Skip to main content

Postligation-Desulfurization: A General Approach for Chemical Protein Synthesis

  • Chapter
  • First Online:
Protein Ligation and Total Synthesis II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 363))

Abstract

Native chemical ligation, involving regioselective and chemoselective coupling of two unprotected peptide segments, enabled the synthesis of polypeptide with more than 200 amino acids. However, cysteine was indispensable in this synthetic technique in its initial format, which limited its further application. Thus, considerable effort has been put into breaking the restriction of cysteine-containing ligation. As a consequence, postligation-desulfurization, concerning thiol-mediated ligation followed by desulfurization, was developed. This review describes the development and recent progress on the chemical synthesis of peptides and proteins encompassing postligation-desulfurization at alanine, valine, lysine, threonine, leucine, proline, arginine, aspartic acid, glutamate, phenylalanine, glutamine, and tryptophan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ac:

Acetyl

AFGP:

Antifreeze glycoprotein

Ala:

Alanine

Alloc:

Allyloxycarbonyl

Arg:

Arginine

Asp:

Aspartic acid

Boc:

tert-Butyloxycarbonyl

CXCR:

Chemokine receptor

Cys:

Cysteine

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DIAD:

Diisopropyl azodicarboxylate

DIBAL-H:

Diisobutylaluminum hydride

DIPEA:

Ethyldiisopropylamine

DMAP:

4-Dimethylaminopyridine

DMF:

N,N-Dimethylformamide

DMSO:

Dimethyl sulfoxide

EDC:

N-(3-Dimethylanino propyl)-N′-ethylcarbodiimide

Fmoc:

Fluorenylmethyloxycarbonyl

Gln:

Glutamine

Glu:

Glutamic acid

Gn:

Guanidine

HEPES:

2-[4-(2-Hydroxyethyl)-1-peperazinyl]ethanesulfonic acid

HMDS:

Bis(trimethylsilyl)amide

HOOBt:

Hydroxy-3,4-dihydro-4-oxo-1,2,3-benzotriazine

hPTHrP:

Human parathyroid hormone-related protein

KHMDS:

Potassium 1,1,1,3,3,3-hexamethyldisilazane

LC-MS:

Liquid chromatography-mass spectrometry

Leu:

Leucine

Lys:

Lysine

mCPBA:

meta-Chloroperoxybenzoic acid

MESNa:

Sodium-2-mercaptoethane sulfonate

Met:

Methionine

MMTS:

(S)-Methyl methanethiosulfonate

MPAA:

Mercaptophenylacetic acid

Ms:

Methanesulfonyl

NCL:

Native chemical ligation

NMM:

N-Methylmorpholine

NVOC:

o-Nitroveratryloxycarbonyl

Pen:

Penicillamine

Phe:

Phenylalanine

PhFl:

9-Phenylfluroenyl

Pro:

Proline

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

rt:

Room temperature

Ser:

Serine

SPPS:

Solid phase peptide synthesis

tBu:

tert-Butyl

TBAF:

Tetra-n-butylammonium fluoride

TBS:

tert-Butyldimethylsilyl

TCEP:

Tris(2-carboxyethyl)phosphine

TFA:

Trifluoroacetic acid

TFE:

Trifluoroethanol

TFET:

Trifluoroethanethiol

THF:

Tetrahydrofuran

Thr:

Threonine

TIS:

Triisopropylsilane

TMSE:

Trimethylsilylethyl

Tris:

Tri(hydroxymethyl)aminomethane

Trp:

Tryptophan

Trt:

Trityl

Ts:

4-Toluenesulfonyl

Ub:

Ubiquitin

UV:

Ultraviolet

VA-044:

2,2′-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride

Val:

