Skip to main content

Environmentally Friendly Organic Synthesis Using Bismuth(III) Compounds

  • Chapter
  • First Online:
Bismuth-Mediated Organic Reactions

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 311))

Abstract

With increasing environmental concerns, the need for environmentally friendly organic synthesis has gained increased importance. In this regard, bismuth(III) compounds are especially attractive as “green” reagents and catalysts for organic synthesis. Bismuth(III) compounds are remarkably nontoxic, relatively air and moisture stable, and easy to handle. The contributions from our laboratory in the last 5 years in the field of applications of bismuth(III) compounds as catalysts are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have previously reported that when the rearrangement of trans-stilbene oxide was carried out with CF3SO3H, the solution turned red and the product diphenylacetaldehyde was less pure than that obtained with bismuth triflate. This observation points to the role of bismuth(III) triflate as a Lewis acid in the rearrangement of epoxides and not to protic acid catalysis by triflic acid released by hydrolysis of bismuth triflate.

References

  1. Leonard NM, Wieland LC, Mohan RS (2002) Applications of bismuth(III) compounds in organic synthesis. Tetrahedron 58:8373–8397

    Article  CAS  Google Scholar 

  2. Gaspard-Iloughmane H, Le Roux C (2004) Bismuth(III) triflate in organic synthesis. Eur J Org Chem 2004:2517–2532

    Article  Google Scholar 

  3. Reglinski J (1998) In: Norman NC (ed) Chemistry of arsenic, antimony and bismuth. Blackie Academic, New York, pp 403–440

    Google Scholar 

  4. Marshall JA (1997) Organic chemistry of Bi(III) compounds. Chemtracts 10:1064–1075

    CAS  Google Scholar 

  5. Suzuki H, Ikegami T, Matano Y (1997) Bismuth in organic transformations. Synthesis:249–267

    Google Scholar 

  6. Suzuki H, Matano Y (2001) Organobismuth chemistry. Elsevier, Amsterdam

    Google Scholar 

  7. Ollevier T, Nadeau E, Desyroy V (2009) Bismuth(III) trifluoromethanesulfonate. In: eE-EROS Encyclopedia of reagents for organic synthesis 41. Wiley, New York

    Google Scholar 

  8. Greene TW, Wuts PGM (1999) Protective groups in organic synthesis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  9. Van Heerden FR, Huyser JJ, Bradley D, Williams G, Holzapfel CW (1998) Palladium-catalyzed substitution reactions of geminal allylic diacetates. Tetrahedron Lett 39:5281–5284

    Article  Google Scholar 

  10. Trost BM, Lee CB (2001) Geminal dicarboxylates as carbonyl surrogates for asymmetric synthesis part II scope and applications. J Am Chem Soc 123:3687–3696

    Article  CAS  Google Scholar 

  11. Yadav JS, Subba Reddy VB, Srihari P (2000) Scandium triflate catalyzed allylation of acetals and gem-diacetates: a facile synthesis of homoallyl ethers and acetates. Synlett 673

    Google Scholar 

  12. Yadav JS, Reddy BVS, Madhuri C, Sabitha G (2001) Indium(III) chloride catalyzed allylation of gem-diacetates: a facile synthesis of homoallyl acetates. Chem Lett:18

    Google Scholar 

  13. Carrigan MC, Eash KJ, Oswald MC, Mohan RS (2001) An efficient method for the chemoselective synthesis of acylals from aromatic aldehydes using bismuth triflate. Tetrahedron Lett 42:8133–8135

    Article  CAS  Google Scholar 

  14. Aggen DH, Arnold JN, Hayes PD, Smoter NJ, Mohan RS (2004) Bismuth compounds in organic synthesis. Bismuth nitrate catalyzed chemoselective synthesis of acylals from aromatic aldehydes. Tetrahedron 60:3675–3679

