Skip to main content

Issues and Challenges in Vapor-Deposited Top Metal Contacts for Molecule-Based Electronic Devices

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 312))

Abstract

Metal vapor deposition to form ohmic contacts is commonly used in the fabrication of organic electronic devices because of significant manufacturability advantages. In the case of single molecular layer devices, however, the extremely small thickness, typically ~1–2nm, presents serious challenges in achieving good contacts and device integrity. This review focuses on recent scientific aspects of metal vapor deposition on monolayer thickness molecular films, particularly self-assembled monolayers, ranging across mechanisms of metal nucleation, metal-molecular group interactions and chemical reactions, diffusion of metal atoms within and through organic films, and the correlations of these and other factors with device function. Results for both non-reactive and reactive metal deposition are reviewed. Finally, novel strategies are considered which show promise for providing highly reliable and durable metal/organic top contacts for use in metal–molecule–metal junctions for device applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our preliminary cp-AFM results of Au thermal deposition on octanedithiol SAM under UHV condition at room temperature and 10 K revealed short-circuit filament generation.

  2. 2.

    Our preliminary AFM observation of Pb thermal deposition on hexadecanedithiol SAM on Au/mica under UHV condition at room temperature revealed continuous penetration of Pb as unpublished results.

References

  1. Scott JC (2003) Metal-organic interface and charge injection in organic electronic devices. J Vac Sci Technol A 21(3):521–531

    CAS  Google Scholar 

  2. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117

    CAS  Google Scholar 

  3. Faupel F, Willecke R, Thran A (1998) Diffusion of metals in polymers. Mater Sci Eng R 22(1):1–55

    Google Scholar 

  4. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10(5):365–377

    CAS  Google Scholar 

  5. Mantooth BA, Weiss PS (2003) Fabrication, assembly, and characterization of molecular electronic components. Proc IEEE 9(11):1785–1802

    Google Scholar 

  6. Mitschke U, Bauerle P (2000) The electroluminescence of organic materials. J Mater Chem 10(7):1471–1507

    CAS  Google Scholar 

  7. Pesavento PV, Chesterfield RJ, Newman CR, Frisbie D (2004) Gated four-probe measurements on pentacene thin-film transistors: contact resistance as a function of gate voltage and temperature. J Appl Phys 96(12):7312–7324

    CAS  Google Scholar 

  8. Shen C, Kahn A, Schwartz J (2001) Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum. J Appl Phys 89(1):449–459

    CAS  Google Scholar 

  9. Watkins NJ, Yan L, Gao Y (2002) Electronic structure symmetry of interfaces between pentacene and metals. Appl Phys Lett 80(23):4384–4386

    CAS  Google Scholar 

  10. Durr AC, Schreiber F, Kelsch M, Carstanjen HD, Dosch H, Seeck OH (2003) Morphology and interdiffusion behavior of evaporated metal films on crystalline diindenoperylene thin films. J Appl Phys 93(9):5201–5209

    CAS  Google Scholar 

  11. Bhatia R, Garrison BJ (1997) Phase transitions in a methyl-terminated monolayer self-assembled on Au{111}. Langmuir 13(4):765–769

    CAS  Google Scholar 

  12. Bhatia R, Garrison BJ (1997) Structure of c(4x2) superlattice in alkanethiolate self-assembled monolayers. Langmuir 13(15):4038–4043

    CAS  Google Scholar 

  13. Alkis S, Cao C, Cheng HP, Krause JL (2009) Molecular dynamics simulations of Au penetration through alkanethiol monolayers on the Au(111) surface. J Phys Chem C 113:6360–6366

    CAS  Google Scholar 

  14. Paz Y, Trakhtenberg S, Naaman RJ (1994) Reaction between O(3P) and organized organic thin films. Phys Chem 98(51):13517–13523

    CAS  Google Scholar 

  15. Long DP, Lazorcik JL, Mantooth BA, Moore MH, Ratner MA, Troisi A, Yao Y, Ciszek JW, Tour JM, Shashidhar R (2006) Effects of hydration on molecular junction transport. Nat Mater 5(11):901–908

    CAS  Google Scholar 

  16. Wang W, Lee T, Reed MA (2005) Electronic transport in molecular self-assembled monolayer devices. Proc IEEE 93(10):1815–1824

    CAS  Google Scholar 

  17. Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF (2004) Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4:133–136

