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Abstract. Cache based side-channel attacks have recently been
attracted significant attention due to the new developments in the field.
In this paper, we present an efficient trace-driven cache attack on a widely
used implementation of the AES cryptosystem. We also evaluate the cost
of the proposed attack in detail under the assumption of a noiseless en-
vironment. We develop an accurate mathematical model that we use in
the cost analysis of our attack. We use two different metrics, specifically,
the expected number of necessary traces and the cost of the analysis
phase, for the cost evaluation purposes. Each of these metrics represents
the cost of a different phase of the attack.

Keywords: Side-channel Analysis, cache attacks, trace-driven attacks,
AES.

1 Introduction

There are various cache based side-channel attacks in the literature, which are
discussed in detail in the next section. Trace-driven attacks are one of the three
types of cache based attacks that had been distinguished so far. We present a
trace-driven cache based attack on AES in this paper. There are already two
trace-driven attacks on AES in the literature [5,12]. However, our attack re-
quires significantly less number of measurements (e.g. only 5 measurements in
some cases) and is much more efficient than the previous attacks. We show that
trace-driven attacks have indeed much more power than what was stated in the
previous studies.

Furthermore, we present a robust computational model for trace-driven
attacks that allows one to evaluate the cost of such attacks on a given imple-
mentation and platform. Although, we only apply our model to a single attack
on AES in this paper, it can also be used for other symmetric ciphers like DES.
The main contribution of our model to the field is that it can be used to quanti-
tatively analyze the cost of trace-driven attacks on different implementations of
a cipher. Therefore, we can analyze the effectiveness of various mitigations that
can be used against such attacks. Thus, a designer can use our model to deter-
mine which mitigations she needs to implement against trace-driven attacks to
achieve a predetermined security level.
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2 Background and Previous Work

The feasibility of the cache based side-channel attacks, abbreviated to “cache
attacks” from here on, was first mentioned by Kocher and then Kelsey et al. in
[10,11]. D. Page described and simulated a theoretical cache attack on DES [16].
Actual cache based timing attacks were implemented by Tsunoo et al. [18,19].
The original attack on MISTY1 proposed in [19] has recently been improved in
[20].

Although, cache side-channel threat had been known for a couple of years,
the first efficient and realistic attacks were not developed until 2005. Bernstein
showed the vulnerability of AES software implementations on various platforms
[4]. There was a common belief that Bernstein’s attack is a realistic remote
attack and it can recover an entire AES key. However, Neve et al. showed in [13]
that this is only a fallacy. They described the circumstances in which the attack
might work and also the limitations of the Bernstein attack. A realistic general
remote cache attack was developed by Acıiçmez et al [3].

Osvik et al. described various local cache attack variants in [15]. They made
use of a local array and exploited the collisions between the table lookups and
the access operations to this array. Neve et al. improved these attacks by taking
the last AES round into consideration [14]. The same idea of exploiting collisions
between two different processes was also used by Colin Percival in [17] to develop
an attack on RSA.

Similar to external collisions between different processes, the internal collisions
inside a cipher can also be taken advantage of. Internal cache collisions were first
used in [18] and [19]. The attacks presented in [3,12,6] are also based on internal
collisions.

There are three different types of cache attacks, namely time-driven, trace-
driven, and access-driven. Time-driven and trace-driven attacks were first de-
scribed by Page in [16]. Access-driven attacks are relatively new and first seen
in [15]. The difference between these attack types are the capabilities of the
adversary.

The adversary is assumed to be able to capture the profile of the cache activity
during an encryption in trace-driven attacks. This profile includes the outcomes
of every memory access the cipher issues in terms of cache hits and misses.
Therefore, the adversary has the ability to observe if a particular access to a
lookup table yields a hit and can infer information about the lookup indices,
which are key dependent. This ability gives an adversary the opportunity to
make inferences about the secret key.

