Skip to main content

Photochemistry and Photophysics of Coordination Compounds: Copper

  • Chapter
  • First Online:
Photochemistry and Photophysics of Coordination Compounds I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 280))

Abstract

Cu(I) complexes and clusters are the largest class of compounds of relevant photochemical and photophysical interest based on a relatively abundant metal element. Interestingly, Nature has given an essential role to copper compounds in some biological systems, relying on their kinetic lability and versatile coordination environment. Some basic properties of Cu(I) and Cu(II) such as their coordination geometries and electronic levels are compared, pointing out the limited significance of Cu(II) compounds (d 9 configuration) in terms of photophysical properties. Well-established synthetic protocols are available to build up a variety of molecular and supramolecular architectures (e.g. catenanes, rotaxanes, knots, helices, dendrimers, cages, grids, racks, etc.) containing Cu(I)-based centers and exhibiting photo- and electroluminescence as well as light-induced intercomponent processes. By far the largest class of copper complexes investigated to date is that of Cu(I)-bisphenanthrolines ([Cu(NN)2]+) and recent progress in the rationalization of their metal-to-ligand charge-transfer (MLCT) absorption and luminescence properties are critically reviewed, pointing out the criteria by which it is now possible to successfully design highly emissive [Cu(NN)2]+ compounds, a rather elusive goal for a long time. To this end the development of spectroscopic techniques such as light-initiated time-resolved X-ray absorption spectroscopy (LITR-XAS) and femtosecond transient absorption have been rather fruitful since they have allowed us to firmly ground the indirect proofs of the molecular rearrangements following light absorption that had accumulated in the past 20 years. A substantial breakthrough towards highly emissive Cu(I) coordination compounds is constituted by heteroleptic Cu(I) complexes containing both N- and P-coordinating ligands ([Cu(NN)(PP)]+) which may exhibit luminescence quantum yields close to 30% in deaerated CH2Cl2 solution and have been successfully employed as active materials in OLED and LEC optoelectronic devices. Also copper clusters may exhibit luminescence bands of halide-to-metal charge transfer (XMCT) and/or cluster centered (CC) character and they are briefly reviewed along with miscellaneous Cu(I) compounds that recently appeared in the literature, which show luminescence bands ranging from the blue to the red spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US Geological Survey (2006) Mineral Commodity Summaries http://minerals.er.usgs.gov/minerals/pubs/commodity/copper/ , last visited: January 2006

  2. Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209–1214

    CAS  Google Scholar 

  3. Horvath O (1994) Coord Chem Rev 135:303–324

    Google Scholar 

  4. Sykora J (1997) Coord Chem Rev 159:95–108

    CAS  Google Scholar 

  5. Jørgensen CK (1963) Adv Chem Phys 5:33–146

    Google Scholar 

  6. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85–277

    CAS  Google Scholar 

  7. Lowry MS, Bernhard S (2006) Chem Eur J 12:7970–7977

    CAS  Google Scholar 

  8. Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–833

    CAS  Google Scholar 

  9. Roundhill DM (1994) Photochemistry and Photophysics of Metal Complexes. Plenum Press, NY

    Google Scholar 

  10. Bignozzi CA, Argazzi R, Kleverlaan CJ (2000) Chem Soc Rev 29:87–96

    CAS  Google Scholar 

  11. Balzani V, Ceroni P, Juris A, Venturi M, Campagna S, Puntoriero F, Serroni S (2001) Coord Chem Rev 219:545–572

    Google Scholar 

  12. Grätzel M (2005) Inorg Chem 44:6841–6851

    Google Scholar 

  13. Vos JG, Kelly JM (2006) Dalton Trans pp 4869–4883

    Google Scholar 

  14. Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) J Phys Chem 90:3722–3734

    CAS  Google Scholar 

  15. Armaroli N (2001) Chem Soc Rev 30:113–124

    CAS  Google Scholar 

  16. Maestri M, Armaroli N, Balzani V, Constable EC, Thompson A (1995) Inorg Chem 34:2759–2767

    CAS  Google Scholar 

  17. Lippard SJ, Berg JM (1994) Principles of Bioinorganic Chemistry. University Science Books, Mill Valley, California

    Google Scholar 

  18. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    CAS  Google Scholar 

  19. Colman PM, Freeman HC, Guss JM, Murata M, Norris VA, Ramshaw JAM, Venkatappa MP (1978) Nature 272:319–324

    CAS  Google Scholar 

  20. Solomon EI (2006) Inorg Chem 45:8012–8025

    CAS  Google Scholar 

  21. Gewirth AA, Solomon EI (1988) J Am Chem Soc 110:3811–3819

    CAS  Google Scholar 

  22. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  23. Babcock GT, Wikstrom M (1992) Nature 356:301–309

