Skip to main content

Active and Non-Active Large-Area Metal–Molecules–Metal Junctions

  • Chapter
  • First Online:
Unimolecular and Supramolecular Electronics II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 313))

Abstract

The study of charge transport processes through organic molecules by using molecular junctions has generated great attention in the last few years, partially triggered by the possibility of developing molecular electronic devices to be implemented somehow into current silicon-based technology. As experimental tools, a large variety of conceptually and geometrically different metal–molecule(s)–metal junctions has been proposed. While the intrinsic conductivity of a molecule is still elusive, parameters crucial for molecular electronics have been extracted by using a variety of junctions. Significantly, the results extracted from molecular junctions and those obtained by the kinetic approach in supramolecular D–B–A systems are complementary. For the sake of a practical discussion, a distinction is made between “active junctions” and “non-active junctions”. Active junctions are those aimed at switching the electrical response by an external stimulus acting “in situ” to modify the electronic structure of the molecular system. Non-active junctions are those aimed at studying different conduction regimes by incorporating molecules of different electronic structures. Depending on their geometry, the junctions can incorporate different numbers of molecules. Large area molecular junctions present two main advantages: (1) a simpler assembly, by requiring less sophisticated fabrication and (2) a higher versatility, relative to single molecule junctions, towards potential applications in organic electronics. The present chapter focuses on the fabrication of a variety of large-area molecular junctions and summarizes and compares the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZO:

Azobenzene

BJs:

Break junctions

c-AFM:

Conductive atomic force microscopy

CT:

Charge transfer

CWJs:

Cross wires based junctions

DAE:

Diarylethene

D–B–A:

Donor–molecular bridge–acceptor supramolecular system

E-GaIn:

Metal eutectic Ga–In (75% Ga 25% In)

ET:

Electron transfer

HBC:

Hexabenzocoronene

HS-C10-Ru:

HS(CH2)10CONHCH2pyRu(NH3)5(PF6)2

IJs:

Interlayer based junctions

LAJs:

Large area junctions

LB:

Langmuir–Blodgett

M–B–M:

Metal–molecular bridge–metal (junction)

MCMWs:

Metal centre molecular wires

OPh:

Oligophenylene

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene): poly(4-styrenesulphonic acid)

PPV:

Poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]

STMJs:

Scanning tunnelling microscope junctions

References

  1. Heath JR, Ratner MA (2003) Phys Today Mol Electron 56:43–49

    CAS  Google Scholar 

  2. Reimers JR, Picconnatto CA, Ellenbogen JC, Shashidhar R (2003) Molecular electronics III. Ann New York Acad Sci 1006:1–330

    Google Scholar 

  3. Tour JM (2003) Molecular electronics: commercial insights, chemistry, devices, architecture and programming. World Scientific, Singapore

    Google Scholar 

  4. Brederode ME, Jones MR, Van Grondelle R (1997) Primary electron transfer kinetics in membrane-bound Rhodobacter sphaeroides reaction centers: a global and target analysis. Biochemistry 36:6855–6861

    Google Scholar 

  5. De Cola L (2005) (ed) Molecular wires: from design to properties. In: Topics in Current Chemistry 257. Springer, Heidelberg

    Google Scholar 

  6. Mann B, Kuhn H (1971) Tunneling through fatty acid salt monolayers. J Appl Phys 42:4398–4406

    CAS  Google Scholar 

  7. Kuhn H (1989) Present status and future prospects of Langmuir-Blodgett film research. Thin Solid Films 178:1–16

    CAS  Google Scholar 

  8. Lambe J, Jaklevic RC (1968) Molecular vibration spectra by inelastic electron tunnel. Phys Rev 165:821–832

    CAS  Google Scholar 

  9. Tredgold RH, Winter CS (1981) Tunnelling currents in Langmuir-Blodgett monolayers of stearic acid. J Phys D Appl Phys 14:L185

    CAS  Google Scholar 

  10. Tredgold RH (1987) The physics of Langmuir-Blodgett films. Rep Prog Phys 50:1609

    CAS  Google Scholar 

  11. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    CAS  Google Scholar 

  12. Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski MJ (1990) Rectifying characteristics of Mg|(C16H33-Q3CNQ LB film)|Pt structures. J Chem Soc Chem Commun 19:1374–1376

    Google Scholar 

  13. Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218–221

    CAS  Google Scholar 

  14. Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyano-quinodimethanide. J Am Chem Soc 119:10455–10466

    CAS  Google Scholar 

  15. Cui Z (2008) Nanofabrication: principles, capabilities and limits. Springer, Heidelberg

    Google Scholar 

  16. Bowker M, Dacie PR (eds) (2010) Scanning tunneling microscopy in surface science and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  17. Simeone FC, Albonetti C, Cavallini M (2009) Progress in micro- and nanopatterning via electrochemical lithography. J Phys Chem C 113:18987–18994