    Article  CAS  Google Scholar 

  15. Brezinski B, Grech E, Malarski Z, Sobczyk L (1991) Protonation of 1,8-bis(dimethylamino)naphthalene by various acids in acetonitrile. J Chem Soc Perkin Trans II :857–859

    Google Scholar 

  16. Scherz MW Patent PCT US99.20306

    Google Scholar 

  17. Ahluwalia VK, Nayal L, Kalia N, Bala S, Tehim AK (1987) Synthesis and antimicrobial activity of substituted 3,4-dihydro-2H–1-benzopyrans. Ind J Chem 26B:384–386

    CAS  Google Scholar 

  18. Hiessböck R, Wolf C, Richter E, Hitzler M, Chiba P, Kratzel M, Ecker G (1999) Synthesis and in vitro multidrug resistance modulating activity of a series of dihydrobenzopyrans and tetrahydroquinolines. J Med Chem 42:1921–1926

    Article  Google Scholar 

  19. Usse S, Guillaumet G, Viaud M-C (1997) A new route to 3,4-dihyrdo-2H-1-benzopyrans substituted at 3-position via palladium-catalyzed reactions. Tetrahedron Lett 38:5501–5502

    Article  CAS  Google Scholar 

  20. Yadav JS, Subba Reddy BV, Hashim SR (2000) A new and efficient synthesis of 2,2-disubstituted-3,4-2H-1-benzopyrans. J Chem Soc Perkin Trans I:3082–3084

    Google Scholar 

  21. Yadav JS, Subba Reddy BV, Rao PT (2000) Scandium triflate catalyzed formation of 2,4-dimethoxy-2-methylbenzopyrans. Tetrahedron Lett 41:7943–7946

    Article  CAS  Google Scholar 

  22. Nguyen MP, Arnold JN, Peterson KE, Mohan RS (2004) Environment-friendly organic synthesis using bismuth compounds: bismuth triflate catalyzed synthesis of substituted 3,4-dihydro-2 H-1-benzopyrans. Tetrahedron Lett 45:9369–9371

    Article  CAS  Google Scholar 

  23. Kam T-S, Subramaniam G, Lim T (2001) Mersinines A and B and mersiloscine, novel quinolnic alkaloids from Kopsia. Tetrahedron Lett 42:5977–5980

    Article  CAS  Google Scholar 

  24. Kam T, Subramaniam G (2004) Mersilongine, a novel tetracyclic quinolinic alkaloid from Kopsia. Tetrahedron Lett 45:3521–3524

    Article  CAS  Google Scholar 

  25. Leeson PD, Carling RW, Moore KW, Moseley AM, Smith JD, Stevenson G, Chan T, Baker FAC, Grimwood S, Kemp JA, Marshall GR, Hoogsteen K (1992) 4-Amido-2-carboxytetrahydroquinolines, structure-activity relationships for antagonism at the glycine site of the NMDA receptor. J Med Chem 35:1954–1968

    Article  CAS  Google Scholar 

  26. Witherup KM, Ransom RW, Graham AC, Bernard AM, Salvatore MJ, Lumma WC, Anderson PS, Pitzenberger SM, Varga SL (1995) Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). J Am Chem Soc 117:6682–6685

    Article  CAS  Google Scholar 

  27. Dorey G, Lockhart B, Lestage P, Casara P (2000) New quinolinic derivatives as centrally active antioxidants. Biorg Med Chem Lett 10:935–939

    Article  CAS  Google Scholar 

  28. Evans S (1992) Eur Pat Appl 497735

    Google Scholar 

  29. Knuebel G, Konrad G, Hoeffkes H, Lieske E (1994) German Patent DE 93-4319646

    Google Scholar 

  30. Himeno K (1987) Patent application Kokai Tokkyo Koho JP 62039663

    Google Scholar 

  31. Walter H (1988) German Patent DE 3817565

    Google Scholar 

  32. Yamaoka T, Koseki K, Suga S, Mitekura H, Yasui S (1994) Patent application Kokai Tokkyo Koho JP 06107719

    Google Scholar 

  33. Katritzky AR, Rachwal S, Rachwal B (1996) Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines. Tetrahedron 52:15031–15070