Valine

References

  1. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15(17–18):773–780

    CAS  Google Scholar 

  2. Walsh G (2010) Biopharmaceutical benchmarks. Nat Biotechnol 28(9):917–924

    CAS  Google Scholar 

  3. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    CAS  Google Scholar 

  4. Chalker JM (2013) Prospects in the total synthesis of protein therapeutics. Chem Biol Drug Des 81(1):122–135

    CAS  Google Scholar 

  5. Kent S, Sohma Y, Liu S, Bang D, Pentelute B, Mandal K (2012) Through the looking glass—a new world of proteins enabled by chemical synthesis. J Pept Sci 18(7):428–436

    CAS  Google Scholar 

  6. He Q-Q, Fang G-M, Liu L (2013) Design of thiol-containing amino acids for native chemical ligation at non-Cys sites. Chin Chem Lett 24(4):265–269

    CAS  Google Scholar 

  7. Wong CTT, Tung CL, Li X (2013) Synthetic cysteine surrogates used in native chemical ligation. Mol BioSyst 9(5):826–833

    CAS  Google Scholar 

  8. Payne RJ, Wong C-H (2010) Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun 46(1):21–43

    CAS  Google Scholar 

  9. Hemantha HP, Narendra N, Sureshbabu VV (2012) Total chemical synthesis of polypeptides and proteins: chemistry of ligation techniques and beyond. Tetrahedron 68(47):9491–9537

    CAS  Google Scholar 

  10. Flavell RR, Muir TW (2009) Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 42(1):107–116

    CAS  Google Scholar 

  11. Monbaliu J-CM, Katritzky AR (2012) Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun 48(95):11601–11622

    CAS  Google Scholar 

  12. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38(2):338–351

    CAS  Google Scholar 

  13. Fisher EFE (1901) Ueber einige derivate des glykocolis. Ber 34:10

    Google Scholar 

  14. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154

    CAS  Google Scholar 

  15. Merrifield RB, Stewart JM, Jernberg N (1966) Instrument for automated synthesis of peptides. Anal Chem 38(13):1905–1914

    CAS  Google Scholar 

  16. Merrifield RB (1986) Solid phase synthesis. Science 232(4748):341–347

    CAS  Google Scholar 

  17. Malins LR, Mitchell NJ, Payne RJ (2014) Peptide ligation chemistry at selenol amino acids. J Pept Sci 20(2):64–77

    CAS  Google Scholar 

  18. Gutte B, Merrifield RB (1969) Total synthesis of an enzyme with ribonuclease A activity. J Am Chem Soc 91(2):501–502

    CAS  Google Scholar 

  19. Kent SB (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57(1):957–989

    CAS  Google Scholar 

  20. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    CAS  Google Scholar 

  21. Kemp DS, Carey RI (1993) Synthesis of a 39-peptide and a 25-peptide by thiol capture ligations—observation of a 40-fold rate acceleration of the intramolecular O, N-acyl-transfer reaction between peptide-fragments bearing only cysteine protective groups. J Org Chem 58(8):2216–2222

    CAS  Google Scholar 

  22. Kemp DS (1981) The amine capture strategy for peptide bond formation—an outline of progress. Biopolymers 20(9):1793–1804

    CAS  Google Scholar 

  23. Wieland T, Bokelmann E, Bauer L, Lang HU, Lau H (1953) Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Ann Chem 583(1):129–149

    CAS  Google Scholar 

  24. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69(1):923–960

    CAS  Google Scholar 

  25. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91

    CAS  Google Scholar 

  26. Botti P, Carrasco MR, Kent SB (2001) Native chemical ligation using removable N-alpha-(1-phenyl-2-mercaptoethyl) auxiliaries. Tetrahedron Lett 42(10):1831–1833

    CAS  Google Scholar 

  27. Offer J, Dawson PE (2000) N-α-2-Mercaptobenzylamine-assisted chemical ligation. Org Lett 2(1):23–26

    CAS  Google Scholar 

  28. Offer J, Boddy C, Dawson PE (2002) Extending synthetic access to proteins with a removable acyl transfer auxiliary. J Am Chem Soc 124(17):4642–4646