    CAS  Google Scholar 

  18. Heath JR (2009) Analytical chemistry in molecular electronics. Annu Rev Mater Res 39:1–23

    CAS  Google Scholar 

  19. McCreery RL, Bergren AJ (2009) Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv Mater 21:4303–4322

    CAS  Google Scholar 

  20. Ulgut B, Abruña HD (2008) Electron transfer through molecules and assemblies at electrode surfaces. Chem Rev 108:2721–2739

    CAS  Google Scholar 

  21. Haick H, Cahen D (2008) Contacting organic molecules by soft methods: towards molecule-based electronic devices. Acc Chem Res 41:359–366

    CAS  Google Scholar 

  22. Salomon A, Cahen D, Kahn A (2007) What is the barrier for tunneling through alkyl monolayers? Results from n- and p-Si-C- alkyl/Hg junctions. Adv Mater 19:445–460

    CAS  Google Scholar 

  23. Beckman R, Boukai A, Bunimovich Y, Choi JW, DeIonno E, Green J, Johnston-Halperin E, Luo Y, Sheriff B, Stoddart JF, Heath JR (2006) Molecular mechanics and molecular electronics. Faraday Discuss 131:9–22

    CAS  Google Scholar 

  24. Chen F, Hihath J, Huang ZF, Li XL, Tao NJ (2007) Measurement of single-molecule conductance. Annu Rev Phys Chem 58:535–564

    CAS  Google Scholar 

  25. Zhang JD, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108:2737–2791

    CAS  Google Scholar 

  26. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254

    CAS  Google Scholar 

  27. Lörtscher E, Elbing M, Tschudy M, von Hänisch C, Weber HB, Mayor M, Riel H (1997) Charge transport through molecular rods with reduced ?-conjugation. ChemPhysChem 9:2252–2258

    Google Scholar 

  28. Zhou C, Deshpande MR, Reed MA, Jones L, Tour JM (1997) Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl Phys Lett 71:611–613

    CAS  Google Scholar 

  29. Xu B, Tao JN (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    CAS  Google Scholar 

  30. He J, Sankey O, Lee M, Tao N, Li X, Lindsay S (2006) Measuring single molecule conductance with break junctions. Faraday Discuss 131:145–154

    CAS  Google Scholar 

  31. Park YS, Widawsky JR, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2009) Frustrated rotations in single-molecule junctions. J Am Chem Soc 131:10820–10821

    CAS  Google Scholar 

  32. Choi SH, Kim B, Frisbie CD (2008) Electrical resistance of long conjugated molecular wires. Science 320:1482–1486

    CAS  Google Scholar 

  33. Troisi A, Beebe JM, Picraux LB, van Zee RD, Stewart DR, Ratner MA, Kushmerick JG (2007) Tracing electronic pathways in molecules by using inelastic tunneling spectroscopy. Proc Natl Acad Sci USA 104:14255–14259

    CAS  Google Scholar 

  34. Elbing M, Blaszczyk A, von H€anisch C, Mayor M, Ferri V, Grave C, Rampi MA, Pace G, Samor?ì P, Shaporenko A, Zharnikov M (2008) Single component self-assembled monolayers of aromatic azo-biphenyl: influence of the packing tightness on the SAM structure and light induced molecular movements. Adv Funct Mater 19:2972–2983

    Google Scholar 

  35. Bonifas AP, McCreery RL (2010) ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat Nanotechnol 5:612–6172

    CAS  Google Scholar 

  36. Paddon-Row MN (2003) Superexchange-mediated charge separation and charge recombination in covalently linked donor-bridge-acceptor systems. Aust J Chem 56:729–748

    CAS  Google Scholar 

  37. Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Molecular wire behaviour in p-phenylenevinylene oligomers. Nature 396:60–63

    CAS  Google Scholar 

  38. Newton MD (1991) Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91:767–792

    CAS  Google Scholar 

  39. Segal D, Nitzan A, Ratner MA, Davis WB (2000) Activated conduction in microscopic molecular junctions. J Phys Chem B 104:2790–2793

    CAS  Google Scholar 

  40. Simmons JG (1963) Generalized formula for the electrical tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34:1793–1803

    Google Scholar 

  41. Simmons JG (1964) Potential barriers and emission limited current flow between closely spaced parallel metal electrodes. J Appl Phys 35:2655–2658