    Article  CAS  Google Scholar 

  34. Glushkov VA, Tolstikov AG (2007) Synthesis of substituted 1,2,3,4-tetrahydroquinones by the povarov reaction: new potentials of the classical reaction. Russ Chem Rev 77:137–159

    Article  Google Scholar 

  35. Makioka Y, Shindo T, Taniguchi Y, Takaki K, Fujiwara Y (1995) Ytterbium(III) triflate catalyzed synthesis of quinolinic derivatives from N-arylaldimines and vinyl ethers. Synthesis:801–804

    Google Scholar 

  36. Kobayashi S, Ishitani H, Nagayama S (1995) Ln(OTf)3- or Sc(OTf)3-catalyzed three components coupling reactions between aldehydes, amines, and dienes or alkenes: efficient synthesis of pyridine and quinoline derivatives. Chem Lett:423–424

    Google Scholar 

  37. Batey RA, Powell DA, Acton A, Lough AJ (2001) Dysprosium(III) catalyzed formation of hexahydro[3,2-c]quinolines via 2:1 coupling of dihydrofuran with substituted anilines. Tetrahedron Lett 42:7935–7939

    Article  CAS  Google Scholar 

  38. Zhang J, Li C-J (2002) InCl3-catalyzed domino reaction of aromatic amines with cyclic enol ethers in water: a highly efficient synthesis of new 1,2,3,4-tetrahydroquinoline derivatives. J Org Chem 67:3969–3971

    Article  CAS  Google Scholar 

  39. Babu G, Perumal PT (1998) Indium trichloride (InCl3) catalyzed imino Diels-Alder reactions: an efficient synthesis of cyclopentaquinolines, azabicyclooctanones and azabicyclononanones. Tetrahedron 54:1627–1638

    Article  CAS  Google Scholar 

  40. Fadel F, Titouani SL, Soufiaoui M, Ajamay H, Mazzah A (2004) Synthèse de nouveaux dérives tétrahydroquinoléines et quinoléines via la réaction d’aza-Diels-Alder suivie d’aromatisation. Tetrahedron Lett 45:5905–5908

    Article  CAS  Google Scholar 

  41. Kamal A, Prasad BR, Ramana AV, Babu AH, Reddy KS (2004) FeCl3-NaI mediated reactions of aryl azides with 3,4-dihydro-2 H-pyran: a convenient synthesis of pyranoquinolines. Tetrahedron Lett 45:3507–3509

    Article  CAS  Google Scholar 

  42. Lin XF, Cui SL, Wang YG (2006) A highly efficient synthesis of 1,2,3,4-tetrahydroquinolines by molecular iodine-catalyzed domino reactions of anilines with cylci enol ethers. Tetrahedron Lett 47:4509–4512

    Article  CAS  Google Scholar 

  43. Savitha G, Perumal PT (2006) An efficient one-pot synthesis of tetrahydroquinoline derivatives via an aza Diels-Alder reaction mediated by CAN in an aqueous medium and oxidation to heteroaryl quinolines. Tetrahedron Lett 47:3589–3593

    Article  CAS  Google Scholar 

  44. Sridharan V, Avendaño C, Menéndez JC (2007) CAN-catalyzed three-component reaction between anilines and alkyl vinyl ethers: stereoselective synthesis of 2-methyl-1,2,3,4-tetrahydroquinolines and studies on their aromatization. Tetrahedron 63:673–681

    Article  CAS  Google Scholar 

  45. Sridharan V, Avendaño C, Menéndez JC (2008) New findings on the cerium(IV) ammonium nitrate catalyzed Povarov reaction: stereoselective synthesis of 4-alkoxy-2-aryl-1,2,3,4-tetrahydroquinoline derivatives. Synthesis:1039–1044

