical ligation into reverse through N→S acyl transfer. Isr J Chem 51:885–899

    CAS  Google Scholar 

  135. Ackrill T, Anderson DW, Macmillan D (2010) Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N→S acyl shift. Biopolymers 94:495–503

    CAS  Google Scholar 

  136. Premdjee B, Adams AL, Macmillan D (2011) Native N-glycopeptide thioester synthesis through N→S acyl transfer. Bioorg Med Chem Lett 21:4973–4975

    CAS  Google Scholar 

  137. Hsieh YSY, Wilkinson BL, O’Connell MR, Mackay JP, Matthews JM, Payne RJ (2012) Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants. Org Lett 14:1910–1913

    CAS  Google Scholar 

  138. Macmillan D, Blanc J (2006) A novel neoglycopeptide linkage compatible with native chemical ligation. Org Biomol Chem 4:2847–2850

    CAS  Google Scholar 

  139. Lee DJ, Mandal K, Harris PWR, Brimble MA, Kent SBH (2009) A one-pot approach to neoglycopeptides using orthogonal native chemical ligation and click chemistry. Org Lett 11:5270–5273

    CAS  Google Scholar 

  140. Geiermann AS, Polacek N, Micura R (2011) Native chemical ligation of hydrolysis-resistant 3′-peptidyl-tRNA mimics. J Am Chem Soc 133:19068–19071

    CAS  Google Scholar 

  141. Geiermann AS, Micura R (2012) Selective desulfurization significantly expands sequence variety of 3′-peptidyl-tRNA mimics obtained by native chemical ligation. ChemBioChem 13:1742–1745

    CAS  Google Scholar 

  142. Wang C, Guo Q-X, Fu Y (2011) Theoretical analysis of the detailed mechanism of native chemical ligation reactions. Chem Asian J 6:1241–1251

    CAS  Google Scholar 

  143. Monbaliu JCM, Dive G, Stevens CV, Katritzky AR (2013) Governing parameters of long-range intramolecular S-to-N acyl transfers within (S)-acyl isopeptides. J Chem Theory Comput 9:927–934

    CAS  Google Scholar 

  144. Oliferenko AA, Katritzky AR (2011) Alternating chemical ligation reactivity of S-acyl peptides explained with theory and computations. Org Biomol Chem 9:4756–4759

    CAS  Google Scholar 

  145. Panda SS, Oliferenko AA, Marwani HM, Katritzky AR (2014) Effects of preorganization and hydrogen bonding on intramolecular chemical ligation of (N)- and (O)-acyl isopeptides. Mendeleev Commun 24:75–77

    CAS  Google Scholar 

  146. Biswas S, Kayaleh R, Pillai GG, Seon C, Roberts I, Popov V, Alamry KA, Katritzky AR (2014) Long-range chemical ligation from N→N acyl migrations in tryptophan peptides via cyclic transition states of 10-to 18-members. Chem Eur J 20:8189–8198

    CAS  Google Scholar 

  147. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Florida and The Kenan Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva S. Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panda, S.S., Jones, R.A., Dennis Hall, C., Katritzky, A.R. (2014). Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. In: Liu, L. (eds) Protein Ligation and Total Synthesis I. Topics in Current Chemistry, vol 362. Springer, Cham. https://doi.org/10.1007/128_2014_608

Download citation

Publish with us

Policies and ethics