    Google Scholar 

  42. Wang WY, Lee T, Reed MA (2005) Electron tunnelling in self-assembled monolayers. Rep Prog Phys 68:523–544

    CAS  Google Scholar 

  43. McConnell HM (1961) Intramolecular charge transfer in aromatic free radicals. J Chem Phys 35:508–515

    CAS  Google Scholar 

  44. Cuniberti G, Fagas G, Richter K (2005) (eds) Introducing molecular electronics. Lecture notes in physics. Springer, Heidelberg

    Google Scholar 

  45. Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52:681–750

    CAS  Google Scholar 

  46. Eng MP, Albinsson B (2006) Non-exponential distance dependence of bridge-mediated electronic coupling. Angew Chem Int Ed 45:5626–5629

    CAS  Google Scholar 

  47. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys Rev Lett 97:026801–026804

    Google Scholar 

  48. Beebe JM, Frisbie CD, Kushmerick JG (2008) Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2:827–832

    CAS  Google Scholar 

  49. Huisman EH, Guedon CM, van Wees BJ, van der Molen SJ (2009) Interpretation of transition voltage spectroscopy. Nano Lett 11:3909–3913

    Google Scholar 

  50. Simeone FC, Kolb DM, Venkatachalam S, Timo J (2007) The Au(111)/electrolyte interface: a tunnel-spectroscopic and DFT investigation. Angew Chem Int Ed 46:8903–8906

    CAS  Google Scholar 

  51. Simeone FC, Kolb DM, Venkatachalam S, Timo J (2008) Tunneling behavior of electrified interfaces. Surf Sci 602:1401–1407

    CAS  Google Scholar 

  52. Berlin YA, Ratner MA (2005) Intra-molecular electron transfer and electric conductance via sequential hopping: unified theoretical description. Radiat Phys Chem 74:124–131

    CAS  Google Scholar 

  53. Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak JP, Mahony W, Osifchin RG, Reifenberger R (1996) “Coulomb Staircase” at room temperature in a self-assembled molecular nanostructure. Science 272:1323–1325

    CAS  Google Scholar 

  54. Akkerman HB, de Boer B (2008) Electrical conduction through single molecules and self-assembled monolayers. J Phys Condens Matter 20:013001

    Google Scholar 

  55. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (2003) Comparison of electronic transport measurements on organic molecules. Adv Mater 15:1881–1890

    CAS  Google Scholar 

  56. Lindsay S, Ratner MA (2007) Molecular transport junctions: clearing mists. Adv Mater 19:23–31

    CAS  Google Scholar 

  57. Chen F, Li X, Hihath J, Huang Z, Tao N (2006) Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc 128:15874–15881

    CAS  Google Scholar 

  58. Kim B, Beebe JM, Jun Y, Zhu XY, Frisbie CD (2006) Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J Am Chem Soc 128:4970–4971

    CAS  Google Scholar 

  59. Yaliraki SN, Kemp M, Ratner MA (1999) Conductance of molecular wires: influence of molecule-electrode binding. J Am Chem Soc 121:3428–3434

    CAS  Google Scholar 

  60. Hipps KW (2001) It’s all about contacts. Science 294:536–537

    CAS  Google Scholar 

  61. von Wrochem F, Gao D, Scholz F, Nothofer HG, Nelles G, Wessels JM (2010) Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions. Nat Nanotechnol 5:618–624

    Google Scholar 

  62. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Single molecule conductance and link chemistry: a comparison of phosphines, methyl thiols and amines. J Am Chem Soc 129:15768–15769

    CAS  Google Scholar 

  63. Haick H, Cahen D (2008) Making contact: connecting molecules electrically to the macroscopic world. Prog Surf Sci 83:217–261

    CAS  Google Scholar 

  64. Nesher G, Shpaisman H, Cahen D (2007) Effect of chemical bond-type on electron transport in GaAs-chemical bond-alkyl/Hg junctions. J Am Chem Soc 129:734–735

    CAS  Google Scholar 

  65. Salomon A, Boecking T, Gooding JJ, Cahen D (2006) How important is the interfacial chemical bond for electron transport through alkyl chain monolayers. Nano Lett 6:2873–2876

    CAS  Google Scholar 

  66. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnel JD, Stapleton JJ, Price DW, Rawett AM, Allara DL, Tour JM, Weiss PS (2001) Conductance switching in single molecules through conformational changes. Science 292:2303–2307

    CAS  Google Scholar 

  67. Cygan MT, Dunbar TD, Arnold JJ, Bumm LA, Shedlock NF, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1998) Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111}. J Am Chem Soc 120:2721–2732

    CAS  Google Scholar 

  68. Lindsay SM (2004) Single molecule electronics. Interface 13:26–30

    Google Scholar 

  69. Ramachandran GK, Hopson TJ, Rawlett AM, Nagahara LA, Primak A, Lindsay SM (2003) A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300:1413–1416