    Google Scholar 

  46. Kamal A, Prasad BR, Khan MNA (2007) TMSCl-NaI-mediated reaction of aryl azides with cyclic enol ethers: an efficient one-pot synthesis of 1,2,3,4-tetrahydroquinolines. J Mol Catal A Che 274:133–136

    Article  CAS  Google Scholar 

  47. Di Salvo A, Spanedda MV, Ourévitch M, Crousse B, Bonnet-Delpon D (2003) Uncatalyzed domino reaction in hexafluoroisopropanol: a simple protocol for the synthesis of tetrahydroquinoline derivatives. Synthesis 14:2231–2235

    Google Scholar 

  48. Rogers JL, Ernat JJ, Yung H, Mohan RS (2009) Environmentally friendly organic synthesis using bismuth compounds: Bismuth(III) bromide catalyzed synthesis of substituted tetrahydroquinoline derivatives. Catal Commun 10:625–626

    Article  CAS  Google Scholar 

  49. Oppolzer W, Snieckus V (1978) Intramolecular ene reactions in organic synthesis. Angew Chem 17:476–486

    Article  Google Scholar 

  50. Snider BB (1980) Lewis-acid catalyzed ene reactions. Acc Chem Res 13:426–432

    Article  CAS  Google Scholar 

  51. Mikami K, Shimizu M (1992) Asymmetric ene reactions in organic synthesis. Chem Rev 92:1021–1050

    Article  CAS  Google Scholar 

  52. Trost BM (1991) Comprehensive organic synthesis. Pergamon, New York

    Google Scholar 

  53. Nakatani Y, Kawashima K (1978) A highly stereoselective preparation of l-isopulegol. Synthesis:147–148

    Google Scholar 

  54. Aggarwal VK, Vennall GP, Davey PN, Newman C (1998) Scandium trifluoromethanesulfonate, an efficient catalyst for the intermolecular carbonyl-ene reaction and the intramolecular cyclization of citronellal. Tetrahedron Lett 39:1997–2000

    Article  CAS  Google Scholar 

  55. Andrade CK, Vercillo OE, Rodrigues JP, Silveira DP (2004) Intramolecular ene reactions catalyzed by NbCl5, TaCl5 and InCl3. J Braz Soc 15:813–817

    Article  CAS  Google Scholar 

  56. Williams JT, Bahia PS, Snaith JS (2002) Synthesis of 3,4-disubstituted piperidines by carbonyl ene and prins cyclizations: a switch in diastereoselectivity between Lewis and Bronsted acid catalysts. Org Lett 4:3727–3730

    Article  CAS  Google Scholar 

  57. Goldsmith DJ (1962) Cyclization of epoxy olefins: reaction of geraniolene monoepoxide with boron fluoride etherate. J Am Chem Soc 84:3913–3918

    Article  CAS  Google Scholar 

  58. Corey EJ, Sodeoka M (1991) Cyclization of epoxy olefins: reaction of geraniolene monoepoxide with boron fluoride etherate. Tetrahedron Lett 32:7005–7008

    Article  CAS  Google Scholar 

  59. van Tamelen EE, Storni A, Hessler EJ, Schwartz M (1963) The biogenetically patterned in vitro oxidation-cyclization of farnesyl acetate. J Am Chem Soc 85:3295–3296

    Article  Google Scholar 

  60. van Tamelen EE, Willett JD, Clayton RB, Lord KE (1966) Enzymic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J Am Chem Soc 88:4752–4754

    Article  Google Scholar 

  61. van Tamelen EE, McCormick JP (1969) Terpene terminal epoxides. Mechanistic aspects of conversion to the bicyclic level J Am Chem Soc 91:1847–1848

    Google Scholar 

  62. van Tamelen EE, Sharpless KB (1969) Terpene terminal epoxides. Skeletal rearrangement accompanying bicyclization of squalene 2,3-oxide. J Am Chem Soc 91:1848–1849