Time-driven attacks, on the other hand, are less restrictive because they do
not rely on the ability of capturing the outcomes of individual memory accesses.
Adversary is assumed to be able to observe the aggregate profile, i.e., total
numbers of cache hits and misses or at least a value that can be used to approx-
imate these numbers. For example, the total execution time of the cipher can
be measured and used to make inferences about the number of cache misses in
a time-driven cache attack.
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In access-driven attacks, the adversary can determine the cache sets that
the cipher process modifies. Therefore, she can understand which elements of
the lookup tables or S-boxes are accessed by the cipher. Then, the wrong key
assumptions that would cause an access to unaccessed parts of the tables can be
eliminated.

2.1 Overview of Trace-Driven Cache Attacks

Trace-driven attacks on AES were first presented in [12,5]. Bertoni et al. im-
plemented a cache based power attack that exploits external collisions between
different processes [5]. Their attack requires 256 power traces to reveal the se-
cret AES key. Lauradoux’s power attack exploits the internal collisions inside
the cipher but only considers the first round AES accesses and can reduce the
exhaustive search space of a 128-bit AES key to 80 bits.

We described much more efficient trace-driven attacks on AES in [2]. Our
two-round attack is a known-plaintext attack and exploits the collisions among
the first two rounds of AES. A more efficient version, which we call the last
round attack, considers last round accesses and is a known-ciphertext attack.
Due to the space limitation, we only present our last round attack in this paper.

In trace-driven cache attacks, the adversary obtains the traces of cache hits
and misses for a sample of encryptions and recovers the secret key of a cryptosys-
tem using this data. We define a trace as a sequence of cache hits and misses.
For example,

MHHM, HMHM, MMHM, HHMH, MMMM, HHHH

are examples of a trace of length 4. Here H and M represents a cache hit and
miss respectively. The first one in the first example is a miss, second one is a
hit, and so on. If an adversary captures such traces, she can determine whether
a particular access during an encryption is a hit or a miss.

The trace of an encryption can be captured by the use of power consumption
measurements as done in [5,12]. In this paper, we do not get into the details of
how to capture cache traces. We analyze trace-driven attacks on AES under the
assumption that the adversary can capture the traces of AES encryption. This
assumption corresponds to clean measurements in a noiseless environment. In
reality, an adversary may have noise in the measurements in some circumstances,
in which case the cost of the attack may increase depending on the amplitude
of the noise. However, an analysis under the above assumption gives us a more
clear understanding of the attack cost. Assumption of a noiseless environment
also enables us to make more reliable comparison of different attacks.

In a side-channel attack, there are essentially two different phases:

– Online Phase: consists of the collection of side-channel information of the
target cipher. This phase is also known as the sampling phase of the attack.
The adversary encrypts or decrypts different input values and measures the
side-channel information, e.g., power consumption or execution time of the
device.
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– Offline Phase: is also known as the analysis phase. In this phase, the adver-
sary processes the data collected in the online phase and makes predictions
and verifications regarding the secret value of the cipher.

An adversary usually performs the former phase completely before the latter one.
However, in some cases, especially in adaptive chosen-text attacks (e.g. [7,1]),
these two phases may overlap and may be performed simultaneously.

We use two different metrics to evaluate the cost of our last round attack
presented in this paper. The first metric is the expected number of traces that
we need to capture to narrow the search space of the AES key down to a certain
degree. The second metric is the average number of operations we need to perform
to analyze the captured traces and eliminate the wrong key assumptions. These
metrics basically represent the cost of the online and offline phases of our attack.
As the reader can clearly see in this paper, there is a trade-off between the costs
of these two phases.

3 Trace-Driven Cache Attacks on the AES

In this paper, we present a trace-driven attack on the most widely used imple-
mentation of AES, and estimate its cost. We assume that the cache does not
contain any AES data prior to each encryption, because the captured traces
cannot be accurate otherwise. Therefore, the adversary is assumed to clean the
cache (e.g., by loading some garbage data as done in [5,19,18,15,17]) before the
encryption process starts.

Another assumption we make is that the data in AES lookup tables cannot
be evicted from the cache during the encryption once they are loaded into the
cache. This assumption means that each lookup table can only be stored in a
different non-overlapping location of the cache and there is no context-switch
during an encryption or any other process that runs simultaneously with the
cipher and evicts the AES data. These assumptions hold if the cache is large
enough, which is the case for most of the current processors. An adversary can
also discard a trace if a context-switch occurs during the measurement.