    CAS  Google Scholar 

  70. Landau A, Kronik L, Nitzan A (2008) Cooperative effects in molecular conduction. J Comp Theor Nanosci 5:535–544

    CAS  Google Scholar 

  71. Selzer Y, Cai L, Cabassi MA, Yao Y, Tour JM, Mayer TS, Allara DL (2005) The effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett 5:61–65

    CAS  Google Scholar 

  72. Paddon-Row MN (2001) Covalently linked systems based on organic components. In: Balzani V (ed) Electron transfer in chemistry, vol 3. Wiley-VCH, Weinheim, pp 179–271

    Google Scholar 

  73. Paddon-Row MN (1994) Investigating long-range electron-transfer processes with rigid, covalently linked donor-(norbornylogous bridge)-acceptor systems. Acc Chem Res 27:18–25

    CAS  Google Scholar 

  74. Scandola F, Argazzi R, Bignozzi CA, Chiorboli C, Indelli MT, Rampi MA (1992) In: Balzani V, De Cola L (eds) Supramolecular chemistry. Kluwer Academic, Dordrecht, The Netherlands, pp 235–248

    Google Scholar 

  75. Helms A, Heiler D, McLendon G (1992) Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence. J Am Chem Soc 114:6227–6238

    CAS  Google Scholar 

  76. Slowinski K, Fong HKY, Majda M (1999) Mercury–mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric alkanethiolate bilayers. J Am Chem Soc 103:7257–7261

    Google Scholar 

  77. Holmlin RE, Haag R, Chabinyc ML, Ismagilov RF, Cohen AE, Terfort A, Rampi MA, Whitesides GM (2001) Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers. J Am Chem Soc 123:5075–5085

    CAS  Google Scholar 

  78. Shimizu KT, Fabbri JD, Jelincic JJ, Melosh NA (2006) Soft deposition of large-area metal contacts for molecular electronics. Adv Mater 18:1499–1504

    CAS  Google Scholar 

  79. Milani M, Grave C, Ferri V, Samorì P, Rampi MA (2007) Ultrathin ?-conjugated polymer films for simple fabrication of large-area molecular junctions. ChemPhysChem 8:515–518

    CAS  Google Scholar 

  80. Akkerman HB, Blom PWM, de Leeuw DM, de Boer B (2006) Towards molecular electronics with large-area molecular junctions. Nature 441:69–72

    CAS  Google Scholar 

  81. Dickey MD, Chiechi RC, Larson RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18:1097–1104

    CAS  Google Scholar 

  82. Bumm LA, Arnold JJ, Dunbar TD, Allara DL, Weiss PS (1999) Electron transfer through organic molecules. J Phys Chem B 103:8122–8127

    CAS  Google Scholar 

  83. Wold DV, Haag R, Rampi MA, Frisbie CD (2002) Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions. J Phys Chem B 106:2813–2816

    CAS  Google Scholar 

  84. Wang W, Lee T, Reed MA (2003) Elastic and inelastic electron tunneling in alkane self-assembled monolayers. Phys Rev B 68:035416

    Google Scholar 

  85. Tuccitto N, Ferri V, Cavazzini M, Quici S, Zhavnerko G, Licciardello A, Rampi MA (2009) Highly conductive 40-nm long molecular wires assembled by stepwise incorporation of metal centres. Nat Mater 8:41–46

    CAS  Google Scholar 

  86. Metzger RM (2009) Unimolecular electronics and rectifiers. Synth Met 159:2277–2281

    CAS  Google Scholar 

  87. Ashwell GJ, Urasinska-Wojcik B, Phillips J (2010) In situ stepwise synthesis of functional multijunction molecular wires on gold electrodes and gold nanoparticles. Angew Chem Int Ed 49:3508–3512

    CAS  Google Scholar 

  88. Nijhuis CA, Reus WF, Whitesides GM (2009) Organometallic molecular rectification in metal-SAM-metal junctions. J Am Chem Soc 131:17814–17827

    CAS  Google Scholar 

  89. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834

    CAS  Google Scholar 

  90. Lortscher E, Riel H (2010) CHIMIA 64:376–382

    CAS  Google Scholar 

  91. Chen J, Reed MA, Rawlet AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552

    CAS  Google Scholar 

  92. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377

    CAS  Google Scholar 

  93. Xu B, Xiao X, Yang X, Zang L, Tao N (2005) Large gate current modulation in a room temperature single molecule transistor. J Am Chem Soc 127:2386–2387