    CAS  Google Scholar 

  18. Lai YS, Tu CH, Kwong DL, Chen JS (2005) Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Appl Phys Lett 87(12):122101–122103

    Google Scholar 

  19. Tu CH, Lai YS, Kwong DL (2006) Electrical switching and transport in the Si/organic monolayer/Au and Si/organic bilayer/Al devices. Appl Phys Lett 89(6):062105–062113

    Google Scholar 

  20. Maitani MM, Daniel TA, Cabarcos OM, Allara DL (2009) Nascent metal atom condensation in self-assembled monolayer matrices: coverage-driven morphology transitions from buried adlayers to electrically active metal atom nanofilaments to overlayer clusters during aluminum atom deposition on alkanethiolate/gold monolayers. J Am Chem Soc 131(23):8016–8029

    CAS  Google Scholar 

  21. Hooper A, Fisher GL, Konstadinidis K, Jung D, Nguyen H, Opila R, Collins RW, Winograd N, Allara DL (1999) Chemical effects of methyl and methyl ester groups on the nucleation and growth of vapor-deposited aluminum films. J Am Chem Soc 121:8052–8064

    CAS  Google Scholar 

  22. Tarlov MJ (1992) Silver metalization of octadecanethiol monolayers self-assembled on gold. Langmuir 8:80–89

    CAS  Google Scholar 

  23. Jung DR, Czanderna AW (1994) Chemical and physical interactions at metal/self-assembled organic monolayer interfaces. Crit Rev Solid State Mater Sci 19:1–54

    CAS  Google Scholar 

  24. Jung DR, Czanderna AW, Herdt GC (1996) Interactions and penetration at metal/self-assembled organic monolayer interfaces. J Vac Sci Technol A 14:1779–1787

    CAS  Google Scholar 

  25. Herdt GC, King DE, Czanderna AW (1997) Penetration of deposited Au, Cu, and Ag overlayers through alkanethiol self-assembled monolayers on gold or silver. Z Phys Chem 202:163–196

    CAS  Google Scholar 

  26. Herdt GC, Jung DR, Czanderna AW (1995) Weak interactions between deposited metal overlayers and organic functional groups of self-assembled monolayers. Prog Surf Sci 50:103–129

    CAS  Google Scholar 

  27. Herdt GC, Czanderna AW (1997) Metal overlayers on organic functional groups of self-organized molecular assemblies. 7. Ion scattering spectroscopy and X-ray photoelectron spectroscopy of Cu/CH3 and Cu/COOCH3. J Vac Sci Technol A 15:513–519

    CAS  Google Scholar 

  28. Herdt GC, Czanderna AW (1999) Metal overlayers on organic functional groups of self-assembled monolayers: VIII. X-Ray photoelectron spectroscopy of the Ni/COOH interface. J Vac Sci Technol A 17:3415–3418

    CAS  Google Scholar 

  29. Ohgi T, Sheng H-Y, Nejoh H (1998) Au particle deposition onto self-assembled monolayers of thiol and dithiol molecules. Appl Surf Sci 130–132:919–924

    Google Scholar 

  30. Ohgi T, Sheng H-Y, Dong Z-C, Nejoh H (1999) Observation of Au deposited self-assembled monolayers of octanethiol by scanning tunneling microscopy. Surf Sci 442:277–282

    CAS  Google Scholar 

  31. Wang B, Xiao X, Sheng P (2000) Growth and characterization of Au clusters on alkanethiol self-assembled monolayers. J Vac Sci Technol B 18:2351–2358

    CAS  Google Scholar 

  32. Walker AV, Tighe TB, Reinard MD, Haynie BC, Allara DL, Winograd N (2003) Solvation of zero-valent metals in organic thin films. Chem Phys Lett 369:615–620

    CAS  Google Scholar 

  33. Haynie BC, Walker AV, Tighe TB, Allara DL, Winograd N (2003) Adventures in molecular electronics: how to attach wires to molecules. Appl Surf Sci 203–204:433–436

    Google Scholar 

  34. Tighe TB, Daniel TA, Zhu Z, Uppili S, Winograd N, Allara DL (2005) Evolution of the interface and metal film morphology in the vapor deposition of Ti on hexadecanethiolate hydrocarbon monolayers on Au. J Phys Chem B 109:21006–21014

    CAS  Google Scholar 

  35. Konstadinidis K, Zhang P, Opila RL, Allara DL (1995) An in-situ X-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers. Surf Sci 338:300–312