    CAS  Google Scholar 

  29. Macmillan D, Anderson D (2004) Rapid synthesis of acyl transfer auxiliaries for cysteine-free native glycopeptide ligation. Org Lett 6(25):4659–4662

    CAS  Google Scholar 

  30. Wu B, Chen J, Warren J (2006) Building complex glycopeptides: development of a cysteine-free native chemical ligation protocol. Angew Chem Int Ed 45(25):4116–4125

    CAS  Google Scholar 

  31. Lutsky M-Y, Nepomniaschiy N, Brik A (2008) Peptide ligation via side-chain auxiliary. Chem Commun 10:1229–1231

    Google Scholar 

  32. Gross E, Witkop B (1961) Selective cleavage of the methionyl peptide bonds in ribonuclease with cyanogen bromide. J Am Chem Soc 83(6):1510–1511

    CAS  Google Scholar 

  33. Liu CF, Tam JP (1994) Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci U S A 91(14):6584–6588

    CAS  Google Scholar 

  34. Okamoto R, Souma S, Kajihara Y (2009) Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-TN antigens. J Org Chem 74(6):2494–2501

    CAS  Google Scholar 

  35. Chalker J, Davis B (2010) Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr Opin Chem Biol 14(6):781–789

    CAS  Google Scholar 

  36. Li X, Lam H, Zhang Y, Chan C (2010) Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org Lett 12(8):1724–1727

    CAS  Google Scholar 

  37. Zhang Y, Xu C, Lam H, Lee C, Li X (2013) Protein chemical synthesis by serine and threonine ligation. Proc Natl Acad Sci U S A 110(17):6657–6662

    CAS  Google Scholar 

  38. Lam H, Zhang Y, Liu H (2013) Total synthesis of daptomycin by cyclization via a chemoselective serine ligation. J Am Chem Soc 135(16):6272–6279

    CAS  Google Scholar 

  39. Xu C, Lam H, Zhang Y, Li X (2013) Convergent synthesis of MUC1 glycopeptides via serine ligation. Chem Commun 49(55):6200–6202

    CAS  Google Scholar 

  40. Rohde H, Seitz O (2010) Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides. Biopolymers 94(4):551–559

    CAS  Google Scholar 

  41. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526–533

    CAS  Google Scholar 

  42. Pentelute BL, Kent SBH (2007) Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org Lett 9(4):687–690

    CAS  Google Scholar 

  43. Alferiev IS, Connolly JM, Levy RJ (2005) A novel mercapto-bisphosphonate as an efficient anticalcification agent for bioprosthetic tissues. J Organomet Chem 690(10):2543–2547

    CAS  Google Scholar 

  44. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46(48):9248–9252

    CAS  Google Scholar 

  45. Hoffmann F, Ess R, Simmons T, Hanzel R (1956) The desulfurization of mercaptans with trialkyl phosphites. J Am Chem Soc 78(24):6414

    CAS  Google Scholar 

  46. Walling C, Rabinowitz R (1957) The reaction of thiyl radicals with trialkyl phosphites. J Am Chem Soc 79(19):5326

    CAS  Google Scholar 

  47. Walling C, Basedow O, Savas E (1960) Some extensions of the reaction of trivalent phosphorus derivatives with alkoxy and thiyl radicals; a new synthesis of thioesters. J Am Chem Soc 82(9):2181–2184

    CAS  Google Scholar 

  48. González A, Valencia G (1998) Photochemical desulfurization of L-cysteine derivatives. Tetrahedron Asymmetry 9(16):2761–2764

    Google Scholar 

  49. Cuesta J, Arsequell G, Valencia G, González A (1999) Photochemical desulfurization of thiols and disulfides. Tetrahedron Asymmetry 10(14):2643–2646

    CAS  Google Scholar 

  50. Arsequell G, González A, Valencia G (2001) Visible light promoted organic reaction on a solid support. Tetrahedron Lett 42(14):2685–2687