We also assume that each measurement is composed of the cache trace of
a single message block encryption. In this paper, we only consider AES with
128-bit key and block sizes. Our attack can easily be adapted to longer key and
block sizes; however we omit these cases for the sake of simplicity.

The implementation we analyze is described in [9] and it is suitable for 32-bit
architectures. It employs 4 different lookup tables in the first 9 rounds and a
different one in the last round. In this implementation, all of the component
functions, except AddRoundKey, are combined into four different tables and the
rounds turn to be composed of table lookups and bitwise exclusive-or operations.

The S-box lookups in the final round are implemented as table lookups to an-
other 1KB-large table , called T4, with 256 many 32-bit elements. Four repeta-
tions of the same 8-bit long Sbox element are concatenated to each other to form
the corresponding 32-bit long element of T4. There are 16 accesses to T4 in that
round. The indices of these accesses are S10

w , where St
w is the byte w of the
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intermediate state value that becomes the input of round t and w ∈ {0, .., 15}.
Let C be the ciphertext, i.e. the output of the last round, and represented as an
array of 16 bytes, C = (c0, c1, ..., c15). Individual bytes of C are computed as:

ci = Sbox[Ii] ⊕ RK10
i ,

where RK10
i is the ith byte of the last round key, Sbox[Ii] is the S-box output

for the input index Ii, and Ii = S10
w for known w, i ∈ {0, 1, ..., 15}.

Ii is equal to S10
w for known values of i and w, but the actual mapping between

these variables is not relevant for our purposes. In this paper, we present our
attack under the assumption that the AES memory accesses in the last round
are issued by the processor in a given order, i.e., first T4[I0], second T4[I1], etc.
However, the actual order is implementation specific and may differ from our
assumption. Our attack can easily be adapted to any given order without any
performance loss. We also need to mention that the S-box in AES implements a
permutation, and therefore its inverse, i.e. Sbox−1, exists.

The outcomes of the last round accesses to T4 leak information about the
values of the last round key bytes, i.e., RK10

i where i ∈ {0, .., 15}. For example,
if the second access to T4 results in a cache hit, we can conclude that the indices
I0 and I1 are equal. If it is a cache miss, then the inequality of these values
becomes true. We can use this fact to find the correct round key bytes RK10

0
and RK10

1 as the following.
We can write the value of Ii in terms of RK10

i and ci:

Ii = Sbox−1[ci ⊕ RK10
i ] ,

If I0 and I1 are equal, so are Sbox−1[c0 ⊕ RK10
0 ] and Sbox−1[c1 ⊕ RK10

1 ], which
also mandates the equality of c0 ⊕ RK10

0 and c1 ⊕ RK10
1 . This equality can also

be written as

c0 ⊕ RK10
0 = c1 ⊕ RK10

1 ⇒ c0 ⊕ c1 = RK10
0 ⊕ RK10

1

Since the value of C is known to the attacker, RK10
0 ⊕ RK10

1 can directly
be computed from the values of c0 and c1 if the second access to T4 results in
a cache hit. In case of a cache miss, we can replace the = sign in the above
equations with �= and we can use the inequalities to eliminate the values that
cannot be the correct value of RK10

0 ⊕ RK10
1 .

In a real environment, even if the index of the second access to a certain
lookup table is different than the index of the first access, a cache hit may still
occur. Any cache miss results in the transfer of an entire cache line, not only
one element, from the main memory. Therefore, whenever an access retrieves
an element, which lies in the same cache line of the previously accessed data, a
cache hit occurs.

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements in each
line, which means any access to a specific element will map to the same line with
(δ/k−1) different other accesses. If two different accesses to the same array read
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the same cache line, the most significant parts of their indices, i.e., all of the bits
except the last � = log2(δ/k) bits, must be identical.

Therefore, we observe a cache hit in the second access to T4 whenever

〈I0〉 = 〈I1〉 ,

and so

〈Sbox−1[c0 ⊕ RK10
0 ]〉 = 〈Sbox−1[c1 ⊕ RK10

1 ]〉 ,

where 〈A〉 stands for the most significant part of A. However due to the non-
linearity of the AES S-box, only the correct RK10

0 and RK10
1 values obey the

above equation for every ciphertext sample. Therefore, we can find the correct
RK10

0 and RK10
1 values instead of their difference. This increases the search

space of this initial guessing problem from 8 bits to 16 bits. However, once we
find these round key bytes, we only need to search through 8 bits to find each
of the remaining round key bytes.