    CAS  Google Scholar 

  36. Blackstock JJ, Stickle WF, Donley CL, Stewart DR, Williams RS (2007) Internal structure of a molecular junction device: chemical reduction of PtO2 by Ti evaporation onto an interceding organic monolayer. J Phys Chem C 111:16–20

    CAS  Google Scholar 

  37. Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464:873–876

    CAS  Google Scholar 

  38. Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429–433

    CAS  Google Scholar 

  39. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568

    CAS  Google Scholar 

  40. Walker AV, Tighe TB, Stapleton J, Haynie BC, Uppili S, Allara DL, Winograd N (2004) Interaction of vapor-deposited Ti and Au with molecular wires. Appl Phys Lett 84:4008–4010

    CAS  Google Scholar 

  41. deBoer B, Frank MM, Chabal YJ, Jiang W, Garfunkel E, Bao Z (2004) Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. Langmuir 20:1539–1542

    CAS  Google Scholar 

  42. Ohgi T, Sheng HY, Dong ZC, Nejoh H, Fujita D (2001) Charging effects in gold nanoclusters grown on octanedithiol layers. Appl Phys Lett 79:2453–2455

    CAS  Google Scholar 

  43. Vandamme N, Snauwaert J, Janssens E, Vandeweert E, Lievens P, Van Haesendonck C (2004) Visualization of gold clusters deposited on a dithiol self-assembled monolayer by tapping mode atomic force microscopy. Surf Sci 558:57–64

    CAS  Google Scholar 

  44. Chen J, Wang W, Klemic J, Reed MA, Axelrod BW, Kaschak DM, Rawlett AM, Price DW, Dirk SM, Tour JM, Grubisha DS, Bennett DW (2002) Molecular wires, switches, and memories. Molecular electronics II, Ann NY Acad Sci 960:69–99

    CAS  Google Scholar 

  45. Zhu Z, Allara DL, Winograd N (2006) Chemistry of metal atoms reacting with alkanethiol self-assembled monolayers. Appl Surf Sci 252(19):6686–6688

    CAS  Google Scholar 

  46. Zhu Z, Daniel TA, Maitani M, Cabarcos OM, Allara DL, Winograd N (2006) Controlling gold atom penetration through alkanethiolate self-assembled monolayers on Au{111} by adjusting terminal group intermolecular interactions. J Am Chem Soc 128:13710–13719

    CAS  Google Scholar 

  47. Haick H, Ghabboun J, Cahen D (2005) Pd versus Au as evaporated metal contacts to molecules. Appl Phys Lett 86:042113

    Google Scholar 

  48. Maitani MM, Allara DL, Ohlberg DAA, Li Z, Williams RS, Stewart DR (2010) High integrity metal/organic device interfaces via low temperature buffer layer assisted metal atom nucleation. Appl Phys Lett 96(17):173109–173113

    Google Scholar 

  49. Walker AV, Tighe TB, Cabarcos OM, Reinard MD, Haynie BC, Uppili S, Winograd N, Allara DL (2004) The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers. J Am Chem Soc 126:3954–3963

    CAS  Google Scholar 

  50. Colavita PE, Doescher MS, Molliet A, Evans U, Reddic J, Zhou J, Chen D, Miney PG, Myrick ML (2002) Effects of metal coating on self-assembled monolayers on gold. 1. Copper on dodecanethiol and octadecanethiol. Langmuir 18(22):8503–8509

    CAS  Google Scholar 

  51. Colavita PE, Miney PG, Taylor L, Priore R, Pearson DL, Ratliff J, Ma S, Ozturk O, Chen DA, Myrick ML (2005) Effects of metal coating on self-assembled monolayers on gold. 2. Copper on an oligo(phenylene-ethynylene) monolayer. Langmuir 21(26):12268–12277

    CAS  Google Scholar 

  52. Nagy G, Walker AV (2006) Dynamics of the interaction of vapor-deposited copper with alkanethiolate monolayers: bond insertion, complexation, and penetration pathways. J Phys Chem B 110:12543–12554

    CAS  Google Scholar 

  53. Dake LS, King DE, Czanderna AW (2000) Ion scattering and X-ray photoelectron spectroscopy of copper overlayers vacuum deposited onto mercaptohexadecanoic acid self-assembled monolayers. Solid State Sci 2(8):781–789