    Article  Google Scholar 

  63. van Tamelen EE, Murphy JW (1970) Formation of the lanosterol system through biogenetic-type cyclization. J Am Chem Soc 92:7204–7206

    Article  Google Scholar 

  64. van Tamelen EE, Anderson RJ (1970) Biogenetic-type total synthesis. 24,25-Dihydrolanosterol, 24,25-dihydro-13(17)-protosterol, isoeuphenol, (-)-isotirucallol, and parkeol. J Am Chem Soc 94:8225–8228

    Article  Google Scholar 

  65. van Tamelen EE (1974) Bioorganic chemistry. Total synthesis of tetra- and pentacyclic triterpenoids. Acc Chem Res 8:152–158

    Article  Google Scholar 

  66. van Tamelen EE, Leiden TM (1982) Direct sterol synthesis by the nonenzymic cyclization of an acarbocyclic monosubstituted epoxide. J Am Chem Soc 104:2061–2062

    Article  Google Scholar 

  67. Sharpless KB (1970) d,1-Malabaricanediol. First cyclic natural product derived from squalene in a nonenzymic process. J Am Chem Soc 92:6999–7001

    Article  CAS  Google Scholar 

  68. van Tamelen EE, Carlson JG, Russell RK, Zawacky SR (1981) Total synthesis of (±)-maritimol. J Am Chem Soc 103:4615–4616

    Article  Google Scholar 

  69. Armstrong RJ, Weiler L (1986) Synthesis of (±)-karahana ether and a (±)-labdadienoic acid by the electrophilic cyclization of epoxy allylsilanes. Can J Chem 64:584–596

    Article  CAS  Google Scholar 

  70. Tanis SP, Chuang Y-H, Head DB (1988) Furans in synthesis. 8. Formal total syntheses of (±)- and (+)-aphidicolin. J Org Chem 53:4929–4938

    Article  CAS  Google Scholar 

  71. Procter G, Russell AT, Murphy PJ, Tan TS, Mather AN (1988) Epoxy-silanes in organic synthesis. Tetrahedron 44:3953–3973

    Article  CAS  Google Scholar 

  72. Pettersson L, Frejd T (2001) Cyclizations versus rearrangements in the reactions of some epoxyolefins with Lewis acids. J Chem Soc Perkin Trans 1:789

    Article  Google Scholar 

  73. Maruoka K, Murase N, Ooi T, Yamamoto H (1991) A new cyclization of olefinic epoxides by modified organoaluminum reagents via epoxide rearrangement and subsequent intramolecular ene reaction. Synlett:857–858

    Google Scholar 

  74. Taylor SK, Dickinson MG, May SA, Pickering DA, Sadek PC (1998) The use of Nafion-H to promote epoxide cyclizations. Synthesis 1998:1133–1136

    Google Scholar 

  75. Dumeunier R, Markó IE (2004) On the role of triflic acid in the metal triflate-catalysed acylation of alcohols. Tetrahedron Lett 45:825–829

    Article  CAS  Google Scholar 

  76. Bhatia KA, Eash KJ, Leonard NM, Oswald MC, Mohan RS (2001) A facile and efficient method for the rearrangement of aryl-substituted epoxides to aldehydes and ketones using bismuth triflate. Tetrahedron Lett 42:8129–8132

    Article  CAS  Google Scholar 

  77. Colvin EW, Raphael RA, Roberts JS (1971) Total synthesis of (+-)-trichodermin. J Chem Soc Chem Commun:858–859

    Google Scholar 

  78. Ellison RA, Lukenbach ER, Chiu C-W (1975) Cyclopentenone synthesis by aldol condensation. Synthesis of a key prostaglandin intermediate. Tetrahedron Lett 16:499–502

    Article  Google Scholar 

  79. Lipshutz BH, Harvey DF (1982) Hydrolysis of acetals and ketals using lithium tetrafluoroborate. Synth Commun 12:267–277