    CAS  Google Scholar 

  94. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725

    CAS  Google Scholar 

  95. Van der Molen SJ, Liljeroth P (2010) Charge transport through molecular switches. J Phys Condens Matter 22:133001

    Google Scholar 

  96. Browne WR, Feringa B (2009) Light switching of molecules on surfaces. Annu Rev Phys Chem 60:407–428

    CAS  Google Scholar 

  97. Kotiaho A, Lahtinen R, Efimov A, Metsberg HK, Sariola E, Lehtivuori H, Tkachenko NV, Lemmetyinen H (2001) Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles. J Phys Chem C 114:162–168

    Google Scholar 

  98. Kittredge KW, Fox MA, Whitesell JK (2001) Effect of alkyl chain length on the fluorescence of 9-alkylfluorenyl thiols as self-assembled monolayers on gold. J Phys Chem B 105:10594–10599

    CAS  Google Scholar 

  99. Kronemeijer AJ, Akkerman HB, Kudernac T, van Wees BJ, Feringa BL, Blom PWM, de Boer B (2008) Reversible conductance switching in molecular devices. Adv Mater 20:1467–1473

    CAS  Google Scholar 

  100. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    CAS  Google Scholar 

  101. Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100:1875–1890

    CAS  Google Scholar 

  102. He J, Chen F, Liddel PA, Andreasson J, Straight SD, Gust D, Moore TA, Moore AL, Li J, Sankey OF, Lindsay SM (2005) Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16:695–702

    CAS  Google Scholar 

  103. Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402

    Google Scholar 

  104. Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL (2006) Switching of single diarylethenes on a gold surface. Adv Mater 18:1397–1400

    CAS  Google Scholar 

  105. Griffiths J (1972) Photochemistry of azobenzene and its derivatives. Chem Soc Rev 1:481–493

    CAS  Google Scholar 

  106. Pace G, Ferri V, Grave C, Elbing M, Zharnikov M, Major M, Rampi MA, Samorì P (2007) Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc Natl Acad Sci USA 104:9937–9942

    CAS  Google Scholar 

  107. Ferri V, Elbing M, Pace G, Dickey MD, Zharnikov M, Samorì P, Mayor M, Rampi MA (2008) Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew Chem Int Engl Ed 47:3407–3409

    CAS  Google Scholar 

  108. Mativetsky JM, Pace G, Elbing M, Rampi MA, Mayor M, Samorì P (2008) Azobenzenes as light-controlled molecular electronic switches in nanoscale metal–molecule–metal junctions. J Am Chem Soc 130:9192–9193

    CAS  Google Scholar 

  109. Mc Creery RL (2009) Electron transport and redox reactions in molecular electronic junctions. Chem Phys Chem 10:2387–2391

    CAS  Google Scholar 

  110. McCreery RL (2010) Electrochemical concepts in functional materials. Electrochemistry – The Electrochemical Society of Japan 78:103

    Google Scholar 

  111. Tao NJ (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76:4066–4069

    CAS  Google Scholar 

  112. Xiao X, Nagahara LA, Rawlett AM, Tao NJ (2005) Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J Am Chem Soc 127:9235–9240

    CAS  Google Scholar 

  113. Wong EW, Collier CP, B?hloradský M, Raymo FM, Stoddart JF, Heath JR (2000) Fabrication and transport properties of single-molecule-thick electrochemical junctions. J Am Chem Soc 122:5831–5840

    CAS  Google Scholar 

  114. Li Z, Pobelov I, Han B, Wandlowski T, B?aszczyk A, Mayor M (2007) Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology 18:044018

    Google Scholar 

  115. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69

    CAS  Google Scholar 

  116. Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) A molecular switch based on potential-induced changes of oxidation state. Nano Lett 5:503–506

    CAS  Google Scholar 

  117. He J, Chen F, Lindsay S, Nuckolls C (2007) Length dependence of charge transport in oligoanilines. Appl Phys Lett 90:072112

    Google Scholar 

  118. Chen F, Nuckolls C, Lindsay S (2006) In situ measurements of oligoaniline conductance: linking electrochemistry and molecular electronics. Chem Phys 324:236–243

    CAS  Google Scholar 

  119. Pobelov I, Li Z, Wandlowski T (2008) Electrolyte gating in redox-active tunneling junctions – an electrochemical STM approach. J Am Chem Soc 130:16045–16054

    CAS  Google Scholar 

  120. Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ, Nygaard S, Jeppesen JO, Ulstrup J (2008) Structure–property relationships in redox-gated single molecule junctions–a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J Am Chem Soc 130:12204–12205

    CAS  Google Scholar 

  121. Li Z, Liu Y, Mertens SFL, Pobelov IV, Wandlowski T (2010) From redox gating to quantized charging. J Am Chem Soc 132:8187–8193

    CAS  Google Scholar 

  122. McCreery RL (2009) Electron transport and redox reactions in molecular electronic junctions. ChemPhysChem 10:2387–2391