    CAS  Google Scholar 

  54. Haick H, Ambrico M, Ghabboun J, Ligonzo T, Cahen D (2004) Contacting organic molecules by metal evaporation. Phys Chem Chem Phys 6(19):4538–4541

    CAS  Google Scholar 

  55. Haick H, Niitsoo O, Ghabboun J, Cahen D (2007) Electrical contacts to organic molecular films by metal evaporation: effect of contacting details. J Phys Chem C 111:2318–2329

    CAS  Google Scholar 

  56. Walker AV, Tighe TB, Haynie BC, Uppili S, Winograd N, Allara DL (2005) Chemical pathways in the interactions of reactive metal atoms with organic surfaces: vapor deposition of Ca and Ti on a methoxy-terminated alkanethiolate monolayer on Au. J Phys Chem 109:11263–11272

    CAS  Google Scholar 

  57. Nagy G, Walker AV (2007) Dynamics of reactive metal adsorption on organic thin films. J Phys Chem C 111:8543–8556

    CAS  Google Scholar 

  58. Balzer F, Bammel K, Rubahn HG (1993) Laser investigation Na atoms deposited via inert spacer layers close metal surfaces. J Chem Phys 98:7625–7635

    CAS  Google Scholar 

  59. Bammel K, Ellis J, Rubahn HG (1993) Two-photon laser observation of diffusion of Na atoms through self-assembled monolayers on a Au surface. Chem Phys Lett 201(1–4):101–107

    CAS  Google Scholar 

  60. Ge Y, Weidner T, Ahn H, Whitten JE, Zharnikov M (2009) Energy level pinning in self-assembled alkanethiol monolayers. J Phys Chem C 113(11):4575–83

    CAS  Google Scholar 

  61. Zhu Z, Haynie BC, Winograd N (2004) Static SIMS study of the behavior of K atoms on -CH3, -CO2H and -CO2CH3 terminated self-assembled monolayers. Appl Surf Sci 231–232:318–322

    Google Scholar 

  62. Walker AV, Tighe TB, Cabarcos OM, Haynie BC, Allara DL, Winograd N (2007) Dynamics of interaction of magnesium atoms on methoxy-terminated self-assembled monolayers: an example of a reactive metal with a low sticking probability. J Phys Chem C 111:765–772

    CAS  Google Scholar 

  63. Zhou C, Nagy G, Walker AV (2005) Toward molecular electronic circuitry: selective deposition of metals on patterned self-assembled monolayer surfaces. J Am Chem Soc 127:12160–12161

    CAS  Google Scholar 

  64. Ahn H, Whitten JE (2009) Potassium deposition on a thiophene-terminated alkanethiol monolayer. J Electron Spectros Relat Phenomena 172(1–3):107–113

    CAS  Google Scholar 

  65. Dannetun P, Boman M, Stafstrom S, Salaneck WR, Lazzaroni R, Fredriksson C, Bredas JL, Zamboni R, Taliani C (1993) The chemical and electronic structure of the interface between aluminum and polythiophene semiconductors. J Chem Phys 99(1):664–672

    CAS  Google Scholar 

  66. Ahn H, Whitten JE (2003) Vapor-deposition of aluminum on thiophene-terminated self-assembled monolayers on gold. J Phys Chem B 107(27):6565–6572

    CAS  Google Scholar 

  67. Fisher GL, Hooper A, Opila RL, Jung DR, Allara DL, Winograd N (1999) The interaction between vapor-deposited Al atoms and methylester-terminated self-assembled monolayers studied by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and infrared reflectance spectroscopy. J Electron Spectrosc Relat Phenom 98–99:139–148

    Google Scholar 

  68. Fisher GL, Hooper AE, Opila RL, Allara DL, Winograd N (2000) The interaction of vapor-deposited Al Atoms with CO2H groups at the surface of a self-assembled alkanethiolate monolayer on gold. J Phys Chem B 104(14):3267–3273

    CAS  Google Scholar 

  69. Fisher GL, Walker AV, Hooper AE, Tighe TB, Bahnck KB, Skriba HT, Reinard MD, Haynie BC, Opila RL, Winograd N, Allara DL (2002) Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers. J Am Chem Soc 124(19):5528–5541

    CAS  Google Scholar 

  70. Tai Y, Shaporenko A, Eck W, Grunze M, Zharnikov M (2004) Abrupt change in the structure of self-assembled monolayers upon metal evaporation. Appl Phys Lett 85(25):6257–6259