    CAS  Google Scholar 

  24. Gamelin DR, Randall DW, Hay MT, Houser RP, Mulder TC, Canters GW, de Vries S, Tolman WB, Lu Y, Solomon EI (1998) J Am Chem Soc 120:5246–5263

    CAS  Google Scholar 

  25. Armaroli N (2003) Photochem Photobiol Sci 2:73–87

    CAS  Google Scholar 

  26. Schmittel M, Kalsani V (2005) Top Curr Chem 245:1–53

    CAS  Google Scholar 

  27. Sammes PG, Yahioglu G (1994) Chem Soc Rev 23:327–334

    CAS  Google Scholar 

  28. Cunningham CT, Moore JJ, Cunningham KLH, Fanwick PE, McMillin DR (2000) Inorg Chem 39:3638–3644

    CAS  Google Scholar 

  29. Armaroli N, Balzani V, Barigelletti F, De Cola L, Flamigni L, Sauvage JP, Hemmert C (1994) J Am Chem Soc 116:5211–5217

    CAS  Google Scholar 

  30. Dietrich-Buchecker C, Colasson B, Fujita M, Hori A, Geum N, Sakamoto S, Yamaguchi K, Sauvage JP (2003) J Am Chem Soc 125:5717–5725

    CAS  Google Scholar 

  31. Frey J, Kraus T, Heitz V, Sauvage JP (2005) Chem Commun, pp 5310–5312

    Google Scholar 

  32. Armaroli N, Balzani V, Collin JP, Gaviña P, Sauvage JP, Ventura B (1999) J Am Chem Soc 121:4397–4408

    CAS  Google Scholar 

  33. Weber N, Hamann C, Kern JM, Sauvage JP (2003) Inorg Chem 42:6780–6792

    CAS  Google Scholar 

  34. Baranoff E, Griffiths K, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) New J Chem 28:1091–1095

    CAS  Google Scholar 

  35. Kraus T, Budesinsky M, Cvacka JC, Sauvage JP (2006) Angew Chem Int Ed 45:258–261

    CAS  Google Scholar 

  36. Dietrich-Buchecker CO, Nierengarten JF, Sauvage JP, Armaroli N, Balzani V, De Cola L (1993) J Am Chem Soc 115:11237–11244

    CAS  Google Scholar 

  37. Perret-Aebi LE, von Zelewsky A, Dietrich-Buchecker CD, Sauvage JP (2004) Angew Chem Int Ed 43:4482–4485

    CAS  Google Scholar 

  38. Armaroli N, Boudon C, Felder D, Gisselbrecht JP, Gross M, Marconi G, Nicoud JF, Nierengarten JF, Vicinelli V (1999) Angew Chem Int Ed 38:3730–3733

    CAS  Google Scholar 

  39. Gumienna-Kontecka E, Rio Y, Bourgogne C, Elhabiri M, Louis R, Albrecht-Gary AM, Nierengarten JF (2004) Inorg Chem 43:3200–3209

    CAS  Google Scholar 

  40. Heuft MA, Fallis AG (2002) Angew Chem Int Ed 41:4520–4523

    CAS  Google Scholar 

  41. Cardinali F, Mamlouk H, Rio Y, Armaroli N, Nierengarten JF (2004) Chem Commun, pp 1582–1583

    Google Scholar 

  42. Zong RF, Thummel RP (2005) Inorg Chem 44:5984–5986

    CAS  Google Scholar 

  43. Ziessel R, Charbonniere L, Cesario M, Prange T, Nierengarten H (2002) Angew Chem Int Ed 41:975–979

    CAS  Google Scholar 

  44. Sauvage J-P, Dietrich-Buchecker CO (eds) (1999) Molecular Catenanes, Rotaxanes and Knots. A Journey through the World of Molecular Topology. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  45. Jimenez-Molero MC, Dietrich-Buchecker C, Sauvage JP (2002) Chem Eur J 8:1456–1466