    CAS  Google Scholar 

  123. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ (2003) Redox state dependence of single molecule conductivity. J Am Chem Soc 125:15294–15295

    CAS  Google Scholar 

  124. Haiss W, Albrecht T, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ, Kuznetsov AM, Zhang J, Chi Q, Ulstrup J (2007) Single-molecule conductance of redox molecules in electrochemical scanning tunneling microscopy. J Phys Chem B 111:6703–6712

    CAS  Google Scholar 

  125. He J, Fu Q, Lindsay S, Ciszek JW, Tour JM (2006) Electrochemical origin of voltage-controlled molecular conductance switching. J Am Chem Soc 128:14828–14835

    CAS  Google Scholar 

  126. Han W, Durantini EN, Moore TA, Moore AL, Gust DRP, Leatherman G, Seely GR, Tao N, Lindsay S (1997) STM contrast, electron-transfer chemistry, and conduction in molecules. J Phys Chem B 101:10719–10725

    CAS  Google Scholar 

  127. He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) A conducting polymer nanojunction switch. J Am Chem Soc 123:7730–7731

    CAS  Google Scholar 

  128. Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Transistor-like behavior of transition metal complexes. Nano Lett 5:1451–1455

    CAS  Google Scholar 

  129. Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J (2006) Mechanism of electrochemical charge transport in individual transition metal complexes. J Am Chem Soc 128:17132–17138

    CAS  Google Scholar 

  130. Albrecht T, Moth-Poulsen K, Christensen JB, Hjelm J, Bjørnholm T, Ulstrup J (2006) Scanning tunneling spectroscopy in an ionic liquid. J Am Chem Soc 128:6574–6575

    CAS  Google Scholar 

  131. Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjørnholm T, Vos JG, Ulstrup J (2006) In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131:265–279

    CAS  Google Scholar 

  132. Tran E, Duati M, Whitesides GM, Rampi MA (2006) Gating current flowing through molecules in metal–molecules–metal junctions. Faraday Discuss 131:197–203

    CAS  Google Scholar 

  133. Visoly-Fisher I, Daie K, Terazono Y, Herrero C, Fungo F, Otero L, Durantini E, Silber JJ, Sereno L, Gust D, Moore TA, Moore AL, Lindsay SM (2006) Conductance of a biomolecular wire. Proc Natl Acad Sci USA 103:8686–8690

    CAS  Google Scholar 

  134. Wassel RA, Credo GM, Fuierer RR, Feldheim DL, Gorman CB (2004) Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction. J Am Chem Soc 126:295–300

    CAS  Google Scholar 

  135. Xiao X, Brune D, He J, Lindsay S, Gorman CB, Tao N (2006) Redox-gated electron transport in electrically wired ferrocene molecules. Chem Phys 326:138–143

    CAS  Google Scholar 

  136. Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) Thermally activated electron transport in single redox molecules. J Am Chem Soc 129:11535–11542

    CAS  Google Scholar 

  137. Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T, Li XQ, Wurthner F, Bagrets A, Evers F (2008) Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J Phys Condens Matter 20:374122

    CAS  Google Scholar 

  138. Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Single-metalloprotein wet biotransistor. Appl Phys Lett 86:133902

    Google Scholar 

  139. Chi Q, Farver O, Ulstrup J (2005) Long-range protein electron transfer observed at the single-molecule level: in situ mapping of redox-gated tunneling resonance. Proc Natl Acad Sci USA 102:16203–16208

    CAS  Google Scholar 

  140. Alessandrini A, Corni S, Facci P (2006) Unravelling single metalloprotein electron transfer by scanning probe techniques. Phys Chem Chem Phys 8:4383–4397

    CAS  Google Scholar 

  141. Chi Q, Zhang J, Jensen PS, Christensen HEM, Ulstrup J (2006) Long-range interfacial electron transfer of metalloproteins based on molecular wiring assemblies. Faraday Discuss 131:181–195

    CAS  Google Scholar 

  142. Liu Y, Offenhausser A, Mayer D (2010) Rectified tunneling current response of bio-functionalized metal–bridge–metal junctions. Biosens Bioelectron 25:1173–1178

    CAS  Google Scholar 

  143. Davis JJ, Peters B, Xi W (2008) Force modulation and electrochemical gating of conductance in a cytochrome. J Phys Condens Matter 20:374123

    Google Scholar 

  144. Nowak AM, McCreery RL (2004) In situ Raman spectroscopy of bias-induced structural changes in nitroazobenzene molecular electronic junctions. J Am Chem Soc 126:16621–16631