    CAS  Google Scholar 

  51. Burns J, Bulter J, Moran J, Whitesides G (1991) Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem 56(8):2648–2650

    CAS  Google Scholar 

  52. Metanis N, Keinan E, Dawson PE (2010) Traceless ligation of cysteine peptides using selective deselenization. Angew Chem Int Ed 49(39):7049–7053

    CAS  Google Scholar 

  53. Malins LR, Payne RJ (2012) Synthesis and utility of β-selenol-phenylalanine for native chemical ligation–deselenization chemistry. Org Lett 14(12):3142–3145

    CAS  Google Scholar 

  54. Quaderer R, Hilvert D (2002) Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem Commun 22:2620–2621

    Google Scholar 

  55. Sakamoto I, Tezuka K, Fukae K, Ishii K, Taduru K, Maeda M, Ouchi M, Yoshida K, Nambu Y, Igarashi J, Hayashi N, Tsuji T, Kajihara Y (2012) Chemical synthesis of homogeneous human glycosyl-interferon-β that exhibits potent antitumor activity in vivo. J Am Chem Soc 134(12):5428–5431

    CAS  Google Scholar 

  56. Yeung H, Harris PWR, Squire CJ, Baker EN, Brimble MA (2014) Preparation of truncated orf virus entry fusion complex proteins by chemical synthesis. J Pept Sci 20(6):398–405

    CAS  Google Scholar 

  57. Deng F-K, Zhang L, Wang Y-T, Schneewind O, Kent SBH (2014) Total chemical synthesis of the enzyme sortase AΔN59 with full catalytic activity. Angew Chem Int Ed 53(18):4662–4666

    CAS  Google Scholar 

  58. Wilkinson BL, Stone RS, Capicciotti CJ, Thaysen-Andersen M, Matthews JM, Packer NH, Ben RN, Payne RJ (2012) Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins. Angew Chem Int Ed 51(15):3606–3610

    CAS  Google Scholar 

  59. Garner J, Jolliffe KA, Harding MM, Payne RJ (2009) Synthesis of homogeneous antifreeze glycopeptides via a ligation-desulfurisation strategy. Chem Commun 45:6925–6927

    Google Scholar 

  60. Fang G-M, Wang J-X, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed 51(41):10347–10350

    CAS  Google Scholar 

  61. Fauvet B, Butterfield SM, Fuks J, Brik A, Lashuel HA (2013) One-pot total chemical synthesis of human alpha-synuclein. Chem Commun 49(81):9254–9256

    CAS  Google Scholar 

  62. Zheng J-S, Tang S, Qi Y-K, Wang Z-P, Liu L (2013) Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protoc 8(12):2483–2495

    CAS  Google Scholar 

  63. Wilson RM, Dong SW, Wang P, Danishefsky SJ (2013) The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew Chem Int Ed 52(30):7646–7665

    CAS  Google Scholar 

  64. Wang P, Dong SW, Shieh JH, Peguero E, Hendrickson R, Moore MAS, Danishefsky SJ (2013) Erythropoietin derived by chemical synthesis. Science 342(6164):1357–1360

    CAS  Google Scholar 

  65. Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47(36):6807–6810

    CAS  Google Scholar 

  66. Wan Q, Chen J, Yuan Y, Danishefsky SJ (2008) Oxo-ester mediated native chemical ligation: concept and applications. J Am Chem Soc 130(47):15814–15816

    CAS  Google Scholar 

  67. Chen J, Wan Q, Yuan Y, Zhu JL, Danishefsky SJ (2008) Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew Chem Int Ed 47(44):8521–8524

    CAS  Google Scholar 

  68. Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2009) Dual native chemical ligation at lysine. J Am Chem Soc 131(38):13592–13593

    CAS  Google Scholar 

  69. Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2010) Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. Chem Commun 46(38):7199–7201