    CAS  Google Scholar 

  46. Livoreil A, Sauvage JP, Armaroli N, Balzani V, Flamigni L, Ventura B (1997) J Am Chem Soc 119:12114–12124

    CAS  Google Scholar 

  47. Sauvage JP (2005) Chem Commun, pp 1507–1510

    Google Scholar 

  48. Bonnet S, Collin JP, Koizumi M, Mobian P, Sauvage JP (2006) Adv Mater 18:1239–1250

    CAS  Google Scholar 

  49. Kalsani V, Bodenstedt H, Fenske D, Schmittel M (2005) Eur J Inorg Chem 1841–1849

    Google Scholar 

  50. Schmittel M, Kalsani V, Fenske D, Wiegrefe A (2004) Chem Commun, pp 490–491

    Google Scholar 

  51. Schmittel M, Ammon H, Kalsani V, Wiegrefe A, Michel C (2002) Chem Commun, pp 2566–2567

    Google Scholar 

  52. Kalsani V, Ammon H, Jäckel F, Rabe JP, Schmittel M (2004) Chem-Eur J 10:5481–5492

    CAS  Google Scholar 

  53. Schmittel M, Ganz A (1997) Chem Commun, pp 999–1000

    Google Scholar 

  54. Dobson JF, Green BE, Healy PC, Kennard CHL, Pakawatchai C, White AH (1984) Aust J Chem 37:649–659

    CAS  Google Scholar 

  55. Coppens P, Vorontsov II, Graber T, Kovalevsky AY, Chen YS, Wu G, Gembicky M, Novozhilova IV (2004) J Am Chem Soc 126:5980–5981

    CAS  Google Scholar 

  56. Kovalevsky AY, Gembicky M, Coppens P (2004) Inorg Chem 43:8282–8289

    CAS  Google Scholar 

  57. Kovalevsky AY, Gembicky M, Novozhilova IV, Coppens P (2003) Inorg Chem 42:8794–8802

    CAS  Google Scholar 

  58. Miller MT, Gantzel PK, Karpishin TB (1998) Angew Chem Int Ed Engl 37:1556–1558

    CAS  Google Scholar 

  59. Miller MT, Gantzel PK, Karpishin TB (1998) Inorg Chem 37:2285–2290

    CAS  Google Scholar 

  60. Armaroli N, De Cola L, Balzani V, Sauvage JP, Dietrich-Buchecker CO, Kern JM (1992) J Chem Soc Faraday Trans 88:553–556

    CAS  Google Scholar 

  61. Zgierski MZ (2003) J Chem Phys 118:4045–4051

    CAS  Google Scholar 

  62. McMillin DR, Buckner MT, Ahn BT (1977) Inorg Chem 16:943–945

    CAS  Google Scholar 

  63. McMillin DR, McNett KM (1998) Chem Rev 98:1201–1219

    Google Scholar 

  64. Scaltrito DV, Thompson DW, O'Callaghan JA, Meyer GJ (2000) Coord Chem Rev 208:243–266

    CAS  Google Scholar 

  65. Federlin P, Kern JM, Rastegar A, Dietrich-Buchecker C, Marnot PA, Sauvage JP (1990) New J Chem 14:9–12

    CAS  Google Scholar 

  66. Gordon KC, McGarvey JJ (1991) Inorg Chem 30:2986–2989

    CAS  Google Scholar 

  67. Armaroli N, Rodgers MAJ, Ceroni P, Balzani V, Dietrich-Buchecker CO, Kern JM, Bailal A, Sauvage JP (1995) Chem Phys Lett 241:555–558