    CAS  Google Scholar 

  145. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    CAS  Google Scholar 

  146. McCreery RL (2004) Review molecular electronic junctions. Chem Mater 16:4477–4496

    CAS  Google Scholar 

  147. Chang SC, Li ZY, Lau CN, Larade B, Williams RS (2003) Investigation of a model molecular-electronic rectifier with an evaporated Ti–metal top contact. Appl Phys Lett 83:3198

    CAS  Google Scholar 

  148. DeIonno E, Tseng HR, Harvey DD, Stoddard JF, Heat JR (2006) Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. J Phys Chem B 110:7609–7612

    CAS  Google Scholar 

  149. Haick H, Niitsoo O, Ghabboun J, Cahen D (2007) Electrical contacts to organic molecular films by metal evaporation: effect of contacting details. J Phys Chem C 111:2318–2329

    CAS  Google Scholar 

  150. Hsu JWP, Loo YL, Lang DV, Rodger J (2003) Nature of electrical contacts in a metal–molecule–semiconductor system. J Vac Sci Technol B 21:1928

    CAS  Google Scholar 

  151. Hsu JWP (2005) Soft lithography contacts to organics. Mater Today 8:42–54

    CAS  Google Scholar 

  152. Loo YL, Lang DV, Rogers JA, Hsu JWP (2003) Electrical contacts to molecular layers by nanotransfer printing. Nano Lett 3:913–917

    CAS  Google Scholar 

  153. Guerin D, Merckling C, Lenfant S, Wallart X, Pleutin S, Vuillaume D (2007) Silicon–molecules–metal junctions by transfer printing: chemical synthesis and electrical properties. J Phys Chem C 111:7947–7956

    CAS  Google Scholar 

  154. Moons E, Bruening M, Shanzer A, Beier J, Cahen D (1996) Electron transfer in hybrid molecular solid-state devices. Synth Met 76:245–248

    CAS  Google Scholar 

  155. Vilan A, Shanzer A, Cahen D (2000) Molecular control over Au/GaAs diodes. Nature 404:166–168

    CAS  Google Scholar 

  156. Vilan A, Cahen D (2002) Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects. Adv Funct Mater 12:795–807

    CAS  Google Scholar 

  157. Shimizu KT, Pala RA, Fabbri JD, Brongersma ML, Melosh NA (2006) Probing molecular junctions using surface plasmon resonance spectroscopy. Nano Lett 6:2797–2803

    CAS  Google Scholar 

  158. Preiner MJ, Melosh NA (2008) Creating large area molecular electronic junctions using atomic layer deposition. Appl Phys Lett 92:213301

    Google Scholar 

  159. Preiner MJ, Melosh NA (2009) Identification and passivation of defects in self-assembled monolayers. Langmuir 25:2585–2587

    CAS  Google Scholar 

  160. Ranganathan S, Steidel I, Anariba F, McCreery RL (2001) Covalently bonded organic monolayers on a carbon substrate: a new paradigm for molecular electronics. Nano Lett 1:491–494

    CAS  Google Scholar 

  161. Thieblemont F, Seitz O, Vilan A, Cohen H, Salomon E, Kahn A, Cahen D (2008) Electronic current transport through molecular monolayers: comparison between Hg/alkoxy and alkyl monolayer/Si(100) junctions. Adv Mater 20:3931–3936

    CAS  Google Scholar 

  162. Shpaisman H, Salomon E, Nesher G, Vilan A, Cohen H, Kahn A, Cahen D (2009) Electrical transport and photoemission experiments of alkylphosphonate monolayers on GaAs. J Phys Chem C 113:3313–3321

    CAS  Google Scholar 

  163. Guérin D, Lenfant S, Godey S, Vuillaume D (2010) Synthesis and electrical properties of fullerene-based molecular junctions on silicon substrate. J Mater Chem 20:2680–2690

    Google Scholar 

  164. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 47:142–144

    CAS  Google Scholar 

  165. Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM (2010) Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:3611–3619

    CAS  Google Scholar 

  166. Rampi MA, Schueller OJ, Whitesides GM (1998) Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness. Appl Phys Lett 72:1781–1783

    CAS  Google Scholar 

  167. Rampi MA, Whitesides GM (2002) A versatile experimental approach for understanding electron transport through organic materials. Chem Phys 281:373–391

    CAS  Google Scholar 

  168. Holmlin RE, Ismagilov RF, Haag R, Mujica V, Ratner MA, Rampi MA, Whitesides GM (2001) Correlating electron transport and molecular structure in organic thin films. Angew Chem Int Ed 40:2316–2320

    CAS  Google Scholar 

  169. Anariba F, McCreery RL (2002) Electronic conductance behavior of carbon-based molecular junctions with conjugated structures. J Phys Chem B 106:10355–10362

    CAS  Google Scholar 

  170. Hossam H, Cahen D (2008) Contacting organic molecules by soft methods: towards molecule-based electronic devices. Acc Chem Res 41:359–366