    CAS  Google Scholar 

  71. Tai Y, Shaporenko A, Noda H, Grunze M, Zharnikov M (2005) Fabrication of stable metal films on the surface of self-assembled monolayers. Adv Mater 17(14):1745–1749

    CAS  Google Scholar 

  72. Wacker D, Weiss K, Kazmaier U, Woll C (1997) Realization of a phenyl-terminated organic surface and its interaction with chromium atoms. Langmuir 13(25):6689–6696

    CAS  Google Scholar 

  73. Tai Y, Shaporenko A, Grunze M, Zharnikov M (2005) Effect of irradiation dose in making an insulator from a self-assembled monolayer. J Phys Chem B 109(41):19411–19415

    CAS  Google Scholar 

  74. Noda H, Tai Y, Shaporenko A, Grunze M, Zharnikov M (2005) Electrochemical characterizations of nickel deposition on aromatic dithiol monolayers on gold electrodes. J Phys Chem B 109(47):22371–22376

    CAS  Google Scholar 

  75. Carlo SR, Wagner AJ, Fairbrother DH (2000) Iron metalization of fluorinated organic films: a combined X-ray photoelectron spectroscopy and atomic force microscopy study. J Phys Chem B 104(28):6633–6641

    CAS  Google Scholar 

  76. Bittner AM (2006) Clusters on soft matter surfaces. Surf Sci Rep 61(9):383–428

    CAS  Google Scholar 

  77. Hermes S, Zacher D, Baunemann A, Woll C, Fischer RA (2007) Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem Mater 19:2168–2173

    CAS  Google Scholar 

  78. Rajalingam K, Strunskus T, Terfort A, Fischer RA, Woll C (2008) Metallization of a thiol-terminated organic surface using chemical vapor deposition. Langmuir 24(15):7986–7994

    CAS  Google Scholar 

  79. Weiß J, Himmel H-J, Fischer RA, Wöll C (1998) Self-terminated CVD-functionalization of organic self-assembled monolayers (SAMs) with trimethylamine alane (TMAA). Chem Vap Deposition 4(1):17–21

    Google Scholar 

  80. Zacher D, Shekhah O, Woll C, Fischer RA (2009) Thin films of metal-organic frameworks. Chem Soc Rev 38(5):1418–1429

    CAS  Google Scholar 

  81. Kashammer J, Wohlfart P, Weiß J, Winter C, Fischer R, Mittler-Neher S (1998) Selective gold deposition via CVD onto self-assembled organic monolayers. Opt Mater 9(1–4):406–410

    CAS  Google Scholar 

  82. Wohlfart P, Weiß J, Kashammer J, Winter C, Scheumann V, Fischer RA, Mittler-Neher S (1999) Selective ultrathin gold deposition by organometallic chemical vapor deposition onto organic self-assembled monolayers (SAMs). Thin Solid Films 340(1–2):274–279

    CAS  Google Scholar 

  83. Winter C, Weckenmann U, Fischer RA, Kashammer J, Scheumann V, Mittler S (2000) Selective nucleation and area-selective OMCVD of gold on patterned self-assembled organic monolayers studied by AFM and XPS: a comparison of OMCVD and PVD. Chem Vap Deposition 6(4):199–205

    CAS  Google Scholar 

  84. Semaltianos NG, Pastol J-L, Doppelt P (2004) Copper nucleation by chemical vapour deposition on organosilane treated SiO2 surfaces. Surf Sci 562(1–3):157–169

    CAS  Google Scholar 

  85. Semaltianos NG, Pastol J-L, Doppelt P (2004) Copper chemical vapour deposition on organosilane-treated SiO2 surfaces. Appl Surf Sci 222(1–4):102–109

    CAS  Google Scholar 

  86. Liu X, Wang Q, Wu S, Liu Z (2006) Enhanced CVD of copper films on self-assembled monolayers as ultrathin diffusion barriers. J Electrochem Soc 153(3):C142–C145

    CAS  Google Scholar 

  87. Rajalingam K, Bashir A, Badin M, Schroeder F, Hardman N, Strunskus T, Fischer RA, Woll C (2007) Chemistry in confined geometries: reactions at an organic surface. ChemPhysChem 8:657–660