    Article  CAS  Google Scholar 

  80. Coppola GM (1984) Amberlyst-15, a superior acid catalyst for the cleavage of acetal. Synthesis:1021–1023

    Google Scholar 

  81. Kametani T, Kondoh H, Honda T, Ishizone H, Suzuki Y, Mori W (1989) Simple and chemoselective deprotection of acetals using aqueous dimethyl sulfoxide. Chem Lett 5:901–904

    Article  Google Scholar 

  82. Eash KJ, Pulia MS, Wieland LC, Mohan RS (2000) A simple chemoselective method for the deprotection of acetals and ketals using bismuth nitrate pentahydrate. J Org Chem 65:8399–8401

    Article  CAS  Google Scholar 

  83. Sabitha G, Babu RS, Reddy EV, Yadav JS (2000) A novel, efficient, and selective cleavage of acetals using bismuth(III) chloride. Chem Lett 9:1074–1075

    Article  Google Scholar 

  84. Balme G, Goré J (1983) Conversion of acetals and ketals to carbonyl compounds promoted by titanium tetrachloride. J Org Chem 48:3336–3338

    Article  CAS  Google Scholar 

  85. Kim KS, Song YH, Lee BH, Hahn CS (1986) Efficient and selective cleavage of acetals and ketals using ferric chloride adsorbed on silica gel. J Org Chem 51:404–406

    Article  CAS  Google Scholar 

  86. Johnstone C, Kerr W J, Scott J S (1996) Selective cleavage of ketals and acetals under neutral, anhydrous conditions using triphenylphosphine and carbon tetrabromide. Chem Commun 1996:341–342

    Google Scholar 

  87. Marcantoni E, Nobili F, Bartoli G, Bosco M, Sambri L (1997) Cerium(III) chloride, a novel reagent for nonaqueous selective conversion of dioxolanes to carbonyl compounds. J Org Chem 62:4183–4184

    Article  CAS  Google Scholar 

  88. Sen SE, Roach SL, Boggs JK, Ewing GJ, Magrath J (1997) Ferric chloride hexahydrate: a mild hydrolytic agent for the deprotection of acetals. J Org Chem 62:6684–6686

    Article  CAS  Google Scholar 

  89. Kaur G, Trehan A, Trehan S (1998) Highly efficient deprotection of acetals and ketals under neutral and anhydrous conditions using (trimethylsilyl)bis(fluorosulfuryl)imide. J Org Chem 63:2365–2366

    Article  CAS  Google Scholar 

  90. Markó IE, Ates A, Gautier A, Leroy B, Plancher J-M, Quesnel Y, Vanherck J-C (1999) Cerium(IV)-catalyzed deprotection of acetals and ketals under mildly basic conditions. Angew Chem Int Ed 38:3207–3209

    Article  Google Scholar 

  91. Carrigan MD, Sarapa D, Smith RC, Wieland LC, Mohan RS (2002) A simple and efficient chemoselective method for the catalytic deprotection of acetals and ketals using bismuth triflate. J Org Chem 67:1027–1030

    Article  CAS  Google Scholar 

  92. Dalpozzo R, De Nino A, Maiuolo L, Procopio A, Tagarelli A, Sindona G, Bartoli G (2002) Simple and efficient chemoselective mild deprotection of acetals and ketals using cerium(III) triflate. J Org Chem 67:9093–9095

    Article  CAS  Google Scholar 

  93. Krishnaveni NS, Surendra K, Reddy MA, Nageswar YVD, Rao KR (2003) Highly efficient deprotection of aromatic acetals under neutral conditions using beta-cyclodextrin in water. J Org Chem 68:2018–2019

    Article  CAS  Google Scholar 

  94. Agarwal A, Vankar YD (2005) Selective deprotection of terminal isopropylidene acetals and trityl ethers using HClO4 supported on silica gel. Carbohydrate Res 340:1661–1667