    CAS  Google Scholar 

  70. Kumar KSA, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A (2009) Highly efficient and chemoselective peptide ubiquitylation. Angew Chem Int Ed 48(43):8090–8094

    Google Scholar 

  71. Kumar KSA, Spasser L, Erlich LA, Bavikar SN, Brik A (2010) Total chemical synthesis of di-ubiquitin chains. Angew Chem Int Ed 49(48):9126–9131

    CAS  Google Scholar 

  72. Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A (2011) Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew Chem Int Ed 50(27):6137–6141

    CAS  Google Scholar 

  73. Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Kumar KSA, Brik A (2012) Chemical synthesis of ubiquitinated peptides with varying lengths and types ubiquitin chains to explore the activity of deubiquitinases. Angew Chem Int Ed 51(3):758–763

    CAS  Google Scholar 

  74. El Oualid F, Merkx R, Ekkebus R, Hameed DS, Smit JJ, de Jong A, Hilkmann H, Sixma TK, Ovaa H (2010) Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew Chem Int Ed 49(52):10149–10153

    Google Scholar 

  75. Merkx R, de Bruin G, Kruithof A, van den Bergh T, Snip E, Lutz M, El Oualid F, Ovaa H (2013) Scalable synthesis of γ-thiolysine starting from lysine and a side by side comparison with δ-thiolysine in non-enzymatic ubiquitination. Chem Sci 4(12):4494–4498

    CAS  Google Scholar 

  76. Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW (2011) Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc 133(28):10708–10711

    CAS  Google Scholar 

  77. Chen J, Wang P, Zhu J, Wan Q, Danishefsky SJ (2010) A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 66(13):2277–2283

    CAS  Google Scholar 

  78. Harpaz Z, Siman P, Kumar KSA, Brik A (2010) Protein synthesis assisted by native chemical ligation at leucine. ChemBioChem 11(9):1232–1235

    CAS  Google Scholar 

  79. Tan Z, Shang S, Danishefsky SJ (2010) Insights into the finer issues of native chemical ligation: an approach to cascade ligations. Angew Chem Int Ed 49(49):9500–9503

    CAS  Google Scholar 

  80. Li J, Dong S, Townsend SD, Dean T, Gardella TJ, Danishefsky SJ (2012) Chemistry as an expanding resource in protein science: fully synthetic and fully active human parathyroid hormone-related protein (1–141). Angew Chem Int Ed 51(49):12263–12267

    CAS  Google Scholar 

  81. Creech GS, Paresi C, Li Y-M, Danishefsky SJ (2014) Chemical synthesis of the ATAD2 bromodomain. Proc Natl Acad Sci U S A 111(8):2891–2896

    CAS  Google Scholar 

  82. Shang S, Tan Z, Dong S, Danishefsky SJ (2011) An advance in proline ligation. J Am Chem Soc 133(28):10784–10786

    CAS  Google Scholar 

  83. Townsend SD, Tan Z, Dong S, Shang S, Brailsford JA, Danishefsky SJ (2012) Advances in proline ligation. J Am Chem Soc 134(8):3912–3916

    CAS  Google Scholar 

  84. Ding H, Shigenaga A, Sato K, Morishita K, Otaka A (2011) Dual kinetically controlled native chemical ligation using a combination of sulfanylproline and sulfanylethylanilide peptide. Org Lett 13(20):5588–5591

    CAS  Google Scholar 

  85. Malins LR, Cergol KM, Payne RJ (2013) Peptide ligation-desulfurization chemistry at arginine. ChemBioChem 14(5):559–563

    CAS  Google Scholar 

  86. Thompson RE, Chan B, Radom L, Jolliffe KA, Payne RJ (2013) Chemoselective peptide ligation-desulfurization at aspartate. Angew Chem Int Ed 52(37):9723–9727

    CAS  Google Scholar 

  87. Guan X, Drake MR, Tan Z (2013) Total synthesis of human galanin-like peptide through an aspartic acid ligation. Org Lett 15(24):6128–6131