    CAS  Google Scholar 

  88. Lu P, Demirkan K, Opila RL, Walker AV (2008) Room-temperature chemical vapor deposition of aluminum and aluminum oxides on alkanethiolate self-assembled monolayers. J Phys Chem C 112(6):2091–2098

    CAS  Google Scholar 

  89. Wohlfart P, Weiß J, Käshammer J, Kreiter K, Winter C, Fischer RA, Mittler-Neher S (1999) MOCVD of aluminum oxide/hydroxide onto organic self-assembled monolayers. Chem Vap Deposition 5(4):165–170

    Google Scholar 

  90. Chen R, Bent SF (2006) Chemistry for positive pattern transfer using area-selective atomic layer deposition. Adv Mater 18:1086

    CAS  Google Scholar 

  91. Chen R, Kim H, McIntyre PC, Bent SF (2005) Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition. Chem Mater 17:536

    CAS  Google Scholar 

  92. Park MH, Jang YJ, Sung-Suh HM, Sung MM (2004) Selective atomic layer deposition of titanium oxide on patterned self-assembled monolayers formed by microcontact printing. Langmuir 20:2257–2260

    CAS  Google Scholar 

  93. Park KJ, Doub JM, Gougousi T, Parsons GN (2005) Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition. Appl Phys Lett 86:051903

    Google Scholar 

  94. Killampalli A, Aravind S, Ma PF, Engstrom JR (2005) The reaction of tetrakis(dimethylamido)titanium with self-assembled alkyltrichlorosilane monolayers possessing -OH, -NH2, and -CH3 terminal groups. J Am Chem Soc 127(17):6300–6310

    CAS  Google Scholar 

  95. Dube A, Chadeayne AR, Sharma M, Wolczanski PT, Engstrom JR (2005) Covalent attachment of a transition metal coordination complex to functionalized oligo(phenylene-ethynylene) self-assembled monolayers. J Am Chem Soc 127(41):14299–14309

    CAS  Google Scholar 

  96. Dube A, Sharma M, Ma PF, Ercius PA, Muller DA, Engstrom JR (2007) Effects of interfacial organic layers on nucleation, growth, and morphological evolution in atomic layer thin film deposition. J Phys Chem C 111:11045–11058

    CAS  Google Scholar 

  97. Seitz O, Dai M, Aguirre-Tostado FS, Wallace RM, Chabal YJ (2009) Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices. J Am Chem Soc 131(50):18159–18167

    CAS  Google Scholar 

  98. Haick H, Cahen D (2008) Contacting organic molecules by soft methods: towards molecule-based electronic devices. Acc Chem Res 41(3):359–366

    CAS  Google Scholar 

  99. Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B 105:7280–7290

    CAS  Google Scholar 

  100. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44(1–2):1–49

    CAS  Google Scholar 

  101. Andres R, Bein T, Dorogi M, Feng S, Henderson J, Kubiak C, Mahoney W, Osifchin R, Reifenberger R (1996) “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272:1323–1325

    CAS  Google Scholar 

  102. Okazaki N, Sambles JR, Jory MJ, Ashwell GJ (2002) Molecular rectification at 8 K in an Au/C16H33Q-3CNQ LB film/Au structure. Appl Phys Lett 81(12):2300–2302

    CAS  Google Scholar 

  103. Xu T, Peterson IR, Lakshmikantham MV, Metzger RM (2001) Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes. Angew Chem Int Ed 40(9):1749–1752

    CAS  Google Scholar 

  104. Haick H, Ambrico M, Ligonzo T, Cahen D (2004) Discontinuous molecular films can control metal/semiconductor junction. Adv Mater 16:2145

    CAS  Google Scholar 

  105. Lando A, Lauwaet K, Lievens P (2009) Controlled nanostructuring of a gold film covered with alkanethiol SAM by low energy cluster implantation. Phys Chem Chem Phys 11(10):1521–1525

    CAS  Google Scholar 

  106. Deng J, Hofbauer W, Chandrasekhar N, Shea SJ (2007) Metallization for crossbar molecular devices. Nanotechnology 18(15):155202

    Google Scholar 

  107. Waddill GD, Vitomirov IM, Aldao CM, Weaver JH (1989) Cluster deposition on GaAs(110): formation of abrupt, defect-free interfaces. Phys Rev Lett 62(13):1568