    CAS  Google Scholar 

  68. Ichinaga AK, Kirchhoff JR, McMillin DR, Dietrich-Buchecker CO, Marnot PA, Sauvage JP (1987) Inorg Chem 26:4290–4292

    CAS  Google Scholar 

  69. Phifer CC, McMillin DR (1986) Inorg Chem 25:1329–1333

    CAS  Google Scholar 

  70. Everly RM, McMillin DR (1991) J Phys Chem 95:9071–9075

    CAS  Google Scholar 

  71. Cunningham CT, Cunningham KLH, Michalec JF, McMillin DR (1999) Inorg Chem 38:4388–4392

    CAS  Google Scholar 

  72. Miller MT, Gantzel PK, Karpishin TB (1999) Inorg Chem 38:3414–3422

    CAS  Google Scholar 

  73. Miller MT, Karpishin TB (1999) Inorg Chem 38:5246–5249

    CAS  Google Scholar 

  74. Kalsani V, Schmittel M, Listorti A, Accorsi G, Armaroli N (2006) Inorg Chem 45:2061–2067

    CAS  Google Scholar 

  75. Gushurst AKI, McMillin DR, Dietrich-Buchecker CO, Sauvage JP (1989) Inorg Chem 28:4070–4072

    CAS  Google Scholar 

  76. Goodman MS, Hamilton AD, Weiss J (1995) J Am Chem Soc 117:8447–8455

    CAS  Google Scholar 

  77. Amendola V, Boiocchi M, Colasson B, Fabbrizzi L (2006) Inorg Chem 45:6138–6147

    CAS  Google Scholar 

  78. Everly RM, McMillin DR (1989) Photochem Photobiol 50:711–716

    CAS  Google Scholar 

  79. Chen LX (2005) Annu Rev Phys Chem 56:221–254

    CAS  Google Scholar 

  80. Chen LX (2004) Angew Chem Int Ed 43:2886–2905

    CAS  Google Scholar 

  81. Chen LX, Jennings G, Liu T, Gosztola DJ, Hessler JP, Scaltrito DV, Meyer GJ (2002) J Am Chem Soc 124:10861–10867

    CAS  Google Scholar 

  82. Chen LX, Shaw GB, Novozhilova I, Liu T, Jennings G, Attenkofer K, Meyer GJ, Coppens P (2003) J Am Chem Soc 125:7022–7034

    CAS  Google Scholar 

  83. Coppens P (2003) Chem Commun pp 1317–1320

    Google Scholar 

  84. Gunaratne T, Rodgers MAJ, Felder D, Nierengarten JF, Accorsi G, Armaroli N (2003) Chem Commun pp 3010–3011

    Google Scholar 

  85. Felder D, Nierengarten JF, Barigelletti F, Ventura B, Armaroli N (2001) J Am Chem Soc 123:6291–6299

    CAS  Google Scholar 

  86. Cody J, Dennisson J, Gilmore J, VanDerveer DG, Henary MM, Gabrielli A, Sherrill CD, Zhang YY, Pan CP, Burda C, Fahrni CJ (2003) Inorg Chem 42:4918–4929

    CAS  Google Scholar 

  87. Blaskie MW, McMillin DR (1980) Inorg Chem 19:3519–3522

    CAS  Google Scholar 

  88. Williams RM, De Cola L, Hartl F, Lagref JJ, Planeix JM, De Cian A, Hosseini MW (2002) Coord Chem Rev 230:253–261

    CAS  Google Scholar 

  89. Siddique ZA, Yamamoto Y, Ohno T, Nozaki K (2003) Inorg Chem 42:6366–6378

    CAS  Google Scholar 

  90. Miller MT, Gantzel PK, Karpishin TB (1999) J Am Chem Soc 121:4292–4293

    CAS  Google Scholar 

  91. Parker WL, Crosby GA (1989) J Phys Chem 93:5692–5696

    CAS  Google Scholar 

  92. Kirchhoff JR, Gamache RE, Blaskie MW, Del Paggio AA, Lengel RK, McMillin DR (1983) Inorg Chem 22:2380–2384

    CAS  Google Scholar 

  93. Cardenas DJ, Collin JP, Gaviña P, Sauvage JP, De Cian A, Fischer J, Armaroli N, Flamigni L, Vicinelli V, Balzani V (1999) J Am Chem Soc 121:5481–5488

    CAS  Google Scholar 

  94. Flamigni L, Talarico AM, Chambron JC, Heitz V, Linke M, Fujita N, Sauvage JP (2004) Chem-Eur J 10:2689–2699

    CAS  Google Scholar 

  95. Armaroli N, Balzani V, Barigelletti F, Decola L, Sauvage JP, Hemmert C (1991) J Am Chem Soc 113:4033–4035

    CAS  Google Scholar 

  96. Armaroli N, Balzani V, De Cola L, Hemmert C, Sauvage JP (1994) New J Chem 18:775–782

    CAS  Google Scholar 

  97. Dietrich-Buchecker CO, Sauvage JP, Armaroli N, Ceroni P, Balzani V (1996) Angew Chem Int Ed Engl 35:1119–1121

    CAS  Google Scholar 

  98. Armaroli N, Diederich F, Dietrich-Buchecker CO, Flamigni L, Marconi G, Nierengarten JF, Sauvage JP (1998) Chem-Eur J 4:406–416

    CAS  Google Scholar 

  99. Sandanayaka ASD, Watanabe N, Ikeshita KI, Araki Y, Kihara N, Furusho Y, Ito O, Takata T (2005) J Phys Chem B 109:2516–2525

    CAS  Google Scholar 

  100. Li K, Bracher PJ, Guldi DM, Herranz MA, Echegoyen L, Schuster DI (2004) J Am Chem Soc 126:9156–9157

    CAS  Google Scholar 

  101. Li K, Schuster DI, Guldi DM, Herranz MA, Echegoyen L (2004) J Am Chem Soc 126:3388–3389

    CAS  Google Scholar 

  102. Watanabe N, Kihara N, Furusho Y, Takata T, Araki Y, Ito O (2003) Angew Chem Int Ed 42:681–683

    CAS  Google Scholar 

  103. Linke M, Chambron SC, Heitz V, Sauvage SP, Encinas S, Barigelletti F, Flamigni L (2000) J Am Chem Soc 122:11834–11844

    CAS  Google Scholar 

  104. Andersson M, Linke M, Chambron JC, Davidsson J, Heitz V, Hammarström L, Sauvage JP (2002) J Am Chem Soc 124:4347–4362

    CAS  Google Scholar 

  105. Andersson M, Linke M, Chambron JC, Davidsson J, Heitz V, Sauvage JP, Hammarström L (2000) J Am Chem Soc 122:3526–3527

    CAS  Google Scholar 

  106. Flamigni L, Armaroli N, Barigelletti F, Chambron JC, Sauvage JP, Solladié N (1999) New J Chem 23:1151–1158

    CAS  Google Scholar 

  107. Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) J Am Chem Soc 115:6109–6114

    CAS  Google Scholar 

  108. Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) J Am Chem Soc 115:7419–7425

    CAS  Google Scholar 

  109. Holler M, Cardinali F, Mamlouk H, Nierengarten JF, Gisselbrecht JP, Gross M, Rio Y, Barigelletti F, Armaroli N (2006) Tetrahedron 62:2060–2073

    CAS  Google Scholar 

  110. Rio Y, Enderlin G, Bourgogne C, Nierengarten JF, Gisselbrecht JP, Gross M, Accorsi G, Armaroli N (2003) Inorg Chem 42:8783–8793

    CAS  Google Scholar 

  111. Clifford JN, Accorsi G, Cardinali F, Nierengarten JF, Armaroli N (2006) C R Chim 9:1005–1013

    CAS  Google Scholar 

  112. Flamigni L, Heitz V, Sauvage JP (2006) Struct Bond 121:217–261

    Article  CAS  Google Scholar 

  113. Cunningham KL, McMillin DR (1998) Inorg Chem 37:4114–4119

    CAS  Google Scholar 

  114. Cunningham KL, Hecker CR, McMillin DR (1996) Inorg Chim Acta 242:143–147

    CAS  Google Scholar 

  115. Ruthkosky M, Kelly CA, Castellano FN, Meyer GJ (1998) Coord Chem Rev 171:309–322

    CAS  Google Scholar 

  116. Ruthkosky M, Castellano FN, Meyer GJ (1996) Inorg Chem 35:6406–6412

    CAS  Google Scholar 

  117. Castellano FN, Ruthkosky M, Meyer GJ (1995) Inorg Chem 34:3–4

    CAS  Google Scholar 

  118. Meskers SCJ, Dekkers H, Rapenne G, Sauvage JP (2000) Chem-Eur J 6:2129–2134

    CAS  Google Scholar 

  119. Buckner MT, McMillin DR (1978) J Chem Soc-Chem Commun, pp 759–761

    Google Scholar 

  120. Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6–7

    CAS  Google Scholar 

  121. McCormick T, Jia WL, Wang SN (2006) Inorg Chem 45:147–155

    CAS  Google Scholar 

  122. Tsukuda T, Nakamura A, Arai T, Tsubomura T (2006) Bull Chem Soc Jpn 79:288–290

    CAS  Google Scholar 

  123. Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten JF, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313–1316

    CAS  Google Scholar 

  124. Yang L, Feng JK, Ren AM, Zhang M, Ma YG, Liu XD (2005) Eur J Inorg Chem 1867–1879

    Google Scholar 

  125. Howell SL, Gordon KC (2004) J Phys Chem A 108:2536–2544

    CAS  Google Scholar 

  126. Kuang SM, Cuttell DG, McMillin DR, Fanwick PE, Walton RA (2002) Inorg Chem 41:3313–3322

    CAS  Google Scholar 

  127. Englman R, Jortner J (1970) Mol Phys 18:145–164

    CAS  Google Scholar 

  128. Rader RA, McMillin DR, Buckner MT, Matthews TG, Casadonte DJ, Lengel RK, Whittaker SB, Darmon LM, Lytle FE (1981) J Am Chem Soc 103:5906–5912

    CAS  Google Scholar 

  129. Palmer CEA, McMillin DR, Kirmaier C, Holten D (1987) Inorg Chem 26:3167–3170

    CAS  Google Scholar 

  130. Tsubomura T, Takahashi N, Saito K, Tsukuda T (2004) Chem Lett 33:678–679

    CAS  Google Scholar 

  131. Saito K, Arai T, Takahashi N, Tsukuda T, Tsubomura T (2006) Dalton Trans pp 4444–4448

    Google Scholar 

  132. Tsubomura T, Enoto S, Endo S, Tamane T, Matsumoto K, Tsukuda T (2005) Inorg Chem 44:6373–6378

    CAS  Google Scholar 

  133. Jia WL, McCormick T, Tao Y, Lu JP, Wang SN (2005) Inorg Chem 44:5706–5712

    CAS  Google Scholar 

  134. Slinker J, Bernards D, Houston PL, Abruna HD, Bernhard S, Malliaras GG (2003) Chem Commun, pp 2392–2399

    Google Scholar 

  135. Schubert EF, Kim JK (2005) Science 308:1274–1278

    CAS  Google Scholar 

  136. Bolink HJ, Cappelli L, Coronado E, Gavina P (2005) Inorg Chem 44:5966–5968

    CAS  Google Scholar 

  137. Holder E, Langeveld BMW, Schubert US (2005) Adv Mater 17:1109–1121

    CAS  Google Scholar 

  138. Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2004) Adv Mater 16:432–436

    CAS  Google Scholar 

  139. Che GB, Su ZS, Li WL, Chu B, Li MT, Hu ZZ, Zhang ZQ (2006) Appl Phys Lett 89:103511

    Google Scholar 

  140. Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16:1203–1208

    CAS  Google Scholar 

  141. Ma YG, Che CM, Chao HY, Zhou XM, Chan WH, Shen JC (1999) Adv Mater 11:852–857

    CAS  Google Scholar 

  142. Raston CL, White AH (1976) J Chem Soc Dalton Trans 21:2153–2156

    Google Scholar 

  143. Vitale M, Ford PC (2001) Coord Chem Rev 219:3–16

    Google Scholar 

  144. Hardt HD, Pierre A (1973) Z Anorg Allg Chem 402:107

    CAS  Google Scholar 

  145. Ford PC, Cariati E, Bourassa J (1999) Chem Rev 99:3625–3647

    CAS  Google Scholar 

  146. Eitel E, Oelkrug D, Hiller W, Strahle J (1980) Z Naturforsch (B) 35:1247–1253

    Google Scholar 

  147. Kyle KR, Ryu CK, DiBenedetto JA, Ford PC (1991) J Am Chem Soc 113:2954–2965

    CAS  Google Scholar 

  148. Rath NP, Holt EM, Tanimura K (1986) J Chem Soc-Dalton Trans pp 2303–2310

    Google Scholar 

  149. Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667–9675

    CAS  Google Scholar 

  150. Cotton FA, Feng XJ, Timmons DJ (1998) Inorg Chem 37:4066–4069

    CAS  Google Scholar 

  151. De Angelis F, Fantacci S, Sgamellotti A, Cariati E, Ugo R, Ford PC (2006) Inorg Chem 45:10576–10584

    Google Scholar 

  152. Yam VWW, Lo KKW, Wong KMC (1999) J Organomet Chem 578:3–30

    CAS  Google Scholar 

  153. Yam VWW (2002) Acc Chem Res 35:555–563

    CAS  Google Scholar 

  154. Yam VWW, Choi SWK, Chan CL, Cheung KK (1996) Chem Commun, pp 2067–2068

    Google Scholar 

  155. Chan CL, Cheung KK, Lam WH, Cheng ECC, Zhu N, Choi SWK, Yam VWW (2006) Chem-Asian J 1–2:273

    Google Scholar 

  156. Dias HVR, Diyabalanage HVK, Eldabaja MG, Elbjeirami O, Rawashdeh-Omary MA, Omary MA (2005) J Am Chem Soc 127:7489–7501

    CAS  Google Scholar 

  157. Che CM, Xia BH, Huang JS, Chan CK, Zhou ZY, Cheung KK (2001) Chem-Eur J 7:3998–4006

    CAS  Google Scholar 

  158. Kharenko OA, Kennedy DC, Demeler B, Maroney MJ, Ogawa MY (2005) J Am Chem Soc 127:7678–7679

    CAS  Google Scholar 

  159. Wei QH, Yin GQ, Zhang LY, Shi LX, Mao ZW, Chen ZN (2004) Inorg Chem 43:3484–3491

    CAS  Google Scholar 

  160. Baxter CW, Higgs AC, Jones AC, Parsons S, Bailey PJ, Tasker PA (2002) J Chem Soc Dalton Trans 4395–4401

    Google Scholar 

  161. Peng R, Li D, Wu T, Zhou XP, Ng SW (2006) Inorg Chem 45:4035–4046

    CAS  Google Scholar 

  162. He X, Lu CZ, Wu CD, Chen LJ (2006) Eur J Inorg Chem, pp 2491–2503

    Google Scholar 

  163. Riesgo EC, Hu YZ, Bouvier F, Thummel RP, Scaltrito DV, Meyer GJ (2001) Inorg Chem 40:3413–3422

    CAS  Google Scholar 

  164. Riesgo EC, Hu YZ, Thummel RP (2003) Inorg Chem 42:6648–6654

    CAS  Google Scholar 

  165. Zhang XM, Tong ML, Gong ML, Lee HK, Luo L, Li KF, Tong YX, Chen XM (2002) Chem-Eur J 8:3187–3194

    CAS  Google Scholar 

  166. Zheng SL, Zhang JP, Chen XM, Huang ZL, Lin ZY, Wong WT (2003) Chem-Eur J 9:3888–3896

    CAS  Google Scholar 

  167. Kunkely H, Vogler A (2003) Inorg Chem Commun 6:543–545

    CAS  Google Scholar 

  168. Pawlowski V, Knor G, Lennartz C, Vogler A (2005) Eur J Inorg Chem 3167–3171

    Google Scholar 

  169. Kinoshita I, Hamazawa A, Nishioka T, Adachi H, Suzuki H, Miyazaki Y, Tsuboyama A, Okada S, Hoshino M (2003) Chem Phys Lett 371:451–457

    CAS  Google Scholar 

  170. Song DT, Jia WL, Wu G, Wang SN (2005) Dalton Trans pp 433–438

    Google Scholar 

  171. Zhao SB, Wang RY, Wang SN (2006) Inorg Chem 45:5830–5840

    CAS  Google Scholar 

  172. Fournier E, Lebrun F, Drouin M, Decken A, Harvey PD (2004) Inorg Chem 43:3127–3135

    CAS  Google Scholar 

  173. Omary MA, Rawashdeh-Omary MA, Diyabalanage HVK, Rasika Dias HV (2003) Inorg Chem 42:8612–8614

    CAS  Google Scholar 

  174. Tsuboyama A, Okada S, Takiguchi T, Igawa S, Kamatani J, Furugori M, Canon KK (2005) JP Patent n. US Patent 2005014024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Armaroli .

Editor information

Vincenzo Balzani Sebastiano Campagna

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Armaroli, N., Accorsi, G., Cardinali, F., Listorti, A. (2007). Photochemistry and Photophysics of Coordination Compounds: Copper. In: Balzani, V., Campagna, S. (eds) Photochemistry and Photophysics of Coordination Compounds I. Topics in Current Chemistry, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2007_128

Download citation

Publish with us

Policies and ethics