    Article  CAS  Google Scholar 

  95. Sun J, Dong Y, Cao L, Wang X, Wang S, Hu Y (2004) Highly efficient chemoselective deprotection of O, O-acetals and O, O-ketals catalyzed by molecular iodine in acetone. J Org Chem 69:8932–8934

    Article  CAS  Google Scholar 

  96. Bailey AD, Cherney SM, Anzalone PW, Anderson ED, Ernat JJ, Mohan RS (2006) A convenient method for in situ generation of I2 using CuSO4/NaI and its applications to the deprotection of acetals, etherifications and iodolactonizations. Synlett 2:215–218

    Google Scholar 

  97. Le Roux C, Gaspard-Iloughmane H, Dubac J, Jaud J, Vignaux P (1993) New effective catalysts for Mukaiyama-aldol and -Michael reactions: bismuth trichloride-metallic iodide systems. J Org Chem 58:1835–1839

    Article  Google Scholar 

  98. Komatsu N, Uda M, Suzuki H (1995) Bismuth(III) halides and sulfate as highly efficient catalyst for the sulfenylation of carbonyl and related compounds. Synlett:984–986

    Google Scholar 

  99. Keramane EM, Boyer B, Roque J-P (2001) Reactivity of bismuth(III) halides towards alcohols. A tentative to mechanistic investigation Tetrahedron 57:1909–1916

    CAS  Google Scholar 

  100. Donnelly S, Thomas EJ, Fielding M (2004) 1,5-Stereocontrol in reactions of 5-benzyloxy-4-methylpent-2-enyl bromides with aldehydes mediated by Bi(0): synthesis of aliphatic compounds with 1,5-syn-related methyl groups. Tetrahedron Lett 45:6779–6782

    Article  CAS  Google Scholar 

  101. Cunha S, Rodrigues MT (2006) The first bismuth(III)-catalyzed guanylation of thioureas. Tetrahedron Lett 47:6955–6956

    Article  CAS  Google Scholar 

  102. Podgorski DM, Krabbe SW, Le L, Sierszulski PS, Mohan RS (2010) Bismuth compounds in organic synthesis. Synthesis of dioxanes, dioxepines and dioxolanes catalyzed by bismuth(III) triflate. Synthesis:2771–2775

    Google Scholar 

  103. Langer SH, Connell S, Wender I (1958) Preparation and properties of trimethylsilyl ethers and related compounds. J Org Chem 23:50–58

    Article  CAS  Google Scholar 

  104. Leonard NM, Oswald MC, Freiberg DA, Nattier BA, Smith RC, Mohan RS (2002) A simple and versatile method for the synthesis of acetals from aldehydes and ketones using bismuth triflate. J Org Chem 67:5202–5207

    Article  CAS  Google Scholar 

  105. Wieland LC, Zerth HM, Mohan RS (2002) Bismuth triflate catalyzed allylation of acetals: a simple and mild method for synthesis of homoallyl ethers. Tetrahedron Lett 43:4597–4600

    Article  CAS  Google Scholar 

  106. Anzalone PW, Baru AR, Danielson EM, Hayes PD, Nguyen MP, Panico AF, Smith RC, Mohan RS (2005) Bismuth compounds in organic synthesis: a one-pot synthesis of homoallyl ethers and homoallyl acetates from aldehydes catalyzed by bismuth triflate. J Org Chem 70:2091–2096

    Article  CAS  Google Scholar 

  107. Mekhalfia A, Markó IE (1991) The silyl modified Sakurai (SMS) reaction. An efficient and versatile one-pot synthesis of homoallylic ethers. Tetrahedron Lett 32:4779–4782

    Article  CAS  Google Scholar 

  108. Bartlett PA, Johnson WS, Elliott JD (1983) Asymmetric synthesis via acetal templates. 3. On the stereochemistry observed in the cyclization of chiral acetals of polyolefinic aldehydes; formation of optically active homoallylic alcohols. J Am Chem Soc 105:2088–2089