    CAS  Google Scholar 

  108. Weaver JH, Waddill GD (1991) Cluster assembly of interfaces: nanoscale engineering. Science 251(5000):1444–1451

    CAS  Google Scholar 

  109. Bruch LW, Diehl RD, Venables JA (2007) Progress in the measurement and modeling of physisorbed layers. Rev Mod Phys 79(4):1381–1454

    CAS  Google Scholar 

  110. Akkerman HB, Blom PWM, de Leeuw DM, de Boer B (2006) Towards molecular electronics with large-area molecular junctions. Nature 441(7089):69–72

    CAS  Google Scholar 

  111. van Hal PA, Smits ECP, Geuns TCT, Akkerman HB, De Brito BC, Perissinotto S, Lanzani G, Kronemeijer AJ, Geskin V, Cornil J, Blom PWM, de Boer B, de Leeuw DM (2008) Upscaling, integration and electrical characterization of molecular junctions. Nat Nanotechnol 3(12):749–754

    Google Scholar 

  112. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (2003) Comparison of electronic transport measurements on organic molecules. Adv Mater 15(22):1881–1890

    CAS  Google Scholar 

  113. Engelkes VB, Beebe JM, Frisbie CD (2004) Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. J Am Chem Soc 126(43):14287–14296

    CAS  Google Scholar 

  114. Wang W, Lee T, Reed MA (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys Rev B 68(3):035416

    Google Scholar 

  115. Akkerman HB, de Boer B (2008) Electrical conduction through single molecules and self-assembled monolayers. J Phys Condensed Matter 20(1):013001

    Google Scholar 

  116. Wang G, Yoo H, Na SI, Kim TW, Cho B, Kim DY, Lee T (2009) Electrical conduction through self-assembled monolayers in molecular junctions: Au/molecules/Au versus Au/molecule/PEDOT:PSS/Au. Thin Solid Films 518(2):824–828

    CAS  Google Scholar 

  117. Wang G, Kim Y, Choe M, Kim T-W, Lee T (2011) A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv Mater 23(6):755–60. doi:10.1002/adma. 201003178

    CAS  Google Scholar 

  118. Akkerman HB (2008) Large area molecular junctions. Ph.D. Thesis, University of Groningen, The Netherlands, ISBN 978-90-367-3441-7

    Google Scholar 

  119. Lenfant S, Guerin D, TranVan F, Chevrot C, Palacin S, Bourgoin JP, Bouloussa O, Rondelez F, Vuillaume D (2006) Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface. J Phys Chem B 110(28):13947–13958

    CAS  Google Scholar 

  120. Hacker CA, Richter CA, Gergel-Hackett N, Richter LJ (2007) Origin of differing reactivities of aliphatic chains on H-Si(111) and oxide surfaces with metal. J Phys Chem C 111(26):9384–9392

    CAS  Google Scholar 

  121. Zuo J, Keil P, Valtiner M, Thissen P, Grundmeier G (2008) Deposition of Ag nanoparticles on fluoroalkylsilane self-assembled monolayers with varying chain length. Surf Sci 602(24):3750–3759

    CAS  Google Scholar 

  122. Kolipaka S, Aithal RK, Kuila D (2006) Fabrication and characterization of an indium tin oxide-octadecanethiol-aluminum junction for molecular electronics. Appl Phys Lett 88(23):233104–233113

    Google Scholar 

  123. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    CAS  Google Scholar 

  124. McGuiness CL, Blasini D, Masejewski JP, Uppili S, Cabarcos OM, Smilgies D, Allara DL (2007) Molecular self-assembly at bare semiconductor surfaces: characterization of a homologous series of n-alkanethiolate monolayers on GaAs(001). ACS Nano 1(1):30–49

    CAS  Google Scholar 

  125. Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O, Selzer Y (2008) Detection of heating in current-carrying molecular junctions by Raman scattering. Nat Nanotechnol 3(12):727–732

    CAS  Google Scholar 

  126. Yoon HP, Maitani MM, Cabarcos OM, Cai L, Mayer TS, Allara DL (2010) Crossed-nanowire molecular junctions: a new multi-spectroscopy platform for conduction-structure correlations. Nano Lett 10:2897–2902

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Allara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maitani, M.M., Allara, D.L. (2011). Issues and Challenges in Vapor-Deposited Top Metal Contacts for Molecule-Based Electronic Devices. In: Metzger, R. (eds) Unimolecular and Supramolecular Electronics I. Topics in Current Chemistry, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_177

Download citation

Publish with us

Policies and ethics