    CAS  Google Scholar 

  88. Cergol KM, Thompson RE, Malins LR, Turner P, Payne RJ (2014) One-pot peptide ligation-desulfurization at glutamate. Org Lett 16(1):290–293

    CAS  Google Scholar 

  89. Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. J Am Chem Soc 129(33):10064–10065

    CAS  Google Scholar 

  90. Siman P, Karthikeyan SV, Brik A (2012) Native chemical ligation at glutamine. Org Lett 14(6):1520–1523

    CAS  Google Scholar 

  91. Malins LR, Cergol KM, Payne RJ (2014) Chemoselective sulfenylation and peptide ligation at tryptophan. Chem Sci 5(1):260–266

    CAS  Google Scholar 

  92. Bennett CS, Dean SM, Payne RJ, Ficht S, Brik A, Wong CH (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130(36):11945–11952

    CAS  Google Scholar 

  93. Brik A, Yang YY, Ficht S, Wong CH (2006) Sugar-assisted glycopeptide ligation. J Am Chem Soc 128(17):5626–5627

    CAS  Google Scholar 

  94. Brik A, Ficht S, Yang Y-Y, Bennett CS, Wong C-H (2006) Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J Am Chem Soc 128(46):15026–15033

    CAS  Google Scholar 

  95. Yang Y-Y, Ficht S, Brik A, Wong C-H (2007) Sugar-assisted ligation in glycoprotein synthesis. J Am Chem Soc 129(24):7690–7701

    CAS  Google Scholar 

  96. Payne RJ, Ficht S, Tang S, Brik A, Yang Y-Y, Case DA, Wong C-H (2007) Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J Am Chem Soc 129(44):13527–13536

    CAS  Google Scholar 

  97. Rohde H, Schmalisch J, Harpaz Z, Diezmann F, Seitz O (2011) Ascorbate as an alternative to thiol additives in native chemical ligation. ChemBioChem 12(9):1396–1400

    CAS  Google Scholar 

  98. Siman P, Blatt O, Moyal T, Danieli T, Lebendiker M, Lashuel HA, Friedler A, Brik A (2011) Chemical synthesis and expression of the HIV-1 rev protein. ChemBioChem 12(7):1097–1104

    CAS  Google Scholar 

  99. Moyal T, Hemantha HP, Siman P, Refua M, Brik A (2013) Highly efficient one-pot ligation and desulfurization. Chem Sci 4(6):2496–2501

    CAS  Google Scholar 

  100. Thompson RE, Liu X, Alonso-Garcia N, Barbosa Pereira PJ, Jolliffe KA, Payne RJ (2014) Trifluoroethanethiol: an additive for efficient one-pot peptide ligation-desulfurization chemistry. J Am Chem Soc 136(23):8161–8164

    CAS  Google Scholar 

  101. Dong S, Shang S, Li J, Tan Z, Dean T, Maeda A, Gardella TJ, Danishefsky SJ (2012) Engineering of therapeutic polypeptides through chemical synthesis: early lessons from human parathyroid hormone and analogues. J Am Chem Soc 134(36):15122–15129

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support by the National Natural Science Foundation of China (21272082, 21402055, 21402056, 21472054), the Specialized Research Fund for the Doctoral Program of Higher Education (20120142120092), the Recruitment Program of Global Youth Experts of China, the State Key Laboratory of Bio-organic and Natural Products Chemistry (SKLBNPC13425), and Huazhong University of Science and Technology (2014ZZGH015), the Fundamental Research Funds for the Central Universities (Project 2014QC007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, J., Zeng, J., Wan, Q. (2014). Postligation-Desulfurization: A General Approach for Chemical Protein Synthesis. In: Liu, L. (eds) Protein Ligation and Total Synthesis II. Topics in Current Chemistry, vol 363. Springer, Cham. https://doi.org/10.1007/128_2014_594

Download citation

Publish with us

Policies and ethics