    Google Scholar 

  109. Denmark SE, Almstead NG (1991) On the stereoselectivity opening of achiral dioxane acetals. J Org Chem 55:6458–6467

    Article  Google Scholar 

  110. Denmark SE, Almstead NG (1991) Stereoselective opening of chiral dioxane acetals. Nucleophile dependence J Org Chem 55:6485–6487

    Google Scholar 

  111. Hunter R, Michael JP, Tomlinson GD (1994) Allylation using allylborates. Tetrahedron 50:871–888

    Article  CAS  Google Scholar 

  112. Jiang S, Agoston GE, Chen T, Cabal M-P, Turos E (1995) BF3·Et2O-promoted allylation reactions of allyl(cyclopentadienyl)iron(II) dicarbonyl complexes with carbonyl compounds. Organometallics 14:4697–4709

    Article  CAS  Google Scholar 

  113. Suzuki T, Oriyama T (1999) Novel reactions of ethylene acetals with silyl-substituted nucleophiles. A mild and efficient procedure for the synthesis of homoallyl alkyl ethers and unsymmetrical dialkyl ethers. Synth Commun 29:1263–1269

    Article  CAS  Google Scholar 

  114. Egami Y, Takayanagi M, Tanino K, Kuwajima I (2000) Regiocontrolled ring opening reactions of a cyclic acetal. Heterocycles 52:583–586

    Article  CAS  Google Scholar 

  115. Morelli C, Durì L, Saladino A, Speranza G, Manitto P (2004) Stereoselective TiCl4-promoted nucleophilic substitution at C-2 of (4S,5S)-2-alkyl-4-methyl-5-trifluoromethyl-1,3-dioxolanes. Synthesis:3005–3010

    Google Scholar 

  116. Carrel F, Giraud S, Spertini O, Vogel P (2005) New non-hydrolyzable mimetics of sialyl Lewis x and their binding affinity to P-selection. Helv Chim Acta 87:1048–1070

    Article  Google Scholar 

  117. Spafford MJ, Christensen JE, Huddle MG, Lacey JR, Mohan RS (2008) Environmentally friendly organic synthesis using bismuth compounds. Bismuth triluoromethanesulfonate-catalyzed allylation of dioxolanes. Aust J Chem 61:419–421

    Article  CAS  Google Scholar 

  118. Krabbe SW, Spafford MJ, Mohan RS (2010) Bismuth(III) triflate catalyzed allylation of cyclic acetals and dithianes followed by in situ derivatization to generate highly functionalized esters. Org Prep Proced Int 42:363–371

    Article  CAS  Google Scholar 

  119. Maeda K, Shinokubo H, Oshima K (1997) Lewis acid-induced chemo- and stereoselective allylation of α-iodo mixed acetal with allylsilane. J Org Chem 62:6429–6431

    Article  CAS  Google Scholar 

  120. Mohammadpoor-Baltork I, Khosropour AR (2002) Bi(III) salts as new catalysts for the selective conversion of trimethylsilyl and tetrahydropyranyl ethers to their corresponding acetates and formates. Synth Commun 32:2433–2439

    Google Scholar 

  121. Mohammadpoor-Baltork I, Khosropour AR (2002) Efficient and selective conversion of trimethylsilyl and tetrahydropyranyl ethers to their corresponding acetates and benzoates catalyzed by bismuth(III) salts. Monatsh Chem 133:189–193

    Google Scholar 

  122. Krabbe SW, Angeles VV, Mohan RS (2010) Bismuth(III) bromide in organic synthesis. A catalytic method for the allylation of tetrahydrofuranyl and tetrahydropyranyl ethers. Tetrahedron Lett 51:5643–5645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram S. Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Krabbe, S.W., Mohan, R.S. (2011). Environmentally Friendly Organic Synthesis Using Bismuth(III) Compounds. In: Ollevier, T. (eds) Bismuth-Mediated Organic Reactions. Topics in Current Chemistry, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_194

Download citation

Publish with us

Policies and ethics