    Google Scholar 

  171. Duati M, Grave C, Tcbeborateva N, Wu J, Müllen K, Shaporenko A, Zharnikov M, Kriebel JK, Whitesides GM, Rampi MA (2006) Electron transport across hexa-peri-hexabenzocoronene units in a metal–self-assembled monolayer–metal junction. Adv Mater 18:329–333

    CAS  Google Scholar 

  172. De Redge PJF, Williams SA, Therien MJ (1995) Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer. Science 269:1409–1413

    Google Scholar 

  173. Beratan DN, Betts JN, Onuchic JN (1991) Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 252:1285–1288

    CAS  Google Scholar 

  174. Perrine TM, Dunietz BD (2008) Conductance of a cobalt(II) terpyridine complex based molecular transistor: a computational analysis. J Phys Chem A 112:2043–2048

    CAS  Google Scholar 

  175. Chabinyc ML, Chen X, Holmlin RE, Jacobs H, Skulason H, Frisbie CD, Mujica V, Ratner MA, Rampi MA, Whitesides GM (2002) Molecular rectification in a metal–insulator–metal junction based on self-assembled monolayers. J Am Chem Soc 124:11730–11736

    CAS  Google Scholar 

  176. Le JD, He Y, Hoye TR, Mead CC, Kiehl RA (2003) Negative differential resistance in a bilayer molecular junction. Appl Phys Lett 83:5518

    CAS  Google Scholar 

  177. Duati M, Cattabriga M, Adamo V, Belser P, Shaporenko A, Zharnikov M, Rampi M A. to be submitted

    Google Scholar 

  178. Young RL, Nguyen PT, Slowinski K (2003) Long-range electron transfer through monolayers and bilayers of alkanethiols in electrochemically controlled Hg-Hg tunneling junctions. J Am Chem Soc 125:5948–5953

    Google Scholar 

  179. Selzer Y, Salomon A, Cahen D (2002) The importance of chemical bonding to the contact for tunneling through alkyl chains. J Phys Chem B 106:10432–10439

    CAS  Google Scholar 

  180. Selzer Y, Salomon A, Cahen D (2002) Effect of molecule-metal electronic coupling on through-bond hole tunneling across metal-organic monolayer-semiconductor junctions. J Am Chem Soc 124:2886–2887

    CAS  Google Scholar 

  181. Haag R, Rampi MA, Holmlin RE, Whitesides GM (1999) Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J Am Chem Soc 121:7895–7906

    CAS  Google Scholar 

  182. York RL, Nguyen PT, Slowinski K (2003) Long-range electron transfer through monolayers and bilayers of alkanethiols in electrochemically controlled Hg-Hg tunneling junctions. J Am Chem Soc 125:5948–5953

    CAS  Google Scholar 

  183. Yu HZ, Liu YJ (2003) Alkyl monolayer passivated metal–semiconductor diodes: 2: Comparison with native silicon oxide. ChemPhysChem 4:335–342

    Google Scholar 

  184. Tran E, Rampi MA, Whitesides GM (2004) Electron transfer in a Hg-SAM//SAM-Hg junction mediated by redox centers. Angew Chem Int Ed 43:3835–3839

    CAS  Google Scholar 

  185. Schmickler W, Rampi MA, Tran E, Whitesides GM (2004) Electron exchange between two electrodes mediated by two electroactive adsorbate. Faraday Discuss 125:171–177

    CAS  Google Scholar 

  186. Tran E, Cohen A, Murray R, Rampi MA, Whitesides GM (2009) Redox site-mediated charge transport in a Hg–SAM//Ru(NH3)63+/2+//SAM–Hg junction with a dynamic interelectrode separation: compatibility with redox cycling and electron hopping mechanisms. J Am Chem Soc 131:2141–2150

    CAS  Google Scholar 

  187. Bard AJ, Crayston JA, Kittlesen GP, Shea TV, Wrighton MS (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal Chem 58:2321–2331

    CAS  Google Scholar 

  188. Pickup PG, Murray RW (1983) Redox conduction in mixed-valent polymers. J Am Chem Soc 105:4510–4514

    CAS  Google Scholar 

  189. Wittstock G, Burchardt M, Pust SE, Shen Y, Zhao C (2007) Scanning electrochemical microscopy for direct imaging of reaction rates. Angew Chem Int Ed 46:1584–1617

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Branchi, B., Simeone, F.C., Rampi, M.A. (2011). Active and Non-Active Large-Area Metal–Molecules–Metal Junctions. In: Metzger, R. (eds) Unimolecular and Supramolecular Electronics II. Topics in Current Chemistry, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_221

Download citation

Publish with us

Policies and ethics