The value of RK10
2 can also be determined by analyzing the first three accesses

to T4 after the correct values of RK10
0 and RK10

1 are found. Similarly, if we
extend our focus to the first four accesses, we can find RK10

3 . Then we can
find RK10

4 and so on. After revealing the entire round key, it becomes trivial to
compute the actual secret key, because the key expansion of the AES cipher is
a reversible function.

We want to explain some details of our attack that are not mentioned above.
We call all possible values that can be the correct value of a round key byte
as the hypotheses of that particular round key byte or shortly round key byte
hypotheses. Incorrect values are called wrong hypotheses. Initially all of the 256
possible values are considered as the round key byte hypotheses for a particular
round key byte. During the course of the attack, we distinguish some of these
values as wrong hypotheses; thus decrease the number of hypotheses and increase
that of wrong hypotheses.

In our attack, we consider each access to T4 separately, starting from the
second one. The first access is always a miss because of the cache cleaning
and the assumptions explained above. We start a search on all possible hy-
potheses of (RK0,RK1) pair by assigning RK0 = x, RK1 = y and checking
whether (x,y) obeys the captured traces, x, y ∈ {0, ..., 255}. We then eliminate
the wrong hypotheses those do not obey the traces. Then we extend our focus
to the third access and perform a similar search on ((RK0,RK1),RK2). Again
we eliminate the wrong hypotheses of RK2 for each remaining (RK0,RK1) pairs
and end up only with (RK0,RK1,RK2) values those obey the traces. We con-
tinue this method by considering fourth access and so on. After we determine all
of the round key hypotheses actually obeying the traces, we perform an exhaus-
tive search on the final remaining set. The above method is the same as AC-3
algorithm, which is an optimal propogation algorithm for binary constraints just
like our case.
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4 Analysis of the Attacks

In this section we estimate the number of traces need to be capture to recover the
secret key. In other words, we determine the cost of the attack presented above.
We first present a computational model that allows us to determine the cost of
trace-driven attacks and then we use this model to perform the cost analysis of
the proposed attack.

4.1 Our Model

Let m be 2(8−�), i.e. the number of blocks in a table. A block of elements of a
lookup table that are stored together in a single cache line is defined as a block
of this table. The cost of a trace-driven attack is a function of m. The two most
common values of m are 16 and 32 today and thus we evaluate the cost of the
attacks for these two values of m.

In order to calculate the expected number of traces, first we need to find an
equation that gives us the expected number of table blocks that are loaded into
the cache after the first k accesses. We denote this expected number as #k.

The probability of being a single table block not loaded into the cache after
k accesses to this table is (m−1

m )k. The expected number of blocks that are not
loaded becomes m ∗ (m−1

m )k. Therefore,

#k = m − m ∗ (
m − 1

m
)k .

Let Rk
expected be the expected fraction of the wrong key hypotheses that obeys

a captured trace in kth step of the attack. In other words, a wrong key hypothesis
that generated the same trace with the correct key in the first k accesses of an
encryption has a chance of generating the captured outcome for the next access
with a probability of Rk

expected. Therefore, if the adversary captures the outcomes
of the first (k + 1) accesses (1 ≤ k ≤ 15) to T4 during a single encryption, she
can eliminate (1 − Rk

expected) fraction of the wrong key hypotheses in the kth

step of the attack, where

Rk
expected =

#k

m
∗ #k

m
+ (1 − #k

m
) ∗ (1 − #k

m
) , 1 ≤ k ≤ 15 .

Notice that Rk
expected is not the kth power of a constant Rexpected here, but it is

defined as a variable that is specified by the parameter k. The left (right) side of
the above summation is the product of the probability of a cache hit (miss, resp.)
and the expected ratio of the wrong hypotheses that remain after eliminating
the ones that do not cause a hit (miss, resp.).

Figure.1 shows the approximations of Rk
expected and #k for different values of

k and m. We want to mention again that these values are experimentally verified.
The differences between the calculated and empirical values of Rk

expected are less
than 0.2% in average. We can use these values to find the expected number of
remaining wrong key hypotheses after t measurements or the expected number
of measurements to reduce the key space down to a specific number or in any
such calculations.
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k m=32 m=16
Rk

expected #k Rk
expected #k

1 0.939453 1.000000 0.882813 1.000000
2 0.884523 1.968750 0.787140 1.937500
3 0.834806 2.907227 0.709919 2.816406
4 0.789923 3.816376 0.648487 3.640381
5 0.749522 4.697114 0.600528 4.412857
6 0.713273 5.550329 0.564035 5.137053
7 0.680868 6.376881 0.537265 5.815988
8 0.652021 7.177604 0.518709 6.452488
9 0.626464 7.953304 0.507063 7.049208

10 0.603946 8.704763 0.501197 7.608632
11 0.584236 9.432739 0.500138 8.133093
12 0.567116 10.137966 0.503050 8.624775
13 0.552384 10.821155 0.509209 9.085726
14 0.539850 11.482994 0.517999 9.517868
15 0.529340 12.124150 0.528890 9.923002

Fig. 1. The calculated values of #k and Rexpected for different values of m

4.2 Trade-Off Between Online and Offline Cost

There is an obvious trade-off between online and offline cost of the attack. If
an adversary can capture a higher number of traces, it becomes easier to find
the key. Eliminating more wrong hypotheses in early steps reduces the cost of
the later steps. The change in the offline cost of the attack with the number of
captured traces can be seen in Figure.2.

As shown in the figure, the last round attack requires only 5 measurements
to reduce the computational effort of breaking the entire 128-bit key below the
recommended minimum security levels (c.f. [8]). NSA and NIST recommends a
minimum key length of 80 bits for symmetric ciphers so that the computational
effort of an exhaustive search should not be lower than 280.

5 Experimental Details

We performed experiments to test the validity of the values we have presented
above. The results show a very close correlation between our model and empirical
results and confirm the validness of our model and calculations.

Bertoni et al. showed that the cache traces could be captured by measuring
power consumption [5]. In our experimental setup, we did not measure the power
consumption, instead we assumed the correctness of their argument. We simply
modified the AES source code of OpenSSL. The purpose of our modifications
was not to alter the execution of the cipher, but to store the values of the access
indices. These index values were then used to generate the cache traces. This
process allows us to capture the traces and obtain the empirical results.

We generated one million randomly chosen cipherkeys and encrypted 100
random plaintext under each of these keys. In other words, we performed the
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m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

1 2117.68 1 2120.93

5 274.51 5 290.76

10 235.12 10 256.16

20 224.22 20 233.97

30 221.36 30 227.77

40 220.08 40 224.88

50 219.46 50 223.25

75 219.13 75 221.22

100 219.12 100 220.39

Fig. 2. The cost analysis results of the last round attack

attack steps with 100 random plaintext. After each encryption, we determined
the ratio of the number of remaining wrong key hypotheses to the number of
wrong key hypotheses that were present before the encryption. We call this ratio
the reduction ratio, which is denoted as Rk

expected. We calculated the average
of these measured values. Our results show very close correlation between the
measured and calculated values. The average difference between the empirical
and calculated values of Rk

expected, i.e, the error rate, is less than 0.2%. The
calculated Rk

expected values are given in Subsection 4.1.

6 Conclusion

We have presented a trace-driven cache attack on the most widely used software
implementation of AES cryptosystem. We have also developed a mathematical
model, accuracy of which is experimentally verified, to evaluate the cost of the
proposed attack. We have analyzed the cost using two different metrics, each of
which represents the cost of a different phase of the attack.

Our analysis shows that such trace-driven attacks are very efficient and require
very low number of encryptions to reveal the secret key of the cipher. To be more
specific, an adversary can reduce the strength of 128-bit AES cipher below the rec-
ommended minimum security level by capturing the traces of only 5 encryptions.
Having more traces reduces the total cost of the attack significantly. Our results
also show this trade-off between the online and offline cost of the attack